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1. (a)
(b)

(d)

What does it mean to say that an irreducible projective plane curve C is rational?
What does it mean to say that a point of C is non-singular?

Find the singular points and the points at infinity on the complex projective plane
curve given on the affine piece z # 0 by

y3-x4+x3=0.

Show that this curve is rational.

Explain briefly how to define a group law on a smooth plane cubic curve E. (You
need not prove that the law you have defined is a group law.)

Say what it means for a point  on a plane curve F to be an inflexion point.

.From now on let k be the field F37 (the finite field with 37 elements). Take E to be

the curve given in homogeneous coordinates on P2 by the equation
y2z — 23+ 9z2% — 112° =0

and take the identity element to be the point (0:1:0). Show that P = (0:23:1)
is a point of E. Find the point @) at which the tangent to E at P meets F again.

Show that @ is an inflexion point of E. Deduce that P is a point of order 6 in the
group E.

[In parts (c) and (d) you may find it useful to know that 222 = 3 mod 37 and
232 = 11 mod 37,

Explain carefully what is meant by a map ¢: V — W between two irreducible
affine varieties over an algebraically closed field k. Define the corresponding map
¢*: k[W] — k[V]. What does it mean to say that ¢ is an isomorphism? What
property does ¢* have in this case?

Let k be an algebraically closed field of characteristic p > 0. The Frobenius map
®: k — k is given by a — aP for all a € k. Show that if b € k£ and a? = b, then the
polynomials X? — b and (X — a)P are equal. Deduce that ® is bijective.

Say why the Frobenius map may also be thought of as a map of algebraic varieties
®: AL — Al. Is it an isomorphism of varieties? Justify your answer.
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(a)

Suppose B is a commutative ring and A is a finite B-algebra; that is, 4 is a
commutative ring containing B as a subring and there are finitely many non-zero
elements a1,...,a, € A such that A = Ba; +---+ Bay. Suppose that I is a proper
ideal of B (so I # B). Prove Nakayama’s Lemma, which says that T4 # A.

[Hint: if IA = A, each a; may be written as a linear combination of the a; with
coefficients in I.]

Let V C A} be an affine variety over an algebraically closed field k. If the ring
of polynomial functions on A} is denoted by k[X1,..., Xx], what is meant by the
coordinate ring k[V] of V7

Describe the map ¢: V — Al corresponding to the map 7: k[X1] — k[V] given by
X 1 X 1+ I (V)

Suppose that the map 7 in part (c) is injective and makes k[V] into a finite k[X1]-
algebra. Show that ¢ is surjective, by using the Nullstellensatz and Nakayama's .

Lemma applied to the ideal in k[X;] generated by an element of the form X; — a.
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