
LECTURE NOTES FOR MA20217: ALGEBRA 2B

ALASTAIR CRAW (2013/14)

Abstract. This course introduces abstract ring theory and provides a thorough struc-

ture theory of linear operators on finite dimensional vector spaces.
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1. Rings

1.1. A reminder on groups. Informally, a ring is simply a set equipped with ‘sensible’

notions of addition and multiplication that are compatible. We would like the definition

to be broad enough to include examples like the set of n×n matrices over a fixed field with

the usual matrix addition and multiplication, the set of polynomials with coefficients in

some fixed field with the usual polynomial addition and multiplication, and the integers.

At the same time we want the definition to be somewhat restricted so that we can build

a general theory that deals with all these examples at once.

Before introducing the formal definition of a ring (and recalling that of a group), recall

that a binary operation on a set S is a function

f : S × S → S.

The binary operations that crop up here are typically addition, denoted +, or multipli-

cation, denoted ·. We write a+ b rather than +(a, b), and a · b rather than ·(a, b).

Definition 1.1 (Group). A group is a pair (G, ∗), where G is a set, ∗ is a binary

operation on G and the following axioms hold:

(a) (The associative law)

(a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.

(b) (Existence of an identity) There exist an element e ∈ G with the property that

e ∗ a = a and a ∗ e = a for all a ∈ G.

(c) (The existence of an inverse) For each a ∈ G there exists b ∈ G such that

a ∗ b = b ∗ a = e.

If it is clear from the context what the group operation ∗ is, one often simply refers to

the group G rather than to the pair (G, ∗).

Remarks 1.2. Both the identity element and the inverse of a given element are unique:

(1) if e, f ∈ G are two elements satisfying the identity property from (b) above, then

f = e ∗ f = e,

where the first identity follows from the fact that e satisfies the property and the

latter from the fact that f satisfies the property.

(2) Given a ∈ G, if b, c ∈ G are both elements satisfying (c) above, then

b = b ∗ e = b ∗ (a ∗ c) = (b ∗ a) ∗ c = e ∗ c = c.

This unique element b is called the inverse of a. It is often denoted a−1.

Definition 1.3 (Abelian group). A group (G, ∗) is abelian if a∗b = b∗a for all a, b ∈ G.
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The binary operation in an abelian group is often written as +, in which case the

identity element is denoted 0, and the inverse of an element a ∈ G is denoted −a ∈ G.

Definition 1.4 (Subgroup). A nonempty subset H of a group G is called a subgroup

of G iff

(1.1) ∀ a, b ∈ H, we have a ∗ b−1 ∈ H.

This version of the definition is great when you want to show that a subset is a subgroup,

because there’s so little to check. Despite this, we have (see Algebra 1A, Prop 6.3):

Lemma 1.5. A nonempty subset H of a group (G, ∗) is a subgroup if and only if (H, ∗)
is a group.

Proof. Let H be a subgroup of (G, ∗). Since H is nonempty, there exists a ∈ H and hence

e = a ∗ a−1 ∈ H by equation (1.1). For a ∈ H, apply condition (1.1) to the elements

e, a ∈ H to see that a−1 = e∗a−1 ∈ H. Also, for a, b ∈ H, we’ve just shown that b−1 ∈ H,

so applying condition (1.1) to the elements a, b−1 ∈ H gives a ∗ b = a ∗ (b−1)−1 ∈ H. In

particular, ∗ is a binary operation on H, and since (G, ∗) is a group, the operation ∗ on H

is associative. For the converse, let H be a subset of G such that (H, ∗) is a group. Then

the identity element e ∈ H, so H is nonempty. Let a, b ∈ H. Then b−1 lies in H since H

is a group, and since ∗ is a binary operation on H we have a ∗ b−1 ∈ H as required. �

1.2. Definitions and basic properties of rings. We now move on to rings.

Definition 1.6 (Ring). A ring is a triple (R,+, ·), whereR is a set with binary operations

+: R×R→ R (a, b) 7→ a+ b and · : R×R→ R (a, b) 7→ a · b

such that the following axioms hold:

(1) (R,+) is an abelian group. Write 0 for the (unique) additive identity, and −a for

the (unique) additive inverse of a ∈ R, so

(a+ b) + c = a+ (b+ c) for all a, b, c ∈ R;

a+ 0 = a for all a ∈ R;

a+ b = b+ a for all a, b ∈ R;

a+ (−a) = 0 for all a ∈ R.

(2) (R, ·) satisfies the associative law, that is, we have

(a · b) · c = a · (b · c) for all a, b, c ∈ R;

(3) R satisfies the distributive laws:

a · (b+ c) = (a · b) + (a · c) for all a, b, c ∈ R;

(b+ c) · a = (b · a) + (c · a) for all a, b, c ∈ R.
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Notation 1.7. We often omit · and write ab instead of a · b. For simplicity we often avoid

brackets when there is no ambiguity. Here the same conventions hold as for real numbers,

i.e., that · has priority over +. For example ab + ac stands for (a · b) + (a · c) and not

(a · (b+ a)) · c. One also writes a2 for a · a and 2a for a+ a and so on.

Lemma 1.8. In any ring (R,+, ·), we have

(1) a · 0 = 0 and 0 = 0 · a for all a ∈ R; and

(2) a · (−b) = −(a · b) and −(a · b) = (−a) · b for all a, b ∈ R.

Proof. For (1), let a ∈ R. Since 0 is an additive identity, one of the distributive laws gives

a · 0 = a · (0 + 0) = a · 0 + a · 0.

Adding −(a · 0) on the left on both sides gives

−(a · 0) + a · 0 = −(a · 0) + a · 0 + a · 0.

The left hand side is zero, and the associativity law gives

0 = (−(a · 0) + a · 0) + a · 0 = 0 + a · 0 = a · 0

as required. The second identity is similar. To prove (2), note that

a · b+ a · (−b) = a · (b+ (−b)) = a · 0 = 0.

This means that a · (−b) is the additive inverse of ab, that is, a · (−b) = −(a · b). The

second identity is similar. �

Definition 1.9 (Rings with additional properties). Let (R,+, ·) be a ring. Then:

(1) R a ring with 1 if there is an element 1 := 1R ∈ R satisfying

a · 1 = 1 · a = a for all a ∈ R.

(2) R is a commutative ring if

a · b = b · a for all a, b ∈ R.

(3) R a division ring if it is a ring with 1 such that

for all a ∈ R \ {0}, there exists b ∈ R such that ab = 1 = ba.

(4) R is a field if it is a commutative division ring in which 0 6= 1.

Remark 1.10. If R is a ring with 1, then 1 is the unique multiplicative identity. The same

argument as before works, i.e., if 1̄ was another multiplicative identity, then 1̄ = 1̄ ·1 = 1.

Definition 1.11 (Unit). Let R be a ring with 1. An element a ∈ R is called a unit if it

has a multiplicative inverse, i.e., if there exists b ∈ R such that a · b = b · a = 1.

Remarks 1.12. (1) In a division ring, every nonzero element is a unit.

(2) The multiplicative inverse of a unit is unique, see Remark 1.2(2) for the argument.

We denote the multiplicative inverse by a−1.
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(3) If 0 is a unit then Lemma 1.8(1) implies that 1 = 0 ·0−1 = 0. Therefore, for a ∈ R,

we have a = a · 1 = a · 0 = 0, i.e., R is the zero ring {0}.

Definition 1.13 (Group of units). Let R be a ring with 1 and write R∗ := {a ∈ R |
a is a unit} for the set of all units of R. Then (R∗, ·) is a group - the group of units of R.

Proof. See Exercise 1.3 for the fact that this is indeed a group. �

Examples 1.14. We have R∗ = R \ {0} and Z∗ = {1,−1}.

1.3. Examples of rings. By definition, every field is a commutative ring and hence so

are Q,R,C with respect to the usual addition and multiplication. The ring of integers Z
is a commutative ring with 1 that is not a field.

Example 1.15 (The ring of n× n matrices over R). Let R be a ring with 1. Exer-

cise 1.1 shows that the set Mn(R) of all n×n matrices over R is a ring with 1 with respect

to matrix addition and multiplication. Ask yourself: when is this ring commutative?

Example 1.16 (The endomorphism ring of V ). Let V be a finite dimensional vector

space over a field k. An endomorphism on V is a linear operator on V , that is, a linear

map α : V → V . Let End(V ) denote the set of all endomorphisms on V . Define addition

and multiplication on End(V ) as follows.

(+) For α, β ∈ End(V ) we let [α+β] : V → V be the map that takes v to α(v) +β(v).

This map is linear, because for v, w ∈ V and λ ∈ k we have

[α + β](λv + w) = α(λv + w) + β(λv + w) by definition

= λα(v) + α(w) + λβ(v) + β(w) as α, β are linear

= λ
(
α(v) + β(v)

)
+
(
α(w) + β(w)

)
= [α + β](v) + [α + β](w).

This means that [α + β] ∈ End(V ).

(·) Define multiplication on End(V ) to be composition of maps. Thus for α, β ∈
End(V ) we let [α · β] : V → V be the map that takes v to (α ◦ β)(v) = α(β(v)).

In Algebra 1B you saw that the composition of two linear maps is linear. This

means that [α · β] ∈ End(V ).

Exercise 1.2 shows that End(V ) is a ring with 1 with respect to this addition and multi-

plication. This ring is typically not commutative.

Example 1.17 (The ring of formal power series with coefficients in R). Let R

be a ring and let x be a variable. A formal power series f over R is a formal expression

f =
∞∑
k=0

akx
k = a0 + a1x+ a2x

2 + a3x
3 + · · ·
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with ak ∈ R for k ≥ 0 (we don’t worry about convergence). Let R[[x]] be the set of all

formal power series over R. Define addition and multiplication on R[[x]] as follows: given

formal power series
∑∞

k=0 akx
k,
∑∞

k=0 bkx
k ∈ R[[x]], define

(+) the sum to be the formal power series

∞∑
k=0

akx
k +

∞∑
k=0

bkx
k :=

∞∑
k=0

(ak + bk)x
k;

(·) the product to be the formal power series(
∞∑
k=0

akx
k

)
·

(
∞∑
k=0

bkx
k

)
:= a0b0 + (a1b0 + a0b1)x+ (a2b0 + a1b1 + a0b2)x

2 + · · ·

=
∞∑
k=0

(∑
i+j=k

aibj

)
xk.

As R is an abelian group with respect to the ring addition it follows readily that (R[[x]],+)

is an abelian group in which the power series 0 = 0 + 0x+ 0x2 + · · · is the zero element.

To see that (R[[x]],+, ·) is a ring, it remains to see that the multiplication is associative

and that the distributive laws hold. For this, let

f =
∞∑
k=0

akx
k, g =

∞∑
k=0

bkx
k, h =

∞∑
k=0

ckx
k

be formal power series. The coefficent of xn in the product (fg)h is∑
i+j+k=n

(aibj)ck

which (as multiplication in R is associative) is the same as∑
i+j+k=n

ai(bjck),

the coefficient of xn in f(gh). It follows that (fg)h = f(gh), so multiplication in R[[x] is

associative. Finally we check the distributive laws. The coefficent of xn in f(g + h) is∑
i+j=n

ai(bj + cj) =
∑
i+j=n

aibj +
∑
i+j=n

aicj

which equals the coefficient of xn in fg+ fh, so f(g+h) = fg+ fh. Similary one proves

that (g + h)f = gf + hf . This completes the proof that (R[[x]],+, ·) is a ring.

Notice that if R is a ring with 1, then the power series 1 = 1 + 0x + 0x2 + 0x3 + · · ·
provides a multiplicative identity for R[[x]], and if R is commutative then so is R[[x]].

Remarks 1.18. (1) The formal power series
∑∞

k=0 akx
k depends only on the sequence

(ak), i.e., the variable x really is superfluous. Indeed, power series
∑∞

k=0 akx
k and∑∞

k=0 bkx
k are the same if and only if (ak) = (bk).
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(2) We’re doing algebra rather than analysis, so we’re not interested in questions of

convergence. Indeed, R is any ring, so it doesn’t have a metric in general.

End of Week 1.

1.4. When do equivalence classes form a ring? For the moment, let R be any set.

Recall that a relation ∼ on R is a subset S ⊂ R×R, in which case we write

a ∼ b ⇐⇒ (a, b) ∈ S.

An equivalence relation on R is a relation ∼ that is reflexive, symmetric and transitive,

and the equivalence class of an element a ∈ R is the (nonempty) set

[a] := {b ∈ R | b ∼ a}

of elements that are equivalent to a. Every element lies in a unique equivalence class, and

any two distinct equivalences classes are disjoint subsets of R; we say that the equivalence

classes partition the set R (see Algebra 1A [Proposition 3.5]).

The key point for us is that an equivalence relation on a set R produces a new set,

namely the set of equivalence classes

R/∼ :=
{

[a] | a ∈ R
}
.

Question 1.19. If R is a ring (not just a set), do we require extra conditions on an

equivalence relation ∼ to ensure that the set R/∼ of equivalence classes is a ring?

You’ve already seen examples of this in Algebra 1A [Lecture 10, “The algebra of Zn”]:

Example 1.20 (The ring Zn of integers mod n). For any n ∈ Z, consider the subset

Zn := {mn ∈ Z | m ∈ Z} of integers that are divisible by n (notice that Zn = Z(−n), so

we may as well assume n ≥ 0). There is an equivalence relation ∼ on Z defined by

a ∼ b ⇐⇒ n|(b− a) ⇐⇒ b− a ∈ Zn.

Any integer m can be written in the form m = qn + r for a unique 0 ≤ r < n, in which

case [m] = [r]. Therefore the set of equivalence (or congruence) classes is simply

Zn :=
{

[a] | a ∈ Z
}

=
{

[0], [1], . . . , [n− 1]
}
.

The crucial point for us is that Zn is more than a set: in Algebra 1A [Proposition 4.13]1,

addition and multiplication were defined as follows:

[a] + [b] := [a+ b] and [a] · [b] := [a · b].

This says simply that we add and multiply the representatives a and b in Z, and then

take the equivalence class of the result using the fact that [n] = [0]. To be explicit, Z/Z3

has three elements [0], [1] and [2], and the addition and multiplication tables are

1Don’t worry, we’ll prove this again shortly!
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+ [0] [1] [2]

[0] [0] [1] [2]

[1] [1] [2] [0]

[2] [2] [0] [1]

· [0] [1] [2]

[0] [0] [0] [0]

[1] [0] [1] [2]

[2] [0] [2] [1]

In this case, notice that both [1] and [2] have a multiplicative inverse. This shouldn’t be

a surprise: you know that Zn is a field if and only if n is a prime.

Definition 1.21 (Congruence relation). Let R be a ring and let ∼ be an equivalence

relation on R. We say that ∼ is a congruence iff for all a, b, a′, b′ ∈ R, we have

(1.2) a ∼ a′ and b ∼ b′ =⇒ a+ b ∼ a′ + b′ and a · b ∼ a′ · b′.

The equivalence classes of a congruence ∼ are called congruence classes.

Remark 1.22. The key point is that one can add or multiply any two equivalence classes

[a], [b] ∈ R/∼ by first adding or multiplying any representative of the equivalence classes

in the ring R, and then taking the congruence class of the result.

Addition and multiplication in Zn is possible precisely because the equivalence relation

∼ on Z defined in Example 1.20 is a congruence. More generally, we have the following:

Theorem 1.23 (Quotient rings). Let ∼ be a congruence on a ring R. Define addition

and multiplication on the set R/∼ of equivalence classes as follows: for a, b ∈ R, define

[a] + [b] := [a+ b] and [a] · [b] := [a · b].

Then (R/∼,+, ·) is a ring with zero element [0]. Moreover:

(1) if R is a ring with 1, then so is R/∼ (the multiplicative identity is [1]); and

(2) if R is commutative then so is R/∼.

Proof. We first check that addition and multiplication are well-defined for equivalence

classes. For this, consider alternative representatives of the equivalence classes [a] and

[b], say a′ ∈ R satisfying [a] = [a′] and b′ ∈ R satisfying [b] = [b′]. Then

[a′] + [b′] = [a′ + b′] by definition

= [a+ b] by the congruence property

= [a] + [b] by definition,

and similarly

[a′] · [b′] = [a′ · b′] by definition

= [a · b] by the congruence property

= [a] · [b] by definition

as required. This means that addition and multiplication define binary operations on the

set R/∼ of equivalence classes. We now check that all the ring axioms hold:
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(1) To check that (R/∼,+) is an abelian group, note that for a, b, c ∈ R we have

([a] + [b]) + [c] = [a+ b] + [c] = [(a+ b) + c] = [a+ (b+ c)] = [a] + [b+ c] = [a] + ([b] + [c]),

[a] + [b] = [a+ b] = [b+ a] = [b] + [a].

