DEPARTMENT OF MATHEMATICAL SCIENCES EXAMINATION

MA40188: ALGEBRAIC CURVES

Friday 28th May 2010, 16.30-18.30

Candidates may use university-supplied calculators.
Full marks will be given for correct answers to THREE questions.
Only the best three answers will contribute towards the assessment.

1. (a) Define what is meant by a noetherian ring.
(b) Show that if R is a noetherian ring then the polynomial ring $R[t]$ in one variable over R is also noetherian. You need not carry out the verification that any ideals you define are indeed ideals: it is enough to say that they are.
(c) Suppose that K is an algebraically closed field and that $V \subset \mathbb{A}_{K}^{n}$ is an irreducible affine variety not contained in any bigger irreducible subvariety of \mathbb{A}^{n}. In other words, suppose that V is irreducible and that if W is an irreducible variety with $V \subseteq W \subseteq \mathbb{A}^{n}$, then $W=V$ or $W=\mathbb{A}^{n}$. Show that $I(V)$ is a principal ideal of $K\left[t_{1}, \ldots, t_{n}\right]$ (recall that an ideal is principal if it is generated by a single element). [Hilbert's Nullstellensatz may be assumed.]
2. (a) If $X \subseteq \mathbb{P}^{n}$ and $Y \subseteq \mathbb{P}^{m}$ are irreducible projective varieties, define what is meant by a rational map $\phi: X \rightarrow Y$ and what is meant by a morphism $f: X \rightarrow Y$.
(b) What does it mean to say that X and Y are birationally equivalent? What does it mean to say that X and Y are isomorphic?
(c) The Segre embedding

$$
\sigma: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}
$$

is given by

$$
\sigma\left(\left(x_{0}: x_{1}\right),\left(y_{0}: y_{1}\right)\right)=\left(x_{0} y_{0}: x_{0} y_{1}: x_{1} y_{0}: x_{1} y_{1}\right)
$$

Show that σ is a morphism and that it is injective.
(d) By considering the rational map

$$
\phi: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}
$$

given by

$$
\phi\left(\left(x_{0}: x_{1}\right),\left(y_{0}: y_{1}\right)\right)=\left(x_{0} y_{1}: x_{1} y_{0}: x_{1} y_{1}\right)
$$

show that $\mathbb{P}^{1} \times \mathbb{P}^{1}$ is birationally equivalent to \mathbb{P}^{2}. Find the domain and the image of ϕ.
(e) Is $\mathbb{P}^{1} \times \mathbb{P}^{1}$ isomorphic to $\mathbb{P}^{2} ?$ Justify your answer briefly.
3. (a) Suppose that $P_{1}, \ldots, P_{8} \in \mathbb{P}^{2}$ are eight points, no three of which lie on a line and no six of which lie on a conic. Show that at most two independent cubics pass through P_{1}, \ldots, P_{8}.
(b) Suppose that $E \subset \mathbb{P}^{2}$ is a smooth plane cubic curve over a field K. Explain, either in words or by drawing a diagram, how to define a group law on the set of points of E whose coordinates lie in K, assuming that this set is non-empty.
(c) Take $K=\mathbb{F}_{31}$ and let E be given by the affine equation

$$
y^{2}=x^{3}+11 x+3
$$

If $P=(2,-8)$ and $Q=(16,11)$, calculate $(P+P)+Q$ and $P+(P+Q)$ and show that they are equal.
[You may find it useful to know that $14 \times 20 \equiv 1 \bmod 31$ and that $13 \times 12 \equiv 1$ \bmod 31. You should find that $P+P=(4,7)$ and that $P+Q=(15,-3)$.
4. (a) Define the tangent space $T_{P} V$ to a hypersurface $V \subset \mathbb{A}^{n}$ in affine space at a point $P \in V$. What does it mean to say that P is a singular point of V ?
(b) Show that if the ground field K is algebraically closed and of characteristic zero, then the set of non-singular points of V is non-empty.
[Hilbert's Nullstellensatz may be assumed.]
(c) Find the singular points of the Cayley sextic, which is the curve in \mathbb{P}^{2} over $K=\mathbb{C}$ given by

$$
4\left(x^{2}+y^{2}-x z\right)^{3}=27\left(x^{2}+y^{2}\right)^{2} z^{2}
$$

