MA40188 ALGEBRAIC CURVES 2015/16 SEMESTER 1
ALGEBRA BRIEF REVIEW

This is an outline of the topics in Algebra 2B that we will review in the exercise class on 2
October. It does not mean to cover every aspect that we will need for Algebraic Curves, but I
hope it will give you some help at least in the first few weeks.

Ring. A ring is a set of elements with two operations: addition and multiplication, which have
to satisfy various algebraic laws. Check your Algebra 2B notes to make sure you know the
full definition. We are only interested in commutative rings with 1. More precisely, we mainly
focus on polynomial rings k[zy,--- ,z,] and their quotient rings. (In particular, k[zy, -, z,]
can be realised as a quotient of itself by the zero ideal.)

Ideal. An ideal I is a subset of a ring R, satisfying two closedness conditions: “a,b € [ =
a—bel” and “r € Rja € [ = ra € I”. When R is a commutative ring with 1, the first
condition a — b € I can be replaced by the equivalent condition a + b € I.

Quotient ring. For any ideal [ in a ring R, there is a quotient ring R/I, whose elements are
cosets r + I for any » € R. Two cosets r; + I and ry + I are the same if and only if ry —ry € 1.
If R is a commutative ring with 1, then so is R/I.

Ring homomorphism. A homomorphism ¢ : R — S between two rings is a map which
preserves addition and multiplication. Nice and easy.

Special rings. We have “rings D integral domains D UFDs D PIDs D fields”. Make sure you
know the definition of each. It is important to us that k[zi,--- ,z,]| is a UFD; namely, every
polynomial can be factored into a product of irreducible polynomials, which is unique up to the
order of factors and units (non-zero constants). It is a PID only when n = 1. (We now know
that it is a Noetherian ring for every n.)

Polynomial. A polynomial f(xy, - ,2,) € klxy, -+ ,2,] is a finite sum of monomials. If f is
not zero, then the degree of f is the highest degree of its non-zero monomials. But the degree
of the zero polynomial is quite arguable. There are different ways to treat this problem. We
will adopt one opinion and define the degree of the zero polynomial to be any non-negative
integer. Details will be explained in week 4.

Irreducible polynomial. When k is algebraic closed, the only irreducible polynomials in k[z]
are the ones of degree 1. For polynomial rings in more than 1 variable, there is no such a
general rule, but irreducible polynomials can still be determined in some cases.

Example 1. We claim that y? — 2® + z € k[z, y] is an irreducible polynomial. We assume on
the contrary that it can be written as the product of two non-constant factors. As a polynomial
in y with coefficients in k[z], y* — 2 + 2 has degree 2 in . Hence the two factors have degrees
either 2 and 0 in y respectively, or 1 and 1 respectively. More precisely,

y' =2’ o= (fl)y’ + i@y + fo(x) - g(z) or (fulx)y+ fol@)) - (91(2)y + go(2)).

In the first case, we have the identity fo(x)g(x) = 1, hence g(z) is a non-zero constant. Con-
tradiction. In the second case, we similarly have the identity fi(z)gi1(x) = 1. Therefore both
factors are non-zero constants. Without loss of generality we can assume fi(z) = ¢i(z) = 1.
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Then we have

y' =2’ +x = (y+ fo(x))(y + go(2)).
Comparing the coefficients of y we have fy(z) + go(x) = 0, hence go(z) = — fo(x). Comparing
the terms without y we have fo(z)go(z) = —2® 4+ x, hence fo(z)* =2® — 2z = z(z + 1)(z — 1).
The right hand side is not a square. Contradiction. This concludes that y?> — 2® + z is an
irreducible polynomial.

Algebra. You might not like the definition of a k-algebra, since it is kind of long and hard to
remember. We need to work with a special type of algebras called finitely generated k-algebras.
You might think the definition is even more involved, but it is actually very simple and explicit.
A finitely generated algebra is a ring which is isomorphic to some k[z1, -, z,]/I. A k-algebra
homomorphism ¢ : K[zq,- -+ ,x,]/T — Kly1, -+ ,ym]/J is simply a ring homomorphism that
sends a coset ¢+ I to ¢+ J for every constant c. I will formally define them in week 3.

Fundamental isomorphism theorem. The fundamental isomorphism theorem for rings is
the following statement: for a ring homomorphism f : R — S, there is a canonical isomor-
phism
im(f) = R/ ker(f).

This is a very important theorem for our purpose. Look at the following example.
Example 2. We claim that k[z,y|/(y — 2?) = k[t]. To see this, we construct a ring homomor-
phism (in fact, a k-algebra homomorphism)

o :k[z,y] —Kk[t];, z——t; yr——t%

This means that every monomial az’y’ is sent to at'(t?)? = at*** where a € k is the coefficient.
By the fundamental isomorphism theorem, we have

im(p) = klz,y]/ ker(p).
We need to identify im(p) and ker(ep).
For any p(t) € k[t], we have ¢(p(x)) = p(t). This shows ¢ is surjective, hence im(p) = k[t].
For any f(x,y) € k[x,y], I claim it can be written as
f=W—2%-g+h,
for some g(x,y) € k[z,y] and h(x) € k[z]. For this, one only need to replace every single

occurrence of y in f(z,y) by [(y — %) + %], and then multiply out the square brackets leaving
the terms in round brackets untouched. Armed with this claim, we see that

p(f) =y —2°) - p(g) +p(h) = (£* = *) - w(g) + h(t) = h(t).
It follows that ¢(f) =0 <= h =0<= f € (y — 2?). Hence ker(yp) = (y — x?). Therefore the
fundamental isomorphism theorem implies that k[t] = k[z, y]/(y — x?).

Field. A field is a commutative ring with 1 such that every non-zero element has a multiplica-
tive inverse. Check your Algebra 2B notes to make sure you know the characteristic of a field
and the field of fractions of an integral domain (which will be used in week 6).

I strongly suggest you go through this outline to make sure you understand every item in the
list as soon as possible. Otherwise you may find it more and more difficult to understand new
material discussed in lectures. For your convenience, the Algebra 2B lecture notes are available
on the course webpage for your reference. As always, please feel free to let me know if you have
any questions.