Also, we have [a] + [0] = [a + 0] = [a], so [0] is the zero element. Moreover,

[a] + [−a] = [a+ (−a)] = [0], so [−a] is the additive identity of [a].

(2) To check that (R/∼, ·) is associative, note that for a, b, c ∈ R we have

([a] · [b]) · [c] = [ab] · [c] = [(ab)c] = [a(bc)] = [a] · [bc] = [a] · ([b] · [c]).

(3) To check that R/∼ satisfies the distributive laws, note that for a, b, c ∈ R we have

[c] · ([a] + [b]) = [c] · [a+ b] = [c(a+ b)]

= [ca+ cb]

= [ca] + [cb]

= [c] · [a] + [c] · [b].

One proves that ([a] + [b]) · [c] = [a] · [c] + [b] · [a] similarly.

This completes the proof that (R/∼,+, ·) is a ring with zero element [0]. To finish off,

note first that if R is a ring with 1, then [1] ∈ R/∼ is a multiplcative identity because

[a] · [1] = [a · 1] = [a] = [1 · a] = [1] · [a],

hence R/∼ is a ring with 1. Finally, if R is commutative then

[a] · [b] = [a · b] = [b · a] = [ab] · [a],

so R/∼ is commutative. �

1.5. Subrings and ideals. We now introduce subrings and ideals of a ring which leads

to a simple method for constructing congruence relations on a ring R.

Definition 1.24 (Subring). A nonempty subset S of a ring R is called a subring iff

∀ a, b ∈ S, we have a− b ∈ S.
∀ a, b ∈ S, we have a · b ∈ S.

The sets of the form r + S = {r + s | s ∈ S} for r ∈ R are the cosets of S in R.

Lemma 1.25. Let S be a subset of a ring (R,+, ·). Then S is a subring of R if and only

if (S,+, ·) is a ring.

Proof. See Exercise 2.2. �

Examples 1.26. (1) For any ring R, both {0} and R are subrings of R.

(2) The ring Z is a subring of Q which is a subring of R which is a subring of C.
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(3) The even integers Z2 are a subring of Z, and hence they form a ring in their own

right by Lemma 1.25. This ring is not a ‘ring with 1’. In particular, a subring of

a ‘ring with 1’ need not be a ‘ring with 1’ (!).

(4) The Gaussian integers Z[i] := {a+ bi ∈ C | a, b ∈ Z} are a subring of the field C,

see Exercise 2.1.

Example 1.27 (The ring of polynomials with coefficients in R). Let R be a

ring and let
∑∞

k=0 akx
k ∈ R[[x]] be a formal power series. If only finitely many of the

coefficients ak are nonzero, we say that
∑∞

k=0 akx
k is a polynomial and we write R[x] ⊂

R[[x]] for the subset of polynomials. In particular, by ignoring the terms with coefficient

equal to zero, any polynomial can be written as a0 + a1x + · · · + anx
n for some n ≥ 0.

The degree of a nonzero polynomial is the largest n such that an 6= 0 (the degree of the

zero polynomial is defined to be −∞).

We claim that R[x] is a subring of R[[x]]. Indeed, if f =
∑∞

k=0 akx
k, g =

∑∞
k=0 bkx

k are

polynomials of degree m and n respectively, then

f − g =
∞∑
k=0

akx
k −

∞∑
k=0

bkx
k =

∞∑
k=0

(ak − bk)xk

is a polynomial of degree at most max(m,n), and

∞∑
k=0

akx
k ·

∞∑
k=0

bkx
k =

∞∑
k=0

(∑
i+j=k

aibj

)
xk.

is a polynomial of degree at most m+ n. In particular, R[x] is a ring by Lemma 1.25.

The concept of a subring isn’t as important as you might guess. After all, Lemma 1.25

says that every subring is a ring in its own right. However, if we strengthen slightly the

notion of a subring we obtain the following fantastically useful notion:

Definition 1.28 (Ideal). A nonempty subset I of a ring R is an ideal if and only if

∀ a, b ∈ I, we have a− b ∈ I
∀ a ∈ I, r ∈ R, we have r · a, a · r ∈ I.

Remark 1.29. Notice that every ideal I in R is a subring of R. In particular, Lemma 1.25

implies that every ideal contains 0R.

Example 1.30. Let R be a commutative ring and let a ∈ R. We claim that the set

Ra := {r · a | r ∈ R}

is an ideal of R. Indeed, 0 = 0 · a ∈ I, so I 6= ∅. Also, I is closed under subtraction and

multiplication by elements of R because r · a− s · a = (r − s) · a and s · (r · a) = (rs) · a.

The following result illustrates one reason why we like ideals so much!
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Proposition 1.31. Let S be a subring in R, and define ∼ on R by setting

a ∼ b if and only if a− b ∈ S.

Then

(1) the relation ∼ is an equivalence relation in which the equivalence classes are the

cosets of S in R, i.e., we have [a] = a+ S for all a ∈ R; and

(2) ∼ is a congruence iff S is an ideal.

Proof. We first show that ∼ is an equivalence relation. Let a, b, c ∈ R. Then a−a = 0 ∈ S
means a ∼ a, so ∼ is reflexive. If a ∼ b then a− b ∈ S and hence b− a = −(a− b) ∈ S
by Lemma 1.25. This gives b ∼ a, so ∼ is symmetric. Finally if a ∼ b and b ∼ c then

a− b, b− c ∈ S. As S is closed under addition, it follows that (a− b) + (b− c) = a− c ∈ S
and hence a ∼ c. This shows that ∼ is transitive, so ∼ is an equivalence relation.

For a ∈ R, the equivalence class of a is

[a] := {b ∈ R | b ∼ a} = {b ∈ R | b− a ∈ S}
= {b ∈ R | ∃ s ∈ S such that b− a = s}
= {a+ s | s ∈ S}
= a+ S

as claimed. This proves part (1).

To prove the final statement, suppose first that S is an ideal. Let a, b, a′, b′ ∈ R and

suppose that a ∼ a′ and b ∼ b′. Then a− a′, b− b′ ∈ S. Since S is an ideal, we have

(a+ b)− (a′ + b′) = (a− a′) + (b− b′) ∈ S

by the first defining property of an ideal, so a+b ∼ a′+b′. Finally, by adding 0 = −ab′+ab′
below, we get

ab− a′b′ = ab+
[
− ab′ + ab′

]
− a′b′ = a(b− b′) + (a− a′)b′ ∈ S

by the second defining property of an ideal, so ab ∼ a′b′ as required. Conversely, let S

be a subring and suppose that ∼ is a congruence relation. Let a ∈ S and r ∈ R. Then

a ∼ 0, and since ∼ is a congruence, we have r · a ∼ r · 0 = 0 and a · r ∼ 0 · r = 0. This

gives r · a, a · r ∈ S, so the subring S is an ideal. �

Remark 1.32. Proposition 1.31 says that ideals determine congruence relations. Exercise

3.1 establishes the converse statement, i.e., that every congruence relation ∼ on a ring R

arises from an ideal I in R as described by Proposition 1.31.

Definition 1.33 (Quotient ring). Let I be an ideal in a ring R and let ∼ be the

corresponding congruence. The quotient ring R/I is the ring R/∼ constructed in Theo-

rem 1.23. Explicitly, the ring

R/I = {[a] = a+ I : a ∈ R}
11



is the set of cosets of I in R (the congruence classes for ∼), and we define addition and

multiplication on R/I by

(a+ I) + (b+ I) = (a+ b) + I and (a+ I) · (b+ I) = (a · b) + I.

Remark 1.34. Remember that these addition and multiplication formulas simply mean

that we add and multiply the representatives as if we’re adding and multiplying in R,

and then we take the coset (=congruence class) of the resulting element of R.

Example 1.35. In Example 1.20, the subset Zn of Z is an ideal, so Zn := Z/Zn is a

ring. It’s a commutative ring with 1 because Z is too (recall that we may assume n ≥ 1).

Example 1.36 (The quotient ring R[x]/I for the ideal I = R[x]x2). The ideal R[x]x2

in the ring R[x] determines the congruence relation ∼ on R[x], where for f, g ∈ R[x]

f ∼ g ⇐⇒ f − g ∈ R[x]x2 ⇐⇒ x2|f − g.

Any polynomial f can be written in the form f = gx2 + ax + b for unique a, b ∈ R, so

[f ] = [ax+ b] for some a, b ∈ R. Therefore

R[x]/R[x]x2 =
{

[ax+ b] | a, b ∈ R
}
,

where addition and multiplication are given by

[ax+ b] + [cx+ d] = [(a+ c)x+ (b+ d)]

and

[ax+ b] · [cx+ d] = [acx2 + (ad+ bc)x+ bd] = [(ad+ bc)x+ bd]

respectively. Notice that we add and multiply as if we’re working with polynomials and

then we modify the result using the fact that [x2] = [0].

End of Week 2.

2. Ring homomorphisms

2.1. Definitions and examples. We now introduce ring homomorphims which do for

rings what maps do for sets, what linear maps do for vector spaces and what group

homomorphisms do for groups.

Definition 2.1 (Ring homomorphism). Let R, S be rings. A map φ : R → S is said

to be a ring homomorphism if and only if for all a, b ∈ R, we have

φ(a+ b) = φ(a) + φ(b) and φ(ab) = φ(a) · φ(b).

Examples 2.2. Consider two maps from the integers involving the number 2:
12



(1) The function φ : Z→ Z2 defined by

φ(n) =

{
0 if n is even

1 if n is odd

is a ring homomorphism. Indeed, if we compare the rules for adding and multi-

plying even and odd integers

+ even odd

even even odd

odd odd even

· even odd

even even even

odd even odd

with the addition and multiplication tables for Z2, we see that computing in

Z and then applying φ is the same as applying φ and then computing in Z2.

(2) The function φ : Z → 2Z defined by φ(n) = 2n is not a ring homomorphism,

because φ(nm) = 2nm is typically not equal to 4nm = (2n)(2m) = φ(n)φ(m).

Example 2.3 (The quotient map). Let I be an ideal in a ring R. The quotient map

asociated to I is the map φ : R→ R/I defined by setting

φ(a) = a+ I.

This is a ring homomorphism, because

φ(a+ b) = (a+ b) + I = (a+ I) + (b+ I) = φ(a) + φ(b),

and

φ(ab) = ab+ I = (a+ I)(b+ I) = φ(a) · φ(b).

This is the most important example of a ring homomorphism; we’ll soon see why!

Lemma 2.4. If φ : R→ S is a ring homomorphism then

(1) φ(0R) = 0S;

(2) for a ∈ R, we have φ(−a) = −φ(a); and

(3) for a, b ∈ R, we have φ(b− a) = φ(b)− φ(a).

Proof. For part (1), we have φ(0R) + 0S = φ(0R) = φ(0R + 0R) = φ(0R) + φ(0R). Now

add −φ(0R) to both sides to get φ(0R) = 0S. For part (2), notice that

φ(a) + φ(−a) = φ(a+ (−a)) = φ(0R) = 0S.

Since S is an abelian group under addition, we also have φ(−a) + φ(a) = 0S, so φ(−a) is

the additive inverse of φ(a), i.e., φ(−a) = −φ(a). For (3), let a, b ∈ R and compute

φ(b− a) = φ(b+ (−a)) = φ(b) + φ(−a) = φ(b)− φ(a)

as required. �
13



Example 2.5 (Evaluation map). Let R be a commutative ring and choose r ∈ R. Let

S be a subring of R (the first time you read this example, assume S = R for simplicity).

Given a formal power series f =
∑∞

k=0 akx
k ∈ S[[x]], we don’t know in general whether

or not the element

f(r) =
∞∑
k=0

akr
k

lies in R. However, if f ∈ S[x], that is, if only finitely many of the coefficients ak are

nonzero, then f(z) ∈ R, and hence we obtain a map

φ : S[x]→ R : f 7→ f(r)

given by evaluating each polynomial at r ∈ R, i.e., substitute r ∈ R into each polynomial.

This is a ring homomorphism, because for f =
∑∞

k=0 akx
k and g =

∑∞
k=0 bkx

k, we have

φ(f + g) = φ

(
∞∑
k=0

(ak + bk)x
k

)
=
∞∑
k=0

(ak + bk)r
k =

∞∑
k=0

akr
k +

∞∑
k=0

bkr
k = φ(f) + φ(g),

where the third equals sign uses commutativity of addition and distributivity in R. Also

φ(fg) = φ

(
∞∑
k=0

(∑
i+j=k

aibj

)
xk

)
by definition of multiplication in R[x]

=
∞∑
k=0

(∑
i+j=k

aibj

)
rk

=
∞∑
i=0

air
i ·
∞∑
j=0

bjr
j see below

= φ

(
∞∑
i=0

aix
i

)
· φ

(
∞∑
j=0

bjx
j

)
= φ(f) · φ(g),

where the middle equals sign requires the distributive laws, commutativity of addition

and associativity of both addition and multiplication in the ring R.

Definition 2.6 (Ring isomorphism). If a ring homomorphism φ is bijective as a map

of sets, then we say that φ is a ring isomorphism. If there exists a ring isomorphism from

R to S then we say that R is isomorphic to S and write R ∼= S.

Lemma 2.7. Let φ : R→ S and ψ : S → T be ring homomorphisms. Then ψ◦φ : R→ T

is a ring homomorphism. Furthermore if φ is an isomorphism then so is φ−1.

Proof. See Exercise 3.1 �

Remarks 2.8. (1) If R is isomorphic to S then there is no structural difference between

the two rings, i.e., the ring S can be thought of as a copy of R.
14



(2) Exercise 3.1 shows that ‘is isomorphic to’ is an equivalence relation, so we’re

allowed to say thatR and S are isomorphic without having to worry about whether

we say R first or S first.

Example 2.9 (Square matrices and Endomorphisms). Let V be an n-dimensional

vector space over a field k. We claim that the ring Mn(k) of n × n matrices over k is

isomorphic to the ring End(V ) of linear operators on V . To write down the map between

these rings, we recall some results from Algebra 1B. Choose a basis (v1, . . . , vn) of V and

consider the invertible linear map

α : kn → V :

a1...
an

 7→ a1v1 + · · ·+ anvn.

This map is the bridge between n×n matrices with entries in k and linear maps V → V .

Indeed, on one hand, left multiplication by a square matrix A ∈ Mn(k) defines a linear

map A : kn → kn. On the other hand, the composition

a1v1 + · · ·+ anvn
α−1

−→

a1...
an

 left mult by A−→

b1...
bn

 α−→ b1v1 + · · ·+ bnvn,

defines the linear map TA : V → V given by TA(v) = αAα−1. Our claim is that the map

φ : Mn(k) −→ End (V ) : A 7→ TA

is a ring isomorphism. To prove the claim, notice that

φ(A+B) = α(A+B)α−1 = αAα−1 + αBα−1 = TA + TB = φ(A) + φ(B)

and

φ(AB) = αABα−1 = (αAα−1)(αBα−1) = TA ◦ TB = φ(A)φ(B),

so φ is a ring homomorphism. Finally, it’s bijective as a map of sets with inverse given

by the matrix φ−1(f) corresponding to the map α−1fα : kn → kn. Explicitly, φ−1(f) is

the n × n matrix whose ith column is (α−1fα)(ei), where ei denotes the basis vector of

kn with 1 in the ith entry and 0 elsewhere. This shows that φ is an isomorphism.

2.2. The fundamental isomorphism theorem. We now work towards what is prob-

ably the most important results in ring theory.

Definition 2.10 (Kernel and image). Let φ : R → S be a ring homomorphism. The

kernel of φ is the subset of R given by

Ker(φ) = {a ∈ R | φ(a) = 0}

and the image of φ is the subset of S given by

Im(φ) = {φ(a) ∈ S | a ∈ R}.
15



Lemma 2.11 (Properties of the kernel). Let φ : R → S be a ring homomorphism.

Then Ker(φ) is an ideal of R. Moreover, φ is injective iff Ker(φ) = {0}.

Proof. Since φ(0R) = 0S we have 0R ∈ Ker(φ) and hence Ker(φ) 6= ∅. For a, b ∈ Ker(φ),

φ(a+ b) = φ(a) + φ(b) = 0 + 0 = 0,

and for r ∈ R and a ∈ Ker(φ) we have

φ(ra) = φ(r)φ(a) = φ(r) · 0 = 0 and φ(ar) = φ(a)φ(r) = 0 · φ(r) = 0.

Thus a+ b, ra, ar ∈ Ker(φ), so Ker(φ) is an ideal in R.

To prove the second statement, assume Ker(φ) = {0} and suppose that a, b ∈ R satisfy

φ(a) = φ(b). Then Lemma 2.4(1) implies that

φ(b− a) = φ(b)− φ(a) = 0

so b− a ∈ Ker(φ). This forces a = b, so φ is injective. Conversely, assume φ is injective

and let a ∈ Ker(φ). Lemma 2.4(1) gives φ(0) = 0 = φ(a), and injectivity of φ forces

a = 0, hence Ker(φ) = {0} as required. �

Lemma 2.12 (Properties of the image). The image Im(φ) is a subring of S, and if

R is a ring with 1 then so is Im(φ). Moreover, φ is surjective iff Im(φ) = S.

Proof. Again φ(0R) = 0S, so Im(φ) is nonempty. Let a, b ∈ Im(φ), so there exists c, d ∈ R
such that a = φ(c) and b = φ(d). Then

a− b = φ(c)− φ(d) = φ(c− d)

by Lemma 2.4(2), and ab = φ(c)φ(d) = φ(cd). This gives a − b, ab ∈ Im(φ), so Im(φ) is

a subring of S. If R is a ring with 1, then the element φ(1) ∈ Im(φ) satisfies

φ(a) · φ(1) = φ(a · 1) = φ(a) = φ(1 · a) = φ(1) · φ(a)

for all φ(a) ∈ Im(φ), so φ(1) is a multiplicative identity in Im(φ), i.e., the subring Im(φ)

is a ring with 1. Finally, the fact that φ is surjective if and only if Im(φ) = S is immediate

from the definitions. �

Theorem 2.13 (The fundamental isomorphism theorem). Let φ : R→ S be a ring

homomorphism. Then there is a ring isomorphism(
R/Ker(φ)

) ∼= Im(φ).

Proof. Consider the map φ : R/Ker(φ)→ Im(φ) defined by setting2

φ
(
[a]
)

= φ(a).

To see that this map is well-defined, notice that

(2.1) [a] = [b] ⇐⇒ a− b ∈ Ker(φ) ⇐⇒ 0 = φ(a− b) = φ(a)− φ(b) ⇐⇒ φ(a) = φ(b)

2Here we use the equivalence class notation [a] for elements in R/Ker(φ), but one may equally use

coset notation a+ Ker(φ).
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as required. To see that φ is a ring homomorphism, notice that

φ([a] + [b]) = φ([a+ b]) = φ(a+ b) = φ(a) + φ(b) = φ([a]) + φ([b])

and

φ([a] · [b]) = φ([ab]) = φ(ab) = φ(a) · φ(b) = φ([a]) · φ([b]).

Notice that [a] ∈ Ker(φ) iff there exists a′ ∈ R satisfying [a′] = [a] with φ(a′) = 0 iff

there exists a′ ∈ Ker(φ) with [a] = [a′] iff [a] = [0] ∈ R/Ker(φ). Thus φ is injective by

Lemma 2.11. Also, φ is surjective by definition of Im(φ). This finishes the proof. �

Remark 2.14. It is impossible to overstate how important Theorem 2.13 is.

It says in particular that every ring homomorphism can be written as the composition

of a surjective ring homomorphism, then an isomorphism, and finally an injective ring

homomorphism. I’ll draw the relevant diagram in the lecture!!

End of Week 3.

2.3. The characteristic of a ring with 1. We use the following standard short hand

notation for iterated sums in a ring R: for any positive integer n and for a ∈ R, we write

na = a+ · · ·+ a︸ ︷︷ ︸
n

and (−n)a = −(na).

In particular, zero copies of an element a ∈ R is the zero element 0R in the ring R (one

might write this as 0a = 0R, where 0 is the zero element in Z). This is just notation and

has nothing to do with the ring multiplication. Notice that 0R · a = 0R is a fact that we

proved in Lemma 1.8 but 0a = 0R is just a natural notation when 0 is the zero integer.

Definition 2.15 (Characteristic of a ring with 1). Let R be a ring with 1. The

characteristic of R, denoted char(R), is a non-negative integer defined as follows; if there

is a positive integer m such that m1R = 0R, then char(R) is the smallest such positive

integer; otherwise, there is no such positive integer and we say that char(R) = 0.

Examples 2.16. (1) The zero ring R = {0} is actually a ring with 1 (!!), and it’s the

only ring for which char(R) = 1.

(2) For any positive integer n, we have that char(Zn) = n.

(3) The field C has characteristic zero, and hence so do Z,Q,R.

Lemma 2.17. Let R be a ring of characteristic n > 0. Then n · a = 0 for all a ∈ R.

Proof. For a ∈ R, we have

n · a = a+ · · ·+ a︸ ︷︷ ︸
n

= (1R · a+ · · ·+ 1R · a︸ ︷︷ ︸
n

) = (1R + · · ·+ 1R︸ ︷︷ ︸
n

) · a = 0R · a = 0R

as required. �
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Let R be a ring with 1. It’s easy to see that the following subset is a subring of R:

Z1R := {n · 1R | n ∈ Z} =
{
· · · , (−2)1R,−1R, 0R, 1R, (2)1R, · · ·

}
.

Lemma 2.18. Let R be a ring with 1. Then either:

(1) char(R) = 0, in which case Z1R is isomorphic to Z; or

(2) char(R) = n > 0, in which case Z1R is isomorphic to Zn.

Proof. The map φ : Z→ R given by φ(n) = n1R is a ring homomorphism because

φ(n+m) = (n+m)1R = n1R +m1R = φ(n) + φ(m)

and φ(nm) = nm1R = n1R ·m1R = φ(n) ·φ(m). Moreover, the image of φ is clearly Z1R.

Suppose first that char(R) = 0. Then φ(n) = n · 1R equals 0R if and only if n = 0.

Therefore Ker(φ) = {0}, and φ is injective by Lemma 2.11. Applying the fundamental

isomorphism theorem to φ gives Z ∼= Z1R which proves part (1). Otherwise, char(R) =

n > 0. Then φ(m) = m1R = 0 if and only if n|m, therefore Ker(φ) = Zn. Applying the

fundamental isomorphism theorem to φ gives Zn ∼= Z1R, so part (2) holds. �

2.4. The Chinese remainder theorem. In this section we revisit the fabulously named

‘Chinese remainder theorem’ that you met in Algebra 1A [Propositions 4.18, 4.19, 4.20].

We first introduce and study two new ideals that we can associate to a pair of ideals.

Definition 2.19 (Sum and product of ideals). Let I and J be ideals of R. The sum

of I and J is the subset

I + J := {a+ b ∈ R | a ∈ I, b ∈ J},

and the product of I and J is the subset

IJ :=

{
k∑
i=1

aibi ∈ R | k ∈ N, ai ∈ I, bi ∈ J for all 1 ≤ i ≤ k

}
of all ab with a ∈ I, b ∈ J .

Lemma 2.20. The sets I ∩ J, I + J and IJ are ideals of R, and

IJ ⊆ I ∩ J ⊆ I + J.

Moreover, if R is a commutative ring with 1 satisfying I+J = R, then we have IJ = I∩J

Proof. We first show that each of the given subsets of R is an ideal.

• For IJ , we have 0 = 0 · 0 ∈ IJ , so IJ 6= ∅. Consider
∑k

i=1 aibi,
∑`

i=1 cidi ∈ IJ ,

for elements ai ∈ I, bi ∈ J for 1 ≤ i ≤ k, and for ci ∈ I, di ∈ J for 1 ≤ j ≤ `.

Consider also r ∈ R. Since I and J are ideals, we have that rai ∈ I and bir ∈ J
for 1 ≤ i ≤ k. It follows that

k∑
i=1

aibi −
∑̀
i=1

cidi = a1b1 + · · ·+ akbk + (−c1)d1 + · · ·+ (−c`)d` ∈ IJ,

18



r
k∑
i=1

aibi =
k∑
i=1

(rai)bi ∈ IJ, and

(
k∑
i=1

aibi

)
· r =

k∑
i=1

ai(bir) ∈ IJ.

This shows that IJ is also an ideal.

• For I∩J , we have 0 ∈ I∩J , so I∩J 6= ∅. Let a, b ∈ I∩J and let r ∈ R. As I, J are

ideals of R, it follows that a− b, ra, ar lie in both I and J , so a− b, ra, ar ∈ I ∩J .

This shows I ∩ J is an ideal of R.

• For I + J , we have 0 = 0 + 0 ∈ I + J , so I + J 6= ∅. Let a1 + b1, a2 + b2 ∈ I + J

for elements a1, a2 ∈ I, b1, b2 ∈ J . Consider also r ∈ R. Since I, J are ideals, we

have that a1 − a2, ra1, a1r ∈ I and b1 − b2, rb1, b1r ∈ J , we have that

(a1 + b1)− (a2 + b2) = (a1 − a2) + (b1 − b2) ∈ I + J,

and that r(a1 + b1) = ra1 + rb1 ∈ I + J and (a1 + b1)r = a1r + b1r ∈ I + J . This

shows that I + J is an ideal of R.

For the inclusions, notice that each element a ∈ I∩J can be written as a = a+0 ∈ I+J ,

so I ∩ J ⊆ I + J . Let ai ∈ I and bi ∈ J for 1 ≤ i ≤ k and consider
∑k

i=1 aibi ∈ IJ . Since

both I and J are ideals we have that aibi ∈ I and aibi ∈ J , so a1b1, . . . , anbn ∈ I ∩ J .

Since I ∩ J is an ideal, we have that
∑k

i=1 aibi ∈ I ∩ J , so IJ ⊆ I ∩ J .

For the final statement, we already know that IJ ⊆ I ∩ J , so it remains to show the

opposite inclusion. Let t ∈ I ∩ J . Notice first that I + J = R iff 1 = x+ y for x ∈ I and

y ∈ J . Then we can write

t = t · 1 = t(x+ y) = tx+ ty = xt+ ty ∈ IJ,

because commutativity of R gives tx = xt. This shows I ∩ J ⊆ IJ as required. �

Remark 2.21. A common mistake is to believe that the product of ideals IJ consists only

of products of the form ab for a ∈ I, b ∈ J ; it consists of finite sums of such elements. The

point is that the set {ab ∈ R | a ∈ I, b ∈ J} is not closed under addition and therefore it

cannot be an ideal. Note that IJ is the smallest ideal that contains this set.

Definition 2.22 (Direct product). The direct product of rings R and S is the set

R× S =
{

(r, s) | r ∈ R, s ∈ S
}
,

where addition and multiplication are given by

(a, b) + (c, d) = (a+ c, b+ d) and (a, b) · (c, d) = (ac, bd).

Remark 2.23. All the algebraic laws hold in R × S since they hold for both R and S;

clearly (0R, 0S) is the zero element, while (−a,−b) is the additive inverse of (a, b). If both

R and S have a 1, then (1R, 1S) makes R×S into a ring with 1, in which case (a, b) ∈ R×S
is unit if and only if a is a unit in R and b is a unit in S, i.e., (R× S)∗ = R∗ × S∗.

19



Theorem 2.24 (Chinese remainder theorem). Let R be a commutative ring with 1.

Let I, J be ideals in R satisfying I + J = R. Then there is a ring isomorphism

φ : R/IJ −→ R/I ×R/J.

Proof. Consider the map φ : R → R/I × R/J defined by setting φ(a) = (a + I, a + J).

It’s a ring homomorphism because

φ(a+ b) = (a+ b+ I, a+ b+ J)

=
(
(a+ I) + (b+ I), (a+ J) + (b+ J)

)
by Definition 1.33

= (a+ I, a+ J) + (b+ I, b+ J) by Definition 2.22

= φ(a) + φ(b)

and

φ(a · b) = (a · b+ I, a · b+ J)

=
(
(a+ I) · (b+ I), (a+ J) · (b+ J)

)
by Definition 1.33

= (a+ I, a+ J) · (b+ I, b+ J) by Definition 2.22

= φ(a) · φ(b).

We now compute the kernel of φ. For this, notice that

a ∈ Ker(φ) ⇐⇒ (a+ I, a+ J) = (0 + I, 0 + J) ⇐⇒ a ∈ I ∩ J,

so Ker(φ) = I ∩J . Since I +J = R, the final statement of Lemma 2.20 gives I ∩J = IJ ,

hence Ker(φ) = IJ . Apply the Fundamental Isomorphism Theorem 2.13 to φ to see that

φ : R/IJ −→ Im(φ)

is an isomorphism. It remains to show that the image of φ is equal to the ring R/I×R/J .

To see this, consider an arbitrary element (a+ I, b+ J) ∈ R/I ×R/J . Since R = I + J ,

there exists x ∈ I and y ∈ J such that 1 = x+ y. Define r := ay + bx ∈ R. Then

φ(r) = (ay + bx+ I, ay + bx+ J)

= (ay + I, bx+ J) as bx ∈ I and ay ∈ J

=
(
a(1− x) + I, b(1− y) + J

)
as 1 = x+ y

=
(
a− ax+ I, b− by + J

)
= (a+ I, b+ J) as x ∈ I and y ∈ J.

Since (a+ I, b+ J) ∈ R/I ×R/J was arbitrary, it follows that φ is surjective. �

Example 2.25. Let m,n ∈ Z be coprime natural numbers. This means that there exists

λ, µ ∈ Z such that 1 = λm + µn, that is, we have Z = Zm + Zn. Apply Lemma 2.20

to the ideals I = Zm and J = Zm to see that IJ = I ∩ J = Zmn, in which case

Theorem 2.24 gives an isomorphism φ : Zmn −→ Zm × Zn which recovers the Chinese

Remainder Theorem from Algebra 1A [Proposition 4.18].
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3. Factorisation in integral domains

Throughout this section we let R be a commutative ring with 1 such that 0 6= 1. We

introduce several special classes of such rings and study factorisation properties.

3.1. Integral domains and Euclidean domains. We now restrict attention to a class

of commutative rings that have a very strong cancellation property.

Definition 3.1 (Integral domain). Let R be a commutative ring with 1 such that

0 6= 1. We say that R is an integral domain if for a, b ∈ R,

ab = 0 =⇒ (a = 0 or b = 0).

Examples 3.2. (1) Every field k is an integral domain. Indeed, if a, b ∈ k satisfy

ab = 0 and if a 6= 0, then b = 1 · b = a−1ab = a−1 · 0 = 0.

(2) The ring of integers Z is an integral domain that is not a field.

(3) Every subring of an integral domain is an integral domain.

(4) Let R be an integral domain. By inspecting the formula for multiplication in the

ring of formal power series R[[x]], we see that R[[x]] is an integral domain. Part

(3) above then implies that the polynomial ring R[x] is an integral domain.

Example 3.3. The commutative ring Z4 = {[0], [1], [2], [3]} satisfies [2] · [2] = [4] = [0]

and yet [2] 6= [0], so Z4 is not an integral domain.

End of Week 4.

Lemma 3.4 (Cancellation property). Let R be a commutative ring with 1 such that

0 6= 1. Then R is an integral domain if and only if for all a, b, c ∈ R, we have

ab = ac and a 6= 0 =⇒ b = c.

Proof. First, let R be an integral domain, and suppose ab = ac and a 6= 0. Then

0 = ab+ (−ac) = ab+ a(−c) = a(b+ (−c)).

Since R is an integral domain and a 6= 0, we have b + (−c) = 0, that is b = c. For the

opposite implication, let R be a commutative ring with 1 such that 0 6= 1, and assume the

cancellation property. Suppose a, b ∈ R satisfies ab = 0 and a 6= 0. Then ab = 0 = a · 0,

and since a 6= 0 the cancellation property gives b = 0 as required. �

Proposition 3.5. The characteristic of an integral domain is either 0 or a prime number.

Proof. Let R be an integral domain. Notice first that since R 6= {0}, we have char(R) 6= 1.

Suppose that n := char(R) is neither 0 nor a prime, i.e., n = r · s for some 1 < r, s < n.

Then 0 = n · 1R = rs · 1R = (r · 1R) · (s · 1R), but since R is an integral domain it follows

that either r · 1R = 0 or s · 1R = 0. Either case is impossible in a ring of characteristic n

because r, s < n. Thus, the characteristic must be zero or prime after all. �
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We concluded this section by formalising another notion that you met in Algebra 1A

when studying the rings Z and k[x] where k is a field.

Definition 3.6 (Euclidean domain). Let R be an integral domain. A Euclidean valu-

ation on R is a map ν : Rr {0} → {0, 1, 2, . . .} such that:

(1) for f, g ∈ Rr {0} we have ν(f) ≤ ν(fg); and

(2) for all f, g ∈ R with g 6= 0, there exists q, r ∈ R such that

f = qg + r

and either r = 0 or r 6= 0 and ν(r) < ν(g).

We say that R is a Euclidean domain if it has a Euclidean valuation.

Examples 3.7. (1) Let k be any field, and define ν : k\{0} → {0, 1, 2, . . . } by setting

ν(a) = 1. Then ν is a Euclidean valuation (check it!), so k is a Euclidean domain.

(2) Absolute value ν(n) = |n| provides a Euclidean valuation on the ring of integers,

so Z is a Euclidean domain.

(3) For k a field, the degree of a polynomial ν(f(x)) = deg f(x) provides a Euclidean

valuation on k[x] (see Algebra 1A [Lecture 14]), so k[x] is a Euclidean domain.

(4) Recall from Example 1.26 that the Gaussian integers Z[i] = {a+bi ∈ C : a, b ∈ Z}
are a subring of the field C, so Z[i] is an integral domain. Exercise 5.1 establishes

that the map ν : Z[i]r{0} → {0, 1, 2, . . .} given by ν(a+bi) = a2+b2 (the absolute

value when viewed as a complex number) is a Euclidean valuation, so Z[i] is a

Euclidean domain.

3.2. Principal ideal domains. Let R be an integral domain. Since R is necessarily a

commutative ring, Example 1.30 shows that each a ∈ R determines an ideal

Ra := {r · a | r ∈ R}.

Definition 3.8 (PID). An ideal I of R is a principal ideal if I = Ra for some a ∈ R.

An integral domain R is a Principal Ideal Domain (PID) if every ideal in R is principal.

Lemma 3.9. Let R be a nonzero commutative ring with 1. Then R is a field if and only

if the only ideals of R are {0} and R. In particular, every field is a PID.

Proof. First let R be a field. For a nonzero ideal I in R, choose a ∈ I \ {0}. Then

any b ∈ R can be written as b = (ba−1)a ∈ I, so R ⊆ I and hence R = I as required.

Conversely, let R be a nonzero commutative ring with 1, and suppose {0} and R are the

only ideals. For a ∈ R \{0}, the ideal Ra contains a = 1a, so Ra 6= {0}. Our assumption

gives Ra = R. In particular 1 = ba for some b ∈ R, so a has a multiplicative inverse.

This shows that R is a field. The final statement follows from the observation that both

{0} = R0 and R = R1 are principal ideals. �

Theorem 3.10 (Euclidean domains are PIDs). Let R be a Euclidean domain. Then

R is a PID.
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Proof. Let R be a Euclidean domain with Euclidean valuation ν. Let I be an ideal in R.

If I = {0} then I = R0, so I is principal. Otherwise we have I 6= {0}. Define

S = {ν(a) ∈ Z≥0 | a ∈ I, a 6= 0}.

Since I is nonzero, this is a nonempty subset of {0, 1, 2, . . .} and hence we may choose g

to be an element of I that achieves the minimum value in S, i.e., g 6= 0 and ν(f) ≥ ν(g)

for all f ∈ I. Now let f ∈ I. Since R is a Euclidean domain there exist q, r ∈ R such

that f = qg+ r and r = 0 or ν(r) < ν(g). If r 6= 0 then r = f − qg ∈ I which contradicts

minimality in our choice of g. Thus r = 0, so f = qg ∈ Rg. Hence I ⊆ Rd. On the other

hand, since g ∈ I we have Rg ⊆ I. Hence I = Rg and so I is principal. �

Examples 3.11. Theorem 3.10 implies that the following rings are PID’s:

(1) any field (which we proved directly in Lemma 3.9 above);

(2) the ring of integers Z;

(3) the polynomial ring k[x] with coefficients in a field k; and

(4) the ring of Gaussian integers Z[i].

Example 3.12. Exercise 5.3 shows that the integral domain R = Z[x] is not a PID, so

it can’t be a Euclidean domain.

Example 3.13. It is harder to produce a PID that is not a Euclidean domain. One

example is the subring R = {a+ b(1 +
√
−19)/2 | a, b ∈ Z} of C. We shan’t prove this.

3.3. Irreducible elements in an integral domain. Let R be an integral domain.

Definition 3.14 (Divisibility). Let a, b ∈ R. We say that a divides b (equivalently,

that b is divisible by a) if there exists c ∈ R such that b = ac. We write simply a|b.

Any statement about divisibility can be rephrased in terms of ideals as follows:

Lemma 3.15. For a, b ∈ R we have a|b ⇐⇒ b ∈ Ra ⇐⇒ Rb ⊆ Ra.

Proof. If a|b then there exists c ∈ R such that b = ca ∈ Ra. Since Ra is an ideal, it

follows that rb ∈ Ra for all r ∈ R, giving Rb ⊆ Ra. Conversely, if Rb ⊆ Ra, then in

particular, b ∈ Rb lies in Ra, and hence there exists c ∈ R such that b = ca, so a|b. �

Recall that an element a ∈ R is a unit if there exists b ∈ R satisfying ab = 1 = ba.

Lemma 3.16 (Units don’t change the ideal). Let R be an integral domain and let

a, b ∈ R. Then

Ra = Rb ⇐⇒ a = ub for some unit u ∈ R.
In particular, R = Ru if and only if u is a unit in R.

Proof. If Ra = Rb, then we have both Ra ⊆ Rb and Rb ⊆ Ra, hence b|a and a|b. Thus

there exist u, v ∈ R such that a = ub and b = va. Putting these equations together shows

that 1a = a = ub = uva. Since R is a domain the cancellation law gives uv = 1, so u is a
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unit in R. Conversely, suppose a = ub for some unit u ∈ R. Then a ∈ Rb, so Ra ⊆ Rb.

Since u is a unit, we may multiply a = ub by u−1 to obtain b = u−1a. This gives b ∈ Ra
and hence Rb ⊆ Ra. These two inclusions together give Ra = Rb as required. The final

statement of the lemma follows from the special case a = 1. �

Definition 3.17 (Primes and irreducibles). Let R be an integral domain. Let p ∈ R
be nonzero and not a unit. Then we say:

(1) p is prime if p|ab =⇒ p|a or p|b for a, b ∈ R.

(2) p is irreducible if p = ab =⇒ a or b is a unit.

We say that p is reducible if it’s not irreducible, i.e., if there exists a decomposition p = ab

such that neither a nor b is a unit.

Examples 3.18. (1) The prime elements in Z are {. . . ,−7,−5,−3,−2, 2, 3, 5, 7, . . . },
i.e., ±1 times the positive prime numbers. The irreducible elements are identical.

(2) Let k be a field. Every nonzero element in k is a unit, so k contains neither primes

nor irreducibles.

Proposition 3.19. Let R be an integral domain. Then every prime element is irreducible.

Proof. Let p ∈ R be prime, and suppose p = ab. Then either p|a or p|b. Assume without

loss of generality (we may swap the letters a and b if we want) that p|a, i.e., there exists

c ∈ R such that a = pc. Then p · 1 = p = ab = pcb, and the cancellation property gives

cb = 1, so b must be a unit. This shows that p is irreducible. �

Remark 3.20. The converse is not true in general, see Exercise 5.5. However, we have:

Proposition 3.21. Let R be a principal ideal domain. Every irreducible p ∈ R is prime.

Proof. Suppose that p|ab and that p does not divide a. We want to show that p|b. Since

R is a PID, there exists an element d ∈ R such that

Ra+Rp = Rd.

In particular, a, p ∈ Rd. Write p = cd for some c ∈ R. Irreducibility of p implies that

either c or d is a unit. However, if c were a unit then a ∈ Rd = Rp by Lemma 3.16,

contradicting the fact that p does not divide a. Thus d is a unit, so Rd = R and hence

Ra+Rp = R.

Since R is a ring with 1, there exists r, s ∈ R such that 1 = ra+ sp, so

b = 1 · b = (ra+ sp) · b = rab+ psb.

We know ab is divisible by p, so b is divisible by p as required. �

Corollary 3.22. Let R be a PID. If p is irreducible then R/Rp is a field.
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Proof. The ring R is commutative with 1, hence so is the quotient ring R/Rp. Lemma 3.16

implies that Rp 6= R because p is not a unit, so R/Rp is not the zero ring. It remains to

show that every nonzero element of R/Rp is a unit.

Let a+Rp ∈ R/Rp be nonzero, i.e., a+Rp 6= 0+Rp, i.e., a 6∈ Rp, i.e., p does not divide

a. Since p is irreducible and R is a PID, we proceed precisely as in the previous proof:

consider the ideal Ra+Rp and (quoting verbatim from above) we eventually deduce that

there exists r, s ∈ R such that 1 = ra+ sp. Now consider the corresponding cosets:

1 +Rp = (ra+ sp) +Rp = ra+Rp = (r +Rp) · (a+Rp).

This shows that a+Rp has a multiplicative inverse as required. �

3.4. Unique factorisation domains. Recall the Fundamental Theorem of Arithmetic

from Algebra 1A [Theorem 4.11]:

Theorem 3.23 (Fundamental Theorem of Arithmetic). Every natural number

greater than 1 is of the form Πpnii for distinct prime numbers pi and each ni is a positive

integer. The primes pi and their exponents ni are uniquely determined (up to order).

Definition 3.24 (UFD). An integral domain R is a unique factorisation domain (UFD)

if

(1) every nonzero nonunit element in R can be written as the product of finitely many

irreducibles in R; and

(2) given two such decompositions, say r1 · · · rs = r′1 · · · r′t we have that s = t and,

after renumbering if necessary, we have Rri = Rr′i for 1 ≤ i ≤ s.

Example 3.25. The fundamental theorem of arithmetic implies that Z is a UFD. This

is almost obvious, but we should take care with minus signs. To this end, every nonzero

nonunit in Z is of the form ±m where m is a natural number greater than 1, so ±m =

±Πpnii by Theorem 3.23. If this integer is negative then we pull out a single copy of p1
to help us deal with the minus sign, i.e.,

(3.1) ±m = −(pn1
1 p

n2
2 · · · p

nk
k ) = (−p1)(p1)n1−1pn2

2 · · · p
nk
k .

Each prime pi is irreducible by Proposition 3.19, and irreducibility of p1 forces irreducibi-

ilty of −p1, so (3.1) is the decomposition as in Definition 3.24(1). The fact that the primes

pi and their exponents ni are uniquely determined (up to order) gives Definition 3.24(2).

End of Week 5.

Rather then relying on Theorem 3.23 to deduce that Z is a UFD, we provide the

following much more general result from which we can recover the fact that Z is a UFD.

Theorem 3.26. Let R be a PID. Then R is a UFD.
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Proof. We first establish that part (1) of Definition 3.24 holds. Let a ∈ R be a nonzero,

non-unital element and suppose for a contradiction a cannot be written as a finite product

of irreducibles. In particular, a itself is reducible, so there exists a decomposition

a = a1b1

for some a1, b1 ∈ R where both a1 and b1 are nonunits (and nonzero because a is nonzero).

If both a1 and b1 can be expressed as products of irreducibles then a can as well which is

absurd, so at least one of them cannot be written in this way. Without loss of generality,

suppose that this is a1. Notice that

Ra ⊆ Ra1 (because a1|a) and Ra 6= Ra1 (because b is not a unit), hence Ra $ Ra1.

Applying the same argument to a1 produces an element a2 ∈ R that cannot be expressed

as a product of irreducibles such that Ra1 $ Ra2. Repeat to obtain a strictly increasing

chain of ideals in R:

Ra $ Ra1 $ Ra2 $ Ra3 · · ·

This completes the first step of the proof. As a second step, we show that the union

I = Ra ∪Ra1 ∪Ra2 ∪ · · ·

is an ideal. Indeed, 0 ∈ Ra ⊆ I, so I is nonempty. Let a, b ∈ I and r ∈ R. There exists

i ≥ 1 such that a, b ∈ Rai, therefore a− b, ra, ar ∈ Rai ⊆ I. Thus I is an ideal. For step

three, since R is a principal ideal domain we have that I = Rb for some b ∈ R. Then

b = 1 · b ∈ I and thus b ∈ Rai for some i ≥ 1. But then

Rai+1 ⊆ I = Rb ⊆ Rai $ Rai+1

which is absurd. This contradiction proves Definition 3.24(1). For part (2), suppose

(3.2) p1 · · · ps = p′1 · · · p′t

are two such decompositions where we may assume without loss of generality that s ≤ t.

Equation (3.2) shows that p1 divides p′1 · · · p′t. We know p1 is prime by Proposition 3.21,

so p1|p′i for some 1 ≤ i ≤ t. Thus p′i = ap1, and since p′i is irreducible it follows that a

must be a unit and hence Rp1 = Rp′i by Lemma 3.16. Relabel p′i as p′1 and vice-versa.

We now have Rp1 = Rp′1, so there exists a unit u1 ∈ R such that p′1 = u1p1, giving

p1 · · · ps = p′1 · · · p′t = u1p1p
′
2 · · · p′t.

The cancellation property in the integral domain R leaves p2 · · · ps = p′1 · · · p′t = u1p
′
2 · · · p′t.

Repeat for each element on the left hand side, giving Rpi = Rp′i for all 1 ≤ i ≤ s and

1 = u1 · · ·usp′s+1 · · · r′t.

But the p′j are prime and hence nonunits, so we must have s = t. �
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Remark 3.27. To summarise, we’ve shown that

Euclidean domain =⇒ PID =⇒ UFD =⇒ integral domain.

In particular, each ring listed in Examples 3.7 is a UFD.

3.5. General polynomial rings. We now introduce a beautiful class of integral domains

that are UFD’s but not PIDs.

Definition 3.28 (General polynomial ring). For n ≥ 1, let x1, . . . , xn be variables

and let R be a ring. A polynomial f in x1, . . . , xn with coefficients in R is a formal sum

(3.3) f(x1, . . . , xn) =
∑

i1,...,in≥0

ai1,...,inx
i1
1 · · ·xinn ,

with coefficients ai1,...,in ∈ R for all tuples (i1, . . . , in) ∈ Nn, where only finitely many of the

ai1,...,in are nonzero. The polynomial ring R[x1, . . . , xn] is the set of all such polynomials,

where addition and multiplication of polynomials f, g are defined as follows:

• the sum f + g is defined by gathering terms and adding coefficients, i.e.,∑
i1,...,in≥0

ai1,...,inx
i1
1 · · ·xinn +

∑
i1,...,in≥0

bi1,...,inx
i1
1 · · ·xinn =

∑
i1,...,in≥0

(ai1,...,in + bi1,...,in)xi11 · · ·xinn ;

• the product f ·g is defined as usual by distributivity (you write down the formula!)

together with multiplication of monomials given by

(xi11 x
i2
2 · · ·xinn ) · (xj11 x

j2
2 · · ·xjnn ) = xi1+j11 xi2+j22 · · ·xin+jnn .

These operations generalise the operations familiar in the case n = 1.

Example 3.29. To illustrate this, set n = 3 and write R[x, y, z] for the polynomial ring

in three variables. Then for f = x2y + 3xz and g = 2x− 3xz, we have

f + g = x2y + 2x and f · g = 2x3y + 6x2z − 3x3yz − 9x2z2.

Proposition 3.30. The polynomial ring R[x1, . . . , xn] in n variables is isomorphic to the

polynomial ring S[xn] in the variable xn with coefficients in S = R[x1, . . . , xn−1].

Proof. The idea is that for any f =
∑

i1,...,in≥0 ai1,...,inx
i1
1 · · ·xinn in the ring R[x1, . . . , xn],

gathering all terms involving xinn for each power in ≥ 0 gives an expression

(3.4) f(x1, . . . , xn) =
∑
in≥0

( ∑
i1,...,in−1≥0

ai1,...,inx
i1
1 · · ·x

in−1

n−1

)
xinn ,

which we may regard as an element of S[xn] if we view the elements in the parentheses

as coefficients in S. See Exercise 6.4 for details. �

Remark 3.31. For any field k, the ring k[x1] is a Euclidean domain and hence a PID.

However, for any n ≥ 2, the ring k[x1, . . . , xn] is not a PID, see Exercise 6.5.
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3.6. Field of fractions and Gauss’ lemma. Let R be an integral domain.

Theorem 3.32 (Polynomial rings are UFD’s). If R is a UFD then R[x] is a UFD.

Examples 3.33. (1) Z is a UFD, hence so is Z[x] (yet it’s not a PID by Exercise 5.3).

(2) Let k be a field, so k is a UFD. Exercise 6.4 shows that k[x1, . . . , xn] ∼= S[xn]

for S = k[x1, . . . , xn−1], so induction and Theorem 3.32 implies k[x1, . . . , xn] is a

UFD (Exercise 6.5 shows that k[x1, . . . , xn] is not a PID for n ≥ 2).

We need two ingredients to prove Theorem 3.32. First, Exercise 6.3 shows that the set

Frac(R) =
{a
b
| a, b ∈ R with b 6= 0

}
together with the relation a

b
∼ c

d
⇐⇒ ad = bc is such that the set of equivalence classes

F (R) := Frac(R)/ ∼ admits addition and multiplication given by

a

b
+
c

d
=
ad+ bc

bd
and

a

b
· c
d

=
ac

bd
.

With these binary operations, the set F (R) becomes field.

Definition 3.34 (Field of fractions of an integral domain). The field of fractions

of an integral domain R is the field F (R) := Frac(R)/∼.

Remark 3.35. The map R → F (R) given by a 7→ a
1

is an injective ring homomorphism,

so R is a subring of the field F (R).

Example 3.36. The field of fractions of the ring Z is the field Q (!), and we know Z ⊂ Q.

The second ingredient we need for the proof of Theorem 3.32 is:

Definition 3.37 (Primitive polynomial). Let R be a UFD. A nonconstant polynomial

f =
∑n

i=0 aix
i ∈ R[x] is primitive if the only common divisors of all the coefficients of f

are units in R.

Remark 3.38. In light of unique factorisation, it’s equivalent to say that f is primitive if

and only if no irreducible p ∈ R divides all coefficients of f .

Example 3.39. x3 + 2x− 1 ∈ Z[x] is primitive, whereas 3x3 + 6x− 3 ∈ Z[x] is not.

Lemma 3.40 (Pulling out the content). Let R be a UFD. For every nonconstant

f ∈ R[x], there exists c ∈ R (unique upto multiplication by a unit) and a primitive

polynomial g ∈ R[x] (unique upto multiplication by a unit of R) such that f = c · g.

Proof. Write f =
∑n

i=0 aix
i ∈ R[x]. Since R is a UFD we may decompose each ai ∈ R

as a product of irreducibles in R. Let p be irreducible in R. If the decomposition of

each ai involves an irreducible qi with Rqi = Rp, write qi = uip for some unit ui ∈ R by

Lemma 3.16, and replace each occurrence of qi in the decomposition of ai by uip. Now

factor out the highest possible power of p that is common to all ai, i.e., let n be such that
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each ai is divisible by pn and is not divisible by pn+1. Repeat for the next irreducible in

the decomposition, and so on. If we let c ∈ R denote the product of all such irreducibles,

then f = c · g for some g ∈ R[x] which is primitive by construction.

For uniqueness, suppose f = d · h with c ∈ R and h ∈ R[x] primitive. Each irreducible

factor of c divides f = d ·h, and since h is primitive, the factor divided d. Symmetrically,

each irreducible factor of d divides c. Cancelling all such factors in the expression c·g = d·h
removes all irreducibles factors of c and d, leaving only units in their place, i.e., u·g = v ·h
for units u, v ∈ R. Then h = (uv−1)g, so g is unique up to multiplication by a unit.

Moreover, if k is the product of all irreducible factors that we just cancelled, then c = uk

and d = vk, so c = u(v−1d) = (uv−1)d, so c is unique up to multiplication by a unit. �

Lemma 3.41 (Gauss’ Lemma). Let R be a UFD. The product of finitely many primitive

polynomials in R[x] is primitive.

Proof. It suffices to prove the result for two polynomials and apply induction. To this

end, let f =
∑n

i=0 aix
i and g =

∑m
j=0 bix

i be primitive in R[x] and let p be irreducible

in R. Our goal is to find a coefficient of fg that is not divisible by p. Since f and g

are primitive, we know p doesn’t divide each ai, nor does it divide each bj. Let k be

minimal such that ak is not divisible by p, and similarly, let ` be minimal such that bj is

not divisible by p. The coefficient of xk+` in the product fg is

(3.5) (a0bk+` + · · ·+ ak−1b`+1) + akb` + (ak+1b`−1 + · · ·+ ak+lb0).

Minimality of k implies that p divides a0bk+`+· · ·+ak−1b`+1, while minimality of ` implies

that p divides ak+1b`−1 + · · ·+ ak+lb0. However, p does not divide ak or b`, so by unique

factorisation in R[x], it doesn’t divide the product akb` and in particular, it doesn’t divide

the coefficient (3.5) of xk+` in fg. Thus (3.5) is the required coefficient. �

Proof of Theorem 3.32. We first establish the decomposition into irreducibles in R[x] as

in Definition 3.24(1). Let f ∈ R[x] be a nonzero, non-unit. If deg(f) = 0 then f ∈ R, and

since R is a UFD we obtain a decomposition of f as a product of irreducible elements of

R, each of which must be irreducible in R[x] for degree reasons. Otherwise deg(f) ≥ 1.

Write F for the field of fractions of the integral domain R, and regard f as an element of

F [x]. Since F is a field, F [x] is a UFD by Remark 3.27, so we can write f = p1p2 · · · ps
for irreducible elements p1, . . . , ps ∈ F [x]. The coefficients of each pi lie in F , so every

such coefficient is of the form a/b for some a, b ∈ R, and clearing denomenators gives

(3.6) r · f = q1q2 · · · qs

for some r ∈ R and q1, . . . , qs ∈ R[x]. Notice that each qi = uipi for some nonzero ui ∈ R.

Every nonzero element in R is a unit in F , so since pi is irreducible in F [x] it follows that

qi is irreducible when regarded as an element of F [x]. Now apply Lemma 3.40 to draw

the content out of each polynomial in equation (3.6), giving

(3.7) r(cf) = (c1q1) · · · (csqs) = (c1 · · · cs)q1 · · · qs
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where c, c1, . . . , cs ∈ R are the contents of f, q1, . . . , qs ∈ R[x] respectively. The product of

primitive polynomials is primitive by Gauss’ Lemma 3.41, so in fact this equation provides

two apparently different ways to draw the content out of a polynomial. The uniqueness

statement from Lemma 3.40 shows that these two expressions for the content must be

related by a unit, i.e., there exists a unit u ∈ R such that rcu = c1 · · · cs. Substitute into

(3.7) to get rcf = rcu
∏s

i=1 qi and cancel r by Lemma 3.4 to get that

f = cf = cuq1 · · · qs.

Now, cu ∈ R admits a decomposition into irreducibles in R (since R is a UFD) and

hence irreducibles in R[x] (for degree reasons). Moreover, each qi is irreducible in R[x],

because each is both primitive in R[x] and irreducible in F [x]. This gives our desired

decomposition, so Definition 3.24(1) holds.

To show uniqueness as in Definition 3.24(2), consider a decomposition of f ∈ R[x] as a

product of irreducibles as above. If deg(f) = 0, then the decomposition is unique because

we used the UFD property of the ring R to produce the decomposition in that case.

Otherwise, deg(f) ≥ 1. Every irreducible in R[x] is also irreducible when regarded as an

element of F [x], so our decomposition of f in R[x] may be regarded as a decomposition

into a product of irreducibles in F [x]. Since F is a field, the ring F [x] is a UFD, so the

polynomials appearing in the decomposition are unique up to multiplication by units in

F [x], that is, by nonzero elements of R. To ensure that these nonzero elements of R

don’t ruin uniqueness in R[x], notice that a given irreducible factor in our decomposition

is either noconstant, in which case it’s primitive and hence (by Lemma 3.40) it’s unique

up to multiplication by a unit, or it’s constant, in which case notice that the product of

all such irreducibles equals the content of f and this product is therefore unique up to

multiplication by a unit in R by Lemma 3.40. �

End of Week 6.

4. Associative algebras with 1 over a field

In this section we study a class of rings with 1 that are simultaneously vector spaces.

4.1. Algebras. We’ll first give the most general definition of an algebra over a field, even

though we’re primarily interested in a smaller class of algebras.

Definition 4.1 (k-algebra). Let k be a field, and let V be a k-vector space V that has

a bilinear product, that is, a map · : V × V → V that is bilinear over k:

(λu1 + u2) · v = λ(u1 · v) + u2 · v
u · (λv1 + v2) = λ(u · v1) + u · v2.
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We say that V is a k-algebra if the product is associative3. If in addition the product has

a multiplicative identity then V is a k-algebra with 1.

Lemma 4.2 (k-algebras are rings). A nonempty set V is a k-algebra if and only if V

is a ring that admits a map k× V → V which makes V into a vector space, such that

(4.1) λ(u · v) = (λu) · v = u · (λv) for all u, v ∈ V, λ ∈ k.

Proof. ( =⇒ ) Let V be a k-algebra. Since V is a vector space, it is already an abelian

group under addition. The product is an associative binary operation by definition, and

the formulae from Definition 4.1 in the special case λ = 1 show that it satisfies the

distributive laws, so V is a ring. Formula (4.1) holds by substituting u2 = v2 = 0 into

the formulae from Definition 4.1. (⇐= ) For the opposite direction one need only check

that the multiplication operation in the ring V is bilinear over k, but this follows from

the distributivity laws and the equations (4.1), e.g.,

(λu1 + u2) · v = (λu1) · v + u2 · v = λ(u1 · v) + u2 · v.

The other distributivity law is similar. �

Definition 4.3 (Subalgebra). A subalgebra of a k-algebra V is a nonempty subset

W ⊆ V that is both a subring and a vector subspace of V .

Remarks 4.4. (1) For v ∈ V , the ‘multiply on the left by v’ map Tv : V → V given by

Tv(u) = v · u is a k-linear map (the same is true for ‘multiply on the right’).

(2) Suppose that (vi)i∈I is a basis for the k-algebra V . To determine the multiplication

on V , it suffices to know only the values of vi · vj for all i, j ∈ I, because(∑
i∈I

αivi

)
·

(∑
j∈I

βjvj

)
=

∑
i∈I, j∈J

(αiβj)(vi · vj).

Examples 4.5. (1) Let k be a field. Then k = k · 1 is a k-algebra of dimension 1.

(2) The field C = R+Ri is an R-algebra that is a 2-dimensional vector space over R.

(3) [The Quaternions] Consider the vector space of dimension 4 over R with basis

1, i, j, k, that is

H = R + Ri+ Rj + Rk =
{
a+ bi+ cj + dk | a, b, c, d ∈ R

}
,

where the bilinear product is determined from

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j.

Exercise 7.1 shows that H is a (noncommutative!) ring with 1; this is the quater-

nionic algebra, or simply, the quaternions. Both R and C are subalgebras of H.

3In defining a k-algebra, some people drop the requirement that the multiplication is associative,

because many such examples arise naturally (e.g., Lie algebras g, the Octonion algebra O). However,

our k-algebras will always be associative because, as Lemma 4.2 shows, this extra assumption enables us

to think ring-theoretic thoughts.
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(3) Let k be a field. For n ≥ 1, the general polynomial ring k[x1, . . . , xn] is a k-algebra

with basis as a vector space equal to the set of all monomials{
xi11 x

i2
2 · · ·xinn | i1, . . . , in ∈ N

}
;

this vector space is not finite dimensional! (As in Remark 4.4, multiplication of

polynomials is determined by the bilinearity of the product and multiplication of

monomials, namely (xi11 x
i2
2 · · ·xinn ) · (xj11 x

j2
2 · · ·xjnn ) = xi1+j11 xi2+j22 · · ·xin+jnn .)

4.2. Constructing field extensions. We now construct new fields from old.

Definition 4.6 (Subfield and field extension). A subring k of a field K is a subfield

if for each a ∈ k \ {0}, the multiplicative inverse of a in the field K lies in k. We also

refer to k ⊆ K as a field extension.

Lemma 4.7. Let k ⊆ K be a field extension. Then K is a k-algebra.

Proof. Exercise 8.1 implies that 1k = 1K . By restricting the multiplication K ×K → K,

we obtain a map k × K → K given by (λ, v) 7→ λv. Since K is a field, (K,+) is an

abelian group, and hence

λ(µv) = (λµ)v, as multiplication is associative

1k · v = 1K · v = v as 1k = 1K

(λ+ µ)v = λv + µv as the distributive laws hold in K,

λ(v + w) = λv + λw as the distributive laws hold in K

for v ∈ K and λ, µ ∈ k, so K is a vector space over k. In addition, multiplication in K

is associative and commutative, so (λv) · w = v · (λw) = λ(vw) for v, w ∈ K and λ ∈ k.

Therefore K is a k-algebra. �

Given a field extension k ⊆ K, we now construct intermediate fields k ⊆ k[a] ⊆ K.

Theorem 4.8 (Constructing intermediate fields). Let k ⊆ K be a field extension,

and let a ∈ K be a root of some nonzero polynomial in k[x]. The set

k[a] :=
{
f(a) ∈ K | f ∈ k[x]

}
is a field, with field extensions k ⊆ k[a] ⊆ K. In fact (1, a, a2, . . . , an−1) is a basis for

k[a] over k where n = min{deg(p) | p ∈ k[x] satisfies p(a) = 0}.

Proof. Consider the evaluation homomorphism φa : k[x]→ K given by φa(f) = f(a) (see

Example 2.5). Since k is a field, k[x] is a PID and hence Ker(φa) is a principal ideal, that

is, Ker(φa) ∼= k[x]p for some p ∈ k[x]. The fundamental isomorphism theorem gives

(4.2) k[x]/k[x]p ∼= Im(φa) =
{
f(a) ∈ K | f ∈ k[x]

}
= k[a].

Notice that the polynomial p is a nonzero nonunit element, because
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• p 6= 0, otherwise Ker(φa) = {0}, so the only element of k[x] having a as a root is

the zero polynomial which is absurd; and

• p is not a unit, otherwise Ker(φa) ∼= k[x]p = k[x], so 0 = φ(1) = 1 which is absurd.

Examples 3.2 show that the field K is an integral domain, and that every subring of an

integral domain is an integral domain, so k[a] := Im(φa) is an integral domain. It follows

from the isomorphism (4.2) that k[x]/k[x]p is an integral domain. The key step is to

apply Exercise 6.2 to deduce that (p is irreducible and) k[x]/k[x]p is a field (!). Since

k ⊆ K is a field extension, we have 1K = 1k ∈ k and hence 1K = 1k ∈ k[a], so both

inclusions of fields k ⊆ k[a] ⊆ K are actually field extensions by Exercise 8.3.

Lemma 4.7 shows k[x]/k[x]p is a k-algebra, so it remains to show (1, a, a2, . . . , an−1)

is a basis of k[a] over k. To show spanning, let f(a) ∈ k[a]. Since k[x] is a Euclidean

domain, division of f by p gives q, r ∈ k[x] such that f = qg + r where either r = 0 or

deg (r) < deg (p) = n, say r = b0 + b1x+ · · ·+ bn−1x
n−1. In either case

f(a) = q(a)p(a) + r(a)

= r(a)

= b0 · 1 + b1a+ · · ·+ bn−1a
n−1.

Thus f(a) is a linear combination of 1, a, . . . , an−1. To show that 1, a, . . . , an−1 are linearly

independent, suppose c0 ·1+c1a+ · · ·+cn−1a
n−1 = 0. Then h := c0 +c1x+ · · ·+cn−1x

n−1

lies in Ker(φa) = k[x]p, so p|h. Since deg(h) < deg(p), this is possible only if h = 0, that

is, only if c0 = c1 = · · · = cn−1 = 0. �

Examples 4.9. (1) We have that R ⊆ C and that i ∈ C is a root of the irreducible

polynomial x2 + 1 ∈ R[x]. Here R[i] = R + Ri = C has basis (1, i).

(2) We have that Q ⊆ R and that 3
√

2 is a root of the irreducible polynomial x3− 2 ∈
R[x]. Here Q[ 3

√
2] = Q + Q 3

√
2 + Q( 3

√
2)2 has basis (1, 3

√
2, ( 3
√

2)2).

We now prove a kind of converse to Theorem 4.8. Suppose that we have only the field

k and an irreducible polynomial p ∈ k[x]. We now construct a field extension k ⊆ K and

an element a ∈ K such that a is a root of p.

Theorem 4.10 (Constructing field extensions containing roots). Let p ∈ k[x] be

irreducible in k[x]. The field extension k ⊆ K := k[x]/k[x]p has dimension n := deg(p)

as a k-vector space, and the element a := [x] ∈ K in this new field is a root of p.

Proof. Since k is a field, k[x] is a PID, so Corollary 3.22 shows that irreducibility of p

implies that K = k[x]/k[x]p is a field. The multiplicative identity in K is [1] ∈ K, so if

we identitfy k with the subfield k[1] ⊆ K then we have that k ⊆ K is a field extension.

We will show that [1], [x], . . . , [x]n−1 is a basis for the k-vector space K = k[x]/k[x]p.

To show spanning, let [f ] ∈ k[x]/k[x]p. Since k[x] is a Euclidean domain, there exists

q, r ∈ k[x] such that f = qp+ r, where r is either zero or a nonzero polynomial of degree
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less than deg(p) = n. If we write r = b0 + b1x+ · · ·+ bn−1x
n−1, then

[f ] = [q][p] + [r]

= [r] as [p] = [0]

= [b0 + b1x+ · · ·+ bn−1x
n−1]

= b0[1] + b1[x] + · · ·+ bn−1[x]n−1,

so [1], [x], . . . , [x]n−1 span K over k. To show linear independence, if

[0] = c0[1] + c1[x] + · · ·+ cn−1[x]n−1 = [c0 + c1x+ · · ·+ cn−1x
n−1],

then h := c0 + c1x + · · · + cn−1x
n−1 lies in k[x]p. In particular, p divides f , but since

deg(f) = n − 1 < n = deg(p), we must have f = 0 and hence c0 = c1 = . . . = cn−1 = 0,

so [1], [x], . . . , [x]n−1 are linearly independent over k .

Finally, to see that a = [x] is a root of p, write p =
∑

i αix
i, so

p(a) =
∑
i

αia
i =

∑
i

αi[x]i =
[∑

i

αix
i
]

= [p] = [0]

as required. �

Corollary 4.11. Let k be a field and let f ∈ k[x] be nonconstant. Then there exists a

field extension k ⊆ K and an element a ∈ K such that f(a) = 0. Moreover, f can be

written as product of polynomials of degree 1 in K[x].

Proof. This is Exercise 7.4. �

End of Week 7.

Examples 4.12. (1) The polynomial p = x2 + 1 ∈ R[x] is irreducible in R[x], so

Theorem 4.10 gives a root a in the field

R[x]/R[x](x2 + 1) = R + Ra,

where a = [x]. Now a2 + 1 = 0 and thus a2 = −1. This field is isomorphic to C.

(2) Consider the polynomial x2− 2 ∈ Q[x]. This is an irreducible polynomial in Q[x]

and Theorem 4.10 gives a root a in the field

Q[x]/Q[x](x2 − 2) = Q + Qa

where a = [x]. This field is isomorphic to the subfield Q + Q
√

2 of R.

(3) Consider p = x2 + x + 1 in Z2[x]. If the polynomial were not irreducible there

would be a linear factor in Z2[x]. But as p(0) = p(1) = 1 this is not the case, so

p is irreducible and has a root a = [x] in the field

Z2[x]/Z2f = Z2 + Z2a.

Notice that this new field has 22 = 4 elements (compare Exercise 3.4).
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4.3. Normed R-algebras. Recall from [Algebra 2A, Section 2.1] that an inner product

on a real vector space V is a positive definite symmetric bilinear form

〈 · , · 〉 : V × V → R.

The corresponding norm is ‖ · ‖ : V → R given by ‖v‖ =
√
〈v, v〉. Positive definiteness

gives that ‖v‖ = 0 =⇒ v = 0.

Definition 4.13 (Normed R-algebra). Let V be an R-algebra with 1 such that V 6=
{0}. We say that V is a normed R-algebra if it is equipped with an inner product such

that the corresponding norm satisfies ‖u · v‖ = ‖u‖ · ‖v‖ for all u, v ∈ V .

Remarks 4.14. (1) The V 6= {0} assumption gives 1V 6= 0 and hence ‖1V ‖ 6= 0. We

have ‖1V ‖ = ‖1V · 1V ‖ = ‖1V ‖ · ‖1V ‖. Since the norm takes values in the integral

domain R, the resulting equality ‖1V ‖ · (1− ‖1V ‖) = 0 implies that ‖1V ‖ = 1.

(2) Recall from Remarks 4.4(2) that the structure of an R-algebra V is determined

by the dimension of V over k and the product of elements in some chosen basis.

Examples 4.15 (R, C and H are normed R-algebras). Examples 4.5 shows that R,

C and H are R-algebras of dimension one, two and four respectively, and in each case a

basis over R is given. With respect to these bases, the standard dot product on Rn gives

a norm on each algebra. That is:

(1) on R the norm is absolute value |a| =
√
a2, and since |a ·b| = |a| · |b| for all a, b ∈ R

we have that R is a normed R-algebra.

(2) on C the norm is ‖a+ bi‖ =
√
a2 + b2, so for a+ bi, c+ di ∈ C we have

‖(a+ bi) · (c+ di)‖ =
√

(ac− bd)2 + (bc+ ad)2

=
√

(ac)2 + (bc)2 + (ad)2 + (bd)2

=
√

(a2 + b2)
√

(c2 + d2) = ‖a+ bi‖ · ‖c+ di‖,

so C is a normed R-algebra.

(3) on H the norm is ‖a+ bi+ cj+dk‖ =
√
a2 + b2 + c2 + d2. Exercise 8.2 shows that

‖u · v‖ = ‖u‖ · ‖v‖ for all u, v ∈ H, so H is a normed R-algebra.

Lemma 4.16. Let V be a normed R-algebra.

(1) If (1, t) ∈ V are orthonormal, then t2 = −1.

(2) If (1, i, j) ∈ V are orthonormal, then so are (1, i, j, ij). Moreover ji = −ij.

Proof. (Nonexaminable) For (1), we have ‖t2‖ = ‖t‖2 = 1, so

‖t2 + (−1)‖ = ‖(t− 1)(t+ 1)‖ = ‖t− 1‖ · ‖t+ 1‖ =
√

2
√

2 = 1 + 1 = ‖t2‖+ ‖ − 1‖.

According to the triangle inequality we should only get equality here if t2 is a positive

multiple of −1 and, as ‖t2‖ = 1, this can only happen if t2 = (−1). For (2), we have that
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i+j√
2

is orthogonal to 1 and of length 1. By part (1), it follows that

−1 =
(i+ j√

2

)2
=
i2 + j2 + ij + ji

2
=

(−1) + (−1) + ij + ji

2
= −1 +

ij + ji

2
.

Hence ji = −ij. Notice that ‖ij‖ = ‖i‖ · ‖j‖ = 1, so

‖ij + (−i)‖2 = ‖i(j − 1)‖2 = ‖i‖2 · ‖j − 1‖2 = 1 · 2 = 1 + 1 = ‖ij‖2 + ‖ − i‖2.

The Pythogoras theorem implies that ij is orthogonal to i. Similarly, write ‖ij+(−j)‖2 =

‖ij‖2 + ‖ − j‖2 to see that ij is orthogonal to j. Finally

‖ij − 1‖2 = ‖ij + i2‖2 = ‖i(j + i)‖2 = ‖i‖2 · ‖j + i‖2 = 1 · 2 = 2 = ‖ij‖2 + ‖ − 1‖2

gives that ij is orthogonal to 1 as well. �

Theorem 4.17 (Classification of normed R-algebras). There are exactly three normed

R-algebras up to isomorphism, namely, R, C and H (see Examples 4.15).

Proof. Let V be a normed R-algebra. We check case-by-case according to the dimension

of V as a vector space over R.

If dimV = 1, then V = R1V . Since 1V · 1V = 1V , we have that V is isomorphic as

an R-algebra (that is, as a ring and as an R-vector space) to R. If dimV = 2, we may

choose an orthonormal basis (1, i) and Lemma 4.16(1) shows that i2 = −1. Thus, V

is isomorphic as an R-algebra to C. If dimV ≥ 3, then Lemma 4.16(2) shows that if

(1, i, j) ∈ V are orthonormal, then so are (1, i, j, ij) and hence dimV ≥ 4.

If dim(V ) = 4, we may choose an orthonormal basis (1, i, j, ij) of V . The linear map

φ : V → H sending 1, i, j, ij to 1, i, j, k respectively preserves the product and hence shows

that V is isomorphic to H as an R-algebra. Indeed, we have i2 = j2 = (ij)2 = −1 on V by

Lemma 4.16(1) and i2 = j2 = k2 = −1 on H by definition. As for the other products in

V , Lemma 4.16(2) shows that ji = −ij (and similarly, for any pair among i, j, ij) while

in H we have ji = −ij = −k by definition (and similarly, for any pair among i, j, k).

Thus, the product of any two basis elements, and hence the structure of the algebra, is

uniquely determined.

If dim(V ) > 4, we derive a contradiction, i.e., no such V exists. For this, take an

orthonormal set of vectors 1, i, j and apply Lemma 4.16 to get a subspace R+Ri+Rj+Rij
of V . Now pick e ∈ V with ‖e‖ = 1 that is orthogonal to 1, i, j, ij. Lemma 4.16(2) gives

(ij)e = −e(ij) = iej = −ije

and thus we get ije = 0 but ‖ije‖ = ‖i‖ · ‖j‖ · ‖e‖ = 1 so this is absurd. �

4.4. Application to number theory. Exercise 7.2 studies the link between geometry

in R3 and H, where the inner product and cross product in R3 can be interpreted via H.

Now we investigate a beautiful application in Number Theory. Consider the subring

Z + Zi+ Zj + Zk :=
{
z1 + z2i+ z3j + z4k ∈ H | z1, z2, z3, z4 ∈ Z

}
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of the quaternions. For z = z1 + z2i+ z3j + z4k and w = w1 +w2i+w3j +w4k, we have

zw = (z1w1 − z2w2 − z3w3 − z4w4) + (z1w2 + z2w1 + z3w4 − z4w3)i

+(z1w3 − z2w4 + z3w1 + z4w2)j + (z1w4 + z2w3 − z3w2 + z4w1)k.

Exercise 8.2 gives that ‖z‖2‖w‖2 = ‖z · w‖2, so

(z21 + z22 + z23 + z24)(w2
1 + w2

2 + w2
3 + w2

4) =

(z1w1 − z2w2 − z3w3 − z4w4)
2 + (z1w2 + z2w1 + z3w4 − z4w3)

2(4.3)

+(z1w3 − z2w4 + z3w1 + z4w2)
2 + (z1w4 + z2w3 − z3w2 + z4w1)

2.

It follows that if we have two sums of four squares, then their product is also a sum of

four squares that we can find explicitly using this formula. We are now going to prove

that every natural number can be written as sum of four integer squares.

Theorem 4.18 (Lagrange’s four square theorem). Every natural number can be

written as a sum of four integer squares.

Proof. We break the proof down into a number of steps.

Step 1: (It suffices to consider odd primes) Notice first that 1 = 12+02+02+02

and that 2 = 12 + 12 + 02 + 02. Since the set consisting of sum of four squares is closed

under multiplication and since Z is a UFD, it suffices to show that every odd prime p

can be written as a sum of four squares.

Step 2: (An equation involving zi’s) We claim that we can define an integer m to

be the smallest positive integer in the range 0 < m < p such that

(4.4) pm = z21 + z22 + z23 + z24 .

To justify the claim, we must exhibit z1, . . . , z4 and m such that the equation holds. For

this, we show that for any odd (positive) prime p, there exists x, y,m ∈ Z such that

pm = x2 + y2 + 12 + 02 where 0 < m < p.

For this we calculate modulo p. If [x]2 = [y]2 for some 0 ≤ y < x ≤ (p − 1)/2, then

p|(x2 − y2) = (x− y)(x+ y), so p|(x− y) or p|(x+ y) because p is prime. This is absurd

since 1 ≤ x− y, x+ y ≤ p− 1, so [0]2, [1]2, . . . , [p−1
2

]2 are distinct. Thus, we get two lists

[1 + x2], 0 ≤ x ≤ (p− 1)/2 and [−y2], 0 ≤ y ≤ (p− 1)/2

each of which has (p+1)/2 distinct values. There are p+1 > p values in total, so the two

lists must have a value in common, say [1 + x2] = [−y2]. Then [1 + x2 + y2] = [0]. Hence

pm = 1 + x2 + y2 for some integer m. Now pm = 1 + x2 + y2 ≤ 1 + (p−1
2

)2 + (p−1
2

)2 <

1 + 2(p/2)2 < p2, so m < p as required.

Step 3: (Set up the contradiction) The aim now is to show that m = 1. We argue

by contradiction and suppose that m > 1.
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Step 4: (m is odd). Otherwise an even number of z1, z2, z3, z4 are odd. By rearranging

the order of terms if needed we can assume that both z1, z2 are even/odd and both z3, z4
are even/odd. Hence z1 + z2, z1 − z2, z3 + z4, z3 − z4 are all even. It follows that

pm

2
=

2(z21 + z22 + z23 + z24)

4
=
(z1 − z2

2

)2
+
(z1 + z2

2

)2
+
(z3 − z4

2

)2
+
(z3 + z4

2

)2
which contradicts the minimality of m. Hence m is odd.

Step 5: (We do not have [z1] = [z2] = [z3] = [z4] = [0] ∈ Zm.) Otherwise m would

divide all of z1, . . . , z4, so the right hand side of (4.4) would be divisible by m2. But then

m|p and as m < p, we would have m = 1 contracting our assumption that m > 1.

Step 6: (Find 0 < r < m satisfying equation in wi’s.) For each i ∈ {1, 2, 3, 4}
pick wi such that −(m− 1)/2 ≤ wi ≤ (m− 1)/2 and [wi] = [zi] (needs m odd!). We have

[w2
1 + w2

2 + w2
3 + w2

4] = [z21 + z22 + z23 + z24 ] = [0] ∈ Zm, so there exists r such that

(4.5) mr = w2
1 + w2

2 + w2
3 + w2

4.

Since |wi| ≤ (m−1)/2, this expression is bounded above by 4(m−1
2

)2 = (m−1)(m−1), so

r < m. Since [wi] = [zi] for 1 ≤ i ≤ 4, Step 5 implies that we do not have [w1] = [w2] =

[w3] = [w4] = [0] ∈ Zm, so the right hand side of (4.5) is non-zero. Thus 0 < r < m.

Step 7: (Putting both equations together.) Multiply (4.4) and (4.5) and use

our understanding of multiplying quaternions from (4.3) to obtain

prm2 = (z21 + z22 + z23 + z24)(w2
1 + (−w2)

2 + (−w3)
2 + (−w4)

2)

= (z1w1 + z2w2 + z3w3 + z4w4)
2 + (−z1w2 + z2w1 − z3w4 + z4w3)

2

+(−z1w3 + z2w4 + z3w1 − z4w2)
2 + (−z1w4 − z2w3 + z3w2 + z4w1)

2.

Since [wi] = [zi] ∈ Zm for 1 ≤ i ≤ 4, we calculate in Zm that

[z1w1 + z2w2 + z3w3 + z4w4] = [z21 + z22 + z23 + z24 ] = [pm] = [0]

[−z1w2 + z2w1 − z3w4 + z4w3] = [−z1z2 + z2z1 − z3z4 + z4z3] = [0]

[−z1w3 + z2w4 + z3w1 − z4w2] = [−z1z3 + z2z4 + z3z1 − z4z2] = [0]

[−z1w4 − z2w3 + z3w2 + z4w1] = [−z1z4 − z2z3 + z3z2 + z4z1] = [0].

Thus, all of these integers are divisible by m, so dividing by m2 in the above gives

pr =
(z1w1 + z2w2 + z3w3 + z4w4

m

)2
+
(−z1w2 + z2w1 − z3w4 + z4w3

m

)2
(−z1w3 + z2w4 + z3w1 − z4w2

m

)2
+
(−z1w4 − z2w3 + z3w2 + z4w1

m

)2
.

As r < m, we get a contradiction about our minimality assumption on m. It follows that

the smallest m given in (4.4) must be 1 and thus p is a sum of integer squares. �

End of Week 8.
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5. The structure of linear operators

Let V be an n-dimensional vector space over k. Let α : V → V be a linear operator

and let A be the matrix representing α with respect to a given basis (v1, v2, . . . , vn) of V .

5.1. Minimal polynomials. Given a polynomial f =
∑n

i=0 ait
i ∈ k[t], we write

f(A) = a0In + a1A+ a2A
2 + · · ·+ anA

n

for the n × n matrix obtained by substituting A for t (and formally replacing t0 = 1

by the n × n matrix identity In). It is not hard to show that the map k[t] → Mn(k)

defined by sending f 7→ f(A) is a ring homomorphism. Recall from Example 2.9 that the

rings End (V ) and Mn(k) are isomorphic as vector spaces over k of dimension n2, and by

precomposing with this isomorphism we obtain a ring homomorphism

(5.1) Φα : k[t]→ End(V ), f 7→ f(α),

where the multiplication in End(V ) is the composition of maps.

Lemma 5.1. The kernel of the ring homomorphism Φα is not the zero ideal.

Proof. The dimension of End(V ) as a k-vector space is n2, so the list id, α, α2, . . . , αn
2

comprising n2+1 linear operators, or equivalently, the list (In, A,A2, . . . , An
2
) of matrices,

is linearly dependent. If a0, . . . , an2 ∈ k (not all zero) satisfy a0In + · · · + an2An
2

= 0,

then the polynomial f =
∑n2

i=0 ait
i satisfies Φα(f) = 0, so f ∈ Ker(Φα) is nonzero. �

Since k[t] is a PID, there exists a monic polynomial mα ∈ k[t] of degree at least one

such that Ker(Φα) = k[t]mα. Recall from the proof of Theorem 3.10 that mα ∈ k[t] is

the unique monic polynomial of smallest degree such that mα(α) = mα(A) = 0.

Definition 5.2 (Minimal polynomial). The minimal polynomial of α : V → V is the

monic polynomial mα ∈ k[t] of lowest degree such that mα(α) = 0. We also write mA

and refer to the minimal polynomial of an n× n matrix A representing α.

Examples 5.3. (1) If α = λid then p(α) = 0 where p(t) = t− λ, so mα(t) = t− λ.

(2) If A =
[

0 1
1 0

]
, then A2 = I2 and p(A) = 0 where p(t) = t2 − 1. As A is not a

diagonal matrix, we have that q(A) 6= 0 for any q = t− λ. Hence mA(t) = t2 − 1.

Definition 5.4 (Characteristic polynomial and multiplicities of eigenvalues).

The characteristic polynomial of α : V → V is ∆α(t) = det (α−tid) = det (A−tIn), where

A is a matrix representing α with respect to some basis. The algebraic multiplicity, am(λ),

of an eigenvalue λ is the multiplicity of λ as a root of ∆α(t). The geometric multiplicity

gm(λ) is the dimension of the eigenspace Eα(λ) = Ker(α− λid) = Ker(A− λIn).

Remarks 5.5. (1) This characteristic polynomial of a linear operator α does not de-

pend on the choice of matrix A representing α, so it’s well-defined.

(2) We have am(λ) ≥ gm(λ).
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Lemma 5.6. Let p be a polynomial such that p(α) = 0. Then every eigenvalue of α is a

root of p. In particular every eigenvalue of α is a root of mα.

Proof. Let v 6= 0 be an eigenvector for eigenvalue λ and suppose p(t) =
∑k

i=0 ait
i. Then

p(α) = 0 gives

0 = p(α) v = (a0id + a1α + · · ·+ akα
k)v = (a0 + a1λ+ · · ·+ akλ

k)v = p(λ)v.

As v 6= 0 it follows that p(λ) = 0. �

Theorem 5.7 (Cayley-Hamilton). For any A ∈Mn(k) we have ∆A(A) = 0 ∈Mn(k).

Equivalently, for any linear α : V → V we have ∆α(α) = 0 ∈Mn(k).

Remark 5.8. One can’t argue that det (A − AIn) = det (0) = 0 and thus ∆A(A) = 0

because ∆α(A) is a matrix whereas det (0) is a scalar. To illustrate this for n = 2:

A =

(
a b
c d

)
has ∆A(t) = det

(
a− t b
c d− t

)
= t2 − (a+ d)t+ (ad− bc),

so the Cayley–Hamilton Theorem is the generalisation to arbitrary n of the calculation

∆A(A) = A2 − (a+ d)A+ (ad− bc) · I2

=

(
a2 + bc ab+ bd
ca+ cd bc+ d2

)
−
(
a2a+ ad ab+ bd
ac+ cd ad+ d2

)
+ (ad− bc)

(
1 0
0 1

)
=

(
0 0
0 0

)
.

If you don’t think this is remarkable, check the case n = 3 for yourself!

Proof of Theorem 5.7. Suppose ∆A(t) = det (A− tIn) = a0 + a1t + · · · + ant
n. We must

show that ∆A(A) = a0In + a1A + · · · + anA
n is equal to the zero matrix. Recall the

adjugate formula from [Algebra 1B]:

(5.2) adj (A− tIn)(A− tIn) = det (A− tIn)In = ∆A(t)In.

Write adj (A− tIn) = B0 +B1t+ · · ·+Bn−1t
n−1 for Bi ∈Mn(k). Substite into (5.2) gives

(5.3) (B0 +B1t+ · · ·+Bn−1t
n−1)(A− tIn) = (a0 + a1t+ · · ·+ ant

n)In.

Comparing terms involving ti for any 1 ≤ i ≤ q, we have that

(5.4)
(
BiA−Bi−1

)
ti = (Bit

i)A+ (Bi−1t
i−1)(−tIn) = aiInti

Notice that in gathering terms here, we used the fact that the monomial ti commutes

with A (after all, these equations involve elements in the ring R[t] where R = Mn(k), so

we have Ati = tiA). If we now subsitute any matrix T ∈ Mn(k) into equation (5.3), the

left hand side will become a polynomial in T in which the coefficient of T i is given by

equation (5.4) if and only if AT i = T iA =. For any such matrix T satisfies

(B0 +B1T + · · ·+Bn−1T
n−1)(A− T ) = a0In + a1T + · · ·+ anT

n.

Since A satisfies A · Ai = Ai · A, we may substitute T = A to obtain

∆A(A) = a0In + a1A+ · · · anAn = (B0 +B1A+ · · ·+Bn−1A
n−1)(A− A) = 0

as required. �
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Corollary 5.9. The minimal polynomial mα divides the characteristic polynomial ∆α.

In fact the roots of mα are precisely the eigenvalues of α.

Proof. The Cayley–Hamilton theorem gives that the characteristic polynomial ∆α lies in

the kernel of the ring homomorphism Φα from (5.1). Since Ker(Φα) = k[t]mα, we have

that mα divides ∆α. Therefore every root of mα is a root of ∆α, and hence an eigenvalue

of α. Conversely, every eigenvalue of α is a root of mα by Lemma 5.6. �

Remark 5.10. When working over C, Corollary 5.9 says that if λ1, . . . , λk are the distinct

eigenvalues of λ and ∆α(t) = (λ1 − t)r1 · · · (λk − t)rk , then

mα(t) = (t− λ1)s1 · · · (t− λk)sk

with 1 ≤ si ≤ ri for all 1 ≤ i ≤ k.

5.2. Invariant subspaces. Let α : V → V be a linear operator over a field k.

Definition 5.11 (Invariant subspace). For a linear operator α : V → V , we say that

a subspace W of V is α-invariant if α(W ) ⊆ W . If W is α-invariant, then the restriction

of α to W , denoted α|W ∈ End(W ), is the linear operator α|W : W → W : w 7→ α(w).

Examples 5.12. (1) The subspaces {0} and V are always α-invariant.

(2) Let λ be an eigenvalue of α. If v is an eigenvector for λ, then the one dimensional

subspace kv is α-invariant because α(av) = aα(v) = aλv ∈ kv.

(3) For any θ ∈ R with θ 6= 2πk for k ∈ Z, the linear operator α : R3 → R3 that rotates

every vector by θ radians anticlockwise around the z-axis has V1 := Re1 ⊕ Re2
and V2 := Re3 as α-invariant subspaces. The restriction α|1 : V1 → V1 is simply

rotation by θ radians in the plane, while α|2 : V2 → V2 is the identity on the real

line. Notice that the matrix for α in the basis e1, e2, e3 is the ‘block’ matrix

A =

(
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

)
.

Notice that this matrix has two square non-zero ‘blocks’ (the top left 2×2 matrix

and the bottom right 1× 1 matrix). These two blocks are precisely the matrices

for the linear maps α|1 and α|2 in the given bases on V1 and V2 respectively.

In Examples 5.12(3) it is convenient to think of the map α as the sum of α|1 and α|2,
and think of the matrix A as the sum of the corresponding block matrices as follows.

Definition 5.13 (Direct sum of linear maps and matrices). For 1 ≤ i ≤ k, let Vi
be a vector space and let αi ∈ End(Vi). The direct sum of α1, . . . , αk is the linear map

(α1 ⊕ · · · ⊕ αk) :
⊕
1≤i≤k

Vi →
⊕
1≤i≤k

Vi
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defined as follows: each v ∈
⊕

1≤i≤k Vi can be written uniquely in the form v = v1+· · ·+vk
for some vi ∈ Vi, and we define

(α1 ⊕ · · · ⊕ αk)(v1 + · · ·+ vk) := α1(v1) + · · ·+ αk(vk).

The direct sum of matrices A1, . . . , Ak, where Ai ∈Mni(k) for 1 ≤ i ≤ k, is the matrix

A1 ⊕ · · · ⊕ Ak :=


A1

A2

. . .
Ak

 .

Remark 5.14. To see the link between these notions, let Ai be the matrix for αi with

respect to some basis pick a basis Vi of Vi. Then the matrix for the direct sum α1⊕· · ·⊕αk
with respect to the basis V1 ∪ V2 ∪ · · · ∪ Vk of

⊕
1≤i≤k Vi is the matrix A1 ⊕ · · · ⊕ Ak.

Lemma 5.15. For α ∈ End(V ) and suppose V = V1⊕V2⊕ · · ·⊕Vk where V1, . . . , Vk are

α-invariant subspaces. For 1 ≤ i ≤ k, write αi := α|Vi ∈ End(Vi). Then

(1) α = α1 ⊕ · · · ⊕ αk ∈
⊕k

i=1 End(Vi); and

(2) the minimal polynomial mα is the least common multiple of mα1 , . . . ,mαk .

Proof. For (1), each v ∈ V can be written uniquely as v = v1 + · · ·+ vk for vi ∈ Vi, and

α(v) = α(v1) + · · ·+ α(vk) = α1(v1) + · · ·+ αk(vk)

which proves (1). It follows that any f ∈ k[t] satisfies f(α) = f(α1)⊕f(α2)⊕· · ·⊕f(αk).

In particular, mα divides f if and only if f(α) = 0 which holds if and only if f(αi) = 0

for all 1 ≤ i ≤ k, which holds if and only if mαi|f for all 1 ≤ i ≤ k. Equivalently mα is

the least common multiple of mα1 , . . . ,mαk as required. �

5.3. Primary Decomposition. The rotation map α from Examples 5.12(3) was simple

in the sense that we could easily compute α-invariant subspaces V1 and V2 such that

V = V1 ⊕ V2 and α = α|V1 ⊕ α|V2 . This is good, because for any basis on V1 and V2, the

matrix for α in the corresponding basis of V is a block matrix and so has many zeroes.

More generally, given α : V → V , how do we find α-invariant subspaces V1, . . . , Vk of V

such that V = V1⊕· · ·⊕Vk and α = α1⊕· · ·⊕αk where αi := α|Vi? The key is to obtain

the α-invariant subspaces Vi using the factorisation of the minimal polynomial mα.

Example 5.16. Consider rotation by θ radians about the z-axis from Examples 5.12(3).

If for a moment we work over C, we compute that the characteristic polynomial of α is

∆α(A) = det(A− tI3) = (eiθ − t)(e−iθ − t)(1− t).

Since each root has multiplicity one, Remark 5.10 shows that over C we have

mα(t) = (t− eiθ)(t− e−iθ)(t− 1).

If we now work over R, as we should since V = R3 is a vector space over R, we obtain

mα(t) = (t2 − 2 cos θt+ 1)(t− 1)
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as the factorisation of mα into irreducibles in R[t] (which is a UFD). In fact, we have that

mα1 = t2 − 2 cos θt+ 1 and mα2 = t− 1

are the minimal polynomials of α1 = α|V1 and α2 = α|2 respectively. We now construct

the α-invariant subspaces V1 and V2 in V purely from these factors of mα. First compute

mα1(α) =

(
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

)2

− 2 cos θ

(
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

)
.+

(
1 0 0
0 1 0
0 0 1

)

=

(
0 0 0
0 0 0
0 0 2− 2 cos(θ)

)
and

mα2(α) =

(
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

)
−

(
1 0 0
0 1 0
0 0 1

)
=

(
cos(θ)− 1 − sin(θ) 0

sin(θ) cos(θ)− 1 0
0 0 0

)
.

Notice that

Ker(mα1(α)) =

{(
x
y
0

)
∈ R3 | x, y ∈ R

}
and Ker(mα2(α)) =

{(
0
0
z

)
∈ R3 | z ∈ R

}
are the α-invariant subspaces V1 and V2 that we considered in Examples 5.12(3). Thus,

even if we had not noticed that V = V1⊕V2 as in Examples 5.12(3), we could nevertheless

have computed the factorisation (5.5) of the minimal polynomial mα and obtained the

following direct sum decomposition:

V = Ker(mα1(α))⊕Ker(mα2(α))

with α = α|Ker(mα1 (α))
⊕ α|Ker(mα2 (α))

.

Our next result shows that the phenomenon we noticed above holds in general.

Theorem 5.17 (Primary Decomposition). Let α : V → V be a linear operator and

write factorise mα = pn1
1 · · · p

nk
k , where the ni ∈ N are chosen so that the irreducible monic

factors pi satisfy k[t]pi 6= k[t]pj for i 6= j. Let qi = pnii and let Vi = Ker(qi(α)). Then:

(1) the subspaces V1, . . . , Vk are α-invariant and V = V1 ⊕ · · · ⊕ Vk; and

(2) the maps αi = α|Vi for 1 ≤ i ≤ k satisfy α = α1 ⊕ · · · ⊕ αk and mαi = qi.

Corollary 5.18 (Diagonalisability). A linear map α : V → V is diagonalisable iff

mα(t) = (t− λ1)(t− λ2) · · · (t− λk)

for distinct λ1, . . . , λk ∈ k.

Proof of Corollary 5.18. Let α : V → V be diagonalisable with a basis of eigenvectors

(v1, . . . , vn) and corresponding eigenvalues λ1, . . . , λn. This means V = kv1⊕ · · · ⊕ kvn is

a decomposition into α-invariant subspaces, so Lemma 5.15(1) shows that α = α1⊕· · ·⊕αn
for αi := α|Vi ∈ End(Vi). The map αi : kvi → kvi is simply multiplication by λi and hence

43



mαi(t) = t − λi. Lemma 5.15(2) shows that the minimal polynomial mα(t) is the least

common multiple of the polynomials {t− λi | 1 ≤ i ≤ n}, that is, the product over those

t− λi that are distinct. If we reorder the eigenvalues so that the distinct eigenvalues are

λ1, . . . , λk for k ≤ n, then mα(t) = (t− λ1)(t− λ2) · · · (t− λk).
For the converse, apply Theorem 5.17 with qi := t− λi for 1 ≤ i ≤ k to obtain

V = Ker(α− λ1id)⊕ · · · ⊕Ker(α− λkid) = Eα(λ1)⊕ · · · ⊕ Eα(λk)

as required. �

End of Week 9.

Proof of Theorem 5.17. We use induction on k. For k = 1, we have mα = pn1
1 = q1. Then

V1 = Ker
(
q1(α)

)
= Ker

(
mα(α)

)
= V

because mα(α) is the zero map by Definition 5.2. This proves the case k = 1. For k ≥ 2,

suppose the result holds for any linear operator whose minimal polynomial decomposes

as a product of fewer than k factors of the form pnii . Suppose now that mα = pn1
1 · · · p

nk
k .

Define q1 = pn1
1 · · · p

nk−1

k−1 and q2 = pnkk , so mα = q1q2. Since k[t] is a PID, there exists

nonzero g ∈ k[t] such that k[t]q1 +k[t]q2 = k[t]g. It follows that g divides both q1 and q2.

If g is not a unit then it has a (monic) irreducible factor, say p ∈ k[t], that divides both q1
and q2. But the factorisations of q1 and q2 are unique, so k[t]p = k[t]pk and k[t]p = k[t]pi
for some 1 ≤ i < k. But then k[t]pi = k[t]pk which is absurd because i 6= k. Thus g ∈ k[t]

is a unit, in which case Lemma 3.16 implies that k[t] = k[t]q1 + k[t]q2. Proposition 5.19

to follow shows that

V = Ker
(
q1(α)

)
⊕Ker

(
q2(α)

)
,

where αi := α|Ker(qi(α)) satisfies α = α1⊕α2 and mαi = qi for 1 ≤ i ≤ 2. In particular, α1

is a linear operator on Ker(q1(α)) whose minimal polynomial decomposes as a product

q1 = pn1
1 · · · p

nk−1

k−1 , so the result follows by applying the inductive hypothesis to α1. �

Proposition 5.19. Let α : V → V be a linear operator whose minimal polynomial mα

satisfies mα = q1q2 where q1, q2 are monic and satisfying k[t] = k[t]q1 + k[t]q2. Then

(1) the α-invariant subspaces V1 = Im(q2(α)) and V2 = Im(q1(α)) satisfy V = V1⊕V2;
(2) the maps αi = α|Vi for 1 ≤ i ≤ 2 satisfy α = α1 ⊕ α2 and mαi = qi; and

(3) we have V1 ∼= Ker(q1(α)) and V2 ∼= Ker(q2(α)).

Proof. For (1), let v = qi(u) ∈ Im(qi(α)). Since qi(α) commutes with α, we have

α(v) = α(qi(u)) = qi(α(u)) ∈ Im(qi(α)),

so Im(qi(α)) is α-invariant for 1 ≤ i ≤ 2. There exists f, g ∈ k[t] such that 1 = fq1 + gq2,

so id = f(α)q1(α) + g(α)q2(α). It follows that for any v ∈ V , we have

v = id(v) = [g(α)q2(α)](v) + [f(α)q1(α)](v) ∈ Im(q2(α)) + Im(q1(α)) = V1 + V2.
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This shows that V = V1 + V2. To see that the sum is direct, suppose v ∈ V1 ∩ V2, say

v = q2(α)(v2) = q1(α)(v1). Then

v = f(α)q1(α)(v) + g(α)q2(α)(v)

= [f(α)q1(α)q2(α)](v2) + [g(α)q2(α)q1(α)](v1)

= [f(α)mα(α)](v2) + [g(α)mα(α)](v1)

= 0.

Hence V1 ∩ V2 = {0} and V = V1 ⊕ V2. For (2), the first statement follows from

Lemma 5.15. For the second, we must show that qi generates the kernel of the map

Φαi : k[t]→ End(Vi), that is, each f ∈ k[t] satisfying Φα1(f) = 0 is divisible by qi. Now

f ∈ Ker(Φα1) ⇐⇒ f(α1)(v1) = 0 for all v1 ∈ V1 by definition of Φα1

⇐⇒ f(α)(v1) = 0 for all v1 ∈ V1 as α(v1) = α1(v1) for v1 ∈ V1
⇐⇒ [f(α)q2(α)](v) = 0 for all v ∈ V as V1 = Im(q2(α))

⇐⇒ mα divides fq2 as mα generates Ker(Φα)

⇐⇒ q1 divides f as mα = q1q2

⇐⇒ q1 is the minimal polynomial of α1

as required. Similarly q2 is the minimal polynomial of α2. For (3), each v ∈ V satisfies

q1(α)q2(α)(v) = mα(v) = 0, we have that V1 = Im(q2(α)) ⊆ Ker(q1(α)). The result

will follow from [Algebra 1B] when we show these spaces have the same dimension. The

rank-nullity theorem from [Algebra 1B] gives that

dim Ker(q1(α)) + dim Im(q1(α)) = dimV = dimV1 + dimV2.

Now subtract dim Im(q1(α)) = dimV2 from each side to leave dim Ker(q1) = dimV1 as

required. Showing V2 = Ker(q2(α)) is similar. �

5.4. The Jordan Decomposition over C. From now on we restrict to the case k = C.

All polynomials in C[t] factor as a product of polynomials of degree 1. Now suppose that

the linear operator α : V → V has minimal polynomial

mα(t) = (t− λ1)s1 · (t− λ2)s2 · · · (t− λk)sk

where λ1, . . . , λk are the distinct eigenvalues of α (recall the roots of mα are exactly the

eigenvalues of α). The Primary Decomposition Theorem 5.17 implies that

V = Ker(α− λ1id)s1 ⊕Ker(α− λ2id)s2 ⊕ · · · ⊕Ker(α− λkid)sk

is a decomposition of V as a direct sum of α-invariant subspaces.

Definition 5.20 (Generalised eigenspace). Let α : V → V be a linear map with

eigenvalue λ. A nonzero vector v ∈ V is a generalised eigenvector with respect to λ if
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(α− λid)sv = 0 for some positive integer s. The generalised λ-eigenspace of V is

Gα(λ) =
{
v ∈ V : (α− λ id)sv = 0 for some positive integer s

}
∪ {0}

=
{
v ∈ V : (α− λ id)sv = 0 for some s ≥ 0

}
Remarks 5.21. (1) We have Eα(λ) ⊆ Gα(λ).

(2) Since V has finite dimension, the chain of ideals

Eα(λ) = Ker(α− λid) ⊆ Ker(α− λid)2 ⊆ Ker(α− λid)3 ⊆ · · ·

must stabilise at some point. The next Lemma tells us when.

Lemma 5.22. Let s be the multiplicity of the eigenvalue λ as a root of mα. Then

Gα(λ) = Ker(α− λ id)t for all t ≥ s.

Proof. The right hand side is contained in the left by Definition 5.20. For the opposite

inclusion, supposemα(t) = (t−λ1)s1(t−λ2)s2 · · · (t−λk)sk . By the Primary Decomposition

Theorem we have that

V = V1 ⊕ V2 ⊕ · · · ⊕ Vk,

where Vi = ker (α − λiid)si , and the minimal polynomial of αi = α|Vi is (t − λi)si . Now

suppose that λ = λi. For j 6= i we have that αj only has the eigenvalue λj. Hence

ker (αj − λiid) = {0} and αj − λiid is a bijective linear operator on Vj. Now let

v = v1 + v2 + · · ·+ vk

be any element in Gα(λ) with vi ∈ Vi. Suppose that (α− λiid)tv = 0. Then

0 = (α− λiid)tv = (α1 − λiid)tv1 + · · ·+ (αk − λiid)tvk.

This happens if and only if (αj − λiid)tvj = 0 for all j = 1, . . . , k. As (αj − λiid)t is

bijective if j 6= i, we must have that vj = 0 for j 6= i. Hence v = vi ∈ Vi = ker (α− λi)si .
This shows that Gα(λi) ⊆ ker (α − λiid)si and as (α − λiid)siv = 0 clearly implies that

(α− λiid)tv = 0 for any t ≥ si, it follows that Gα(λi) ⊆ ker (α− λiid)t as required. �

Remark 5.23. This last lemma implies in particular that Gα(λ) = ker (α− λ id)r where r

is the algebraic multiplicity of λ. This is useful for calculating Gα(λ) as it is often easier

to determine ∆α(t) than mα(t).

Theorem 5.24 (Jordan Decomposition). Suppose that the characteristic and minimal

polynomials are ∆α(t) =
∏

1≤i≤k(λi−t)ri and mα(t) =
∏

1≤i≤k(t−λi)si respectively. Then

V = Gα(λ1)⊕ · · · ⊕Gα(λk),

and if α = α1⊕ · · ·⊕αk is the corresponding decomposition of α, then ∆αi(t) = (λi− t)ri
and mαi(t) = (t− λi)si.
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Proof. Almost everything follows directly from the Primary Decomposition Theorem 5.17

and Lemma 5.22. It remains to prove that ∆αi(t) = (λi − t)ri . To see this, Corollary 5.9

shows that the roots of mαi are exactly the eigenvalues of αi, so ∆αi(t) = (λi − t)ti for

some positive integer ti. We have that α = α1 ⊕ · · · ⊕ αk from Theorem 5.17, and hence

A = A1 ⊕ · · · ⊕ Ak where Ai ∈M`i(k) is any matrix for the map αi. Therefore

(λ1 − t)r1 · · · (λk − t)rk = ∆α(t)

= det(A− tIn)

= det
(
A1 ⊕ · · · ⊕ Ak − t(I`1 ⊕ · · · ⊕ I`k)

)
= det

(
(A1 − tI`1)⊕ · · · ⊕ (Ak − tI`k)

)
= det(A1 − tI`1) · det(A2 − tI`2) · · · det(Ak − tI`k) by Ex 10.3

= ∆α1(t) · · ·∆αk(t)

= (λ1 − t)t1 · · · (λk − t)tk

Comparing exponents gives ti = ri for i = 1, . . . , k as required. �

5.5. Jordan normal form over C. Our study of the structure of α is now reduced to

understanding each αi, so we need only consider the special case α : V → V such that

∆α(t) = (λ− t)r and mα(t) = (t− λ)s

where 1 ≤ s ≤ r. We work over k = C.

Definition 5.25 (Cyclic subspace generated by v). For v ∈ V , the cyclic α-invariant

subspace generated by v is the subspace

C[α]v =
{
p(α)v ∈ V | p ∈ C[t]

}
.

Remark 5.26. Note that C[α]v is an α-invariant subspace of V . Indeed, for p, q ∈ C[t]

and λ ∈ k, we have λ(p(α)v) + q(α)v = (λp + q)(α)v, so C[α]v is a subspace of V . It is

also α-invariant since αp(α)v = u(α)v where u is the polynomial tp(t).

Example 5.27. If v ∈ Eα(λ), that is, if α(v) = λv, then C[α]v = Cv. Thus, for every

eigenvector v of α we have that kv is the cyclic α-invariant subspace generated by v.

Proposition 5.28. Let α : V → V be any linear map such that ∆α(t) = (λ − t)r and

mα(t) = (t− λ)s. For v ∈ V \ {0}, consider the C-vector space W := C[α]v. Define e to

be the smallest positive integer such that (α− λid)ev = 0, and define

v1 = (α− λ id)e−1v, v2 = (α− λ id)e−2v, . . . , ve−1 = (α− λid)v, ve = v.

The matrix for β := α|W ∈ End(W ) in the basis (v1, v2, . . . , ve) is the e× e matrix

J(λ, e) =


λ 1

λ 1
. . . . . .

λ 1
λ

 .
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Moreover, Eβ(λ) = Cv1, mβ(t) = (t− λ)e and ∆β(t) = (λ− t)e.

Proof. As mα(t) = (t−λ)s, we have that (α−λid)sv = mα(α)v = 0, so 1 ≤ e ≤ s is well-

defined. To see that v1, . . . , ve span W , let u ∈ W . By hypothesis u = f(α)v for some

f ∈ C[t]. Exercise 10.2 gives a0, . . . , ae ∈ C such that f(t) = a0+a1(t−λ)+· · ·+ak(t−λ)k

for some k ≥ 0, and hence

u = f(α)v = a0v + a1(α− λid)v + a2(α− λid)2v + · · · ,

so W is spanned by v1, . . . , ve because (α − λid)ev = 0. Exercise 9.4(b) shows that

v1, . . . , ve are linearly independent, so we have a basis.

Notice that

α(v1) = λ v1 + (α− λid)v1 = λ v1 + (α− λ id)ev = λ v1

and for 2 ≤ i ≤ e we have

α(vi) = λ vi + (α− λ id)vi = λ vi + vi−1 = vi−1 + λ vi

the matrix for α with respect to the basis v1, . . . , ve is therefore J(λ, e). All other state-

ments follow from Exercise 10.1. �

Definition 5.29 (Jordan block). We call J(λ, e) a Jordan block of α.

Examples 5.30. (1) J(λ, 1) = (λ) and J(λ, 2) =

(
λ 1
0 λ

)
.

(2) Consider the linear operator α : C2 → C2, v 7→ Av where

A =

(
3/2 1/2
−1/2 1/2

)
.

The characteristic polynomial is (3/2−t)(1/2−t)+1/4 = 1−2t+t2 = (1−t)2. As

the matrix A is not the unit matrix the minimal polynomial is (t− 1)2 = ∆α(t).

The situation is thus like Proposition 5.28 with e = 2. Following the recipe

there, we seek a vector v such that (A − I)v 6= 0, say v = (0 2)T . If we let

v1 = (A− I)v = (1 − 1)T and v2 = v, the matrix for α in basis (v1, v2) is J(1, 2).

The following is the key result that we’ve been aiming towards throughout Algebra 2B:

Theorem 5.31 (Jordan normal form). Let α : V → V be any linear map such that

∆α(t) = (λ − t)r and mα(t) = (t − λ)s. Then there exists a basis for V such that the

matrix for α with respect to this basis is

A =


J(λ, e1)

J(λ, e2)
. . .

J(λ, ek)

 = J(λ, e1)⊕ · · · ⊕ J(λ, ek),

where

(1) k = gm (λ) is the number of Jordan blocks;
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(2) s = max{e1, . . . , ek}; and

(3) r = e1 + · · ·+ ek.

Proof. By Proposition 5.28, showing A is a direct sum of Jordan blocks is equivalent to

showing that there exist non-zero v1, . . . , vk ∈ V such that

(5.5) V = C[α]v1 ⊕ · · · ⊕ C[α]vk,

with dimC[α]vi = ei. Suppose that we have already established this. Then:

(1) Let αi be the restriction of α to C[α]v so that α = α1 ⊕ · · · ⊕ αk. By (5.5), every

element of V can be written v = v1 + · · ·+ vk ∈ V . If v ∈ Eα(λ), then

α1(v1) + · · ·+ αk(vk) = α(v) = λ(v) = λv1 + · · ·+ λvk

and thus αi(vi) = λvi for 1 ≤ i ≤ k. It follows that Eα(λ) = Eα1(λ)⊕· · ·⊕Eαk(λ).

By Proposition 5.28, we have dimEαi(λ) = 1, so

k = dimEα1(λ) + · · ·+ dimEαk(λ) = dimEα(λ) = gm (λ).

This proves (1).

(2) Lemma 5.15 shows that mα(t) is the least common multiple of mα1(t), . . . ,mαk(t).

Proposition 5.28 shows that mαi(t) = (t− λ)ei , so (2) follows immediately.

(3) Finally, (3) says nothing more than dimV = dimC[α]v1 + · · ·+ dimC[α]vk.

It remains to show that (5.5) holds. We establish this by induction on s.

If s = 1, then α = λid. Pick any basis v1, . . . , vr for V and apply Proposition 5.28 with

e = 1 for each basis vector to see that

V = Cv1 ⊕ · · · ⊕ Cvr = C[α]v1 ⊕ · · · ⊕ C[α]vr.

This proves the case s = 1. Now suppose that s ≥ 2 and that the claim holds for smaller

values of s. Now consider the α-invariant subspace

W = (α− λid)V = {(α− λid)(v) ∈ V | v ∈ V }.

Notice that (α − λid)s−1w = 0 for all w ∈ W and the minimal polynomial of α|W is

(t− λ)s−1. The inductive hypothesis gives (α− λid)v1, . . . , (α− λid)v` ∈ W \ {0} with

(5.6) W = C[α](α− λid)v1 ⊕ · · · ⊕ C[α](α− λid)v`.

Let βi be the restriction of α to C[α]vi. Proposition 5.28 shows that Eβi(λ) has dimension

1 and that it has a basis vector of the form wi = (α− λid)ei−1vi for some ei ≥ 2. Notice

that wi ∈ C[α](α− λid)vi. Since the sum from (5.6) is direct, it follows that (w1, . . . , w`)

is a basis for Eα|W (λ). Extend this to a basis (w1, . . . , w`, v`+1, . . . , v`+m) for Eα(λ) ⊆ V .

We claim that

V = C[α]v1 ⊕ · · · ⊕ C[α]v` ⊕ C[α]v`+1 ⊕ · · · ⊕ C[α]v`+m.

Since v`+1, . . . , v`+m are eigenvectors for λ, this is the same as saying that

(5.7) V = C[α]v1 ⊕ · · · ⊕ C[α]v` ⊕ (Cv`+1 ⊕ · · · ⊕ Cv`+m).
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To see that the left hand side is contained in the right, let v ∈ V . Then (α− λid)v ∈ W ,

so by (5.6) there exist p1, . . . , pe ∈ C[t] such that

(α− λid)v = p1(α)(α− λid)v1 + · · ·+ pe(α)(α− λid)v`.

Gather all terms on one side to obtain (α− λid)(v − (p1(α)v1 + · · ·+ pe(α)ve)) = 0, so

v − (p1(α)v1 + · · ·+ p`(α)v`) ∈ Eα(λ) ⊆ C[α]v1 + · · ·+ C[α]v` + Cv`+1 + · · ·+ Cv`+m.

Now we know that the decomposition

v = (p1(α)v1 + · · ·+ p`(α)v`) +
(
v − (p1(α)v1 + · · ·+ p`(α)v`))

presents v as the sum of an element of C[α]v1 + · · ·+C[α]v` and an element of the space

C[α]v1 + · · · + C[α]v` + Cv`+1 + · · · + Cv`+m, so it lies in the right hand side of (5.7) as

required. It remains to show that the sum from (5.7) is direct. Suppose

0 = p1(α)v1 + · · ·+ p`(α)v` + a`+1v`+1 + · · ·+ a`+mv`+m.

Applying α− λid to both sides gives

0 = p1(α)(α− λid)v1 + · · ·+ p`(α)(α− λid)v`.

Since W is a direct sum in equation (5.6), we have (α − λid)pi(α)vi = 0 for 1 ≤ i ≤ `,

so pi(α)vi is an eigenvector that lies in C[α]vi, so it must be a multiple of wi. Since

w1, . . . , w` are linearly independent, it follows that pi(α)vi = 0 for 1 ≤ i ≤ `. Hence

0 = a`+1v`+1 + · · ·+ a`+mv`+m

and as v`+1, . . . , v`+m are linearly independent, it follows that a`+1 = . . . = a`+m = 0.

This finishes the proof. �

Remarks 5.32. (1) The matrix A in Theorem 5.31 is called a Jordan Normal Form for

α, sometimes denoted JNF(α). One can show that the Jordan blocks in JNF(α)

are unique up to order.

(2) This generalises as follows. If α : V → V has ∆α(t) = (λ1 − t)r1 · · · (λm − t)rm

and V = Gα(λ1)⊕Gα(λ2)⊕ · · · ⊕Gα(λm) with the corresponding decomposition

α = α1 ⊕ · · · ⊕ αm,, then JNF(α) = JNF(α1)⊕ · · · ⊕ JNF(αm).

Example 5.33. Suppose that α : V → V is a linear map with mα(t) = (t − 5)2 and

∆α(t) = (t− 5)4. Since the degree of mα(t) is 2, we must have at least one largest block

J(5, 2), so the possible decompositions of the 4-dimensional space V are J(5, 2)⊕ J(5, 2)

and J(5, 2)⊕ J(5, 1)⊕ J(5, 1). If we know in addition that gm(5) = 3 then we must have

three blocks, so the second possibility applies.

End of Algebra 2B.
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