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1. (a) Define what is meant by a noetherian ring.

(b) Show that if R is a noetherian ring then the polynomial ring R[t] in one variable
over R is also noetherian. You need not carry out the verification that any ideals
you define are indeed ideals: it is enough to say that they are.

(c) Suppose that K is an algebraically closed field and that V ⊂ A
n

K
is an irreducible

affine variety not contained in any bigger irreducible subvariety of A
n. In other

words, suppose that V is irreducible and that if W is an irreducible variety with
V ⊆ W ⊆ A

n, then W = V or W = A
n. Show that I(V ) is a principal ideal of

K[t1, . . . , tn] (recall that an ideal is principal if it is generated by a single element).

[Hilbert’s Nullstellensatz may be assumed.]

2. (a) If X ⊆ P
n and Y ⊆ P

m are irreducible projective varieties, define what is meant by
a rational map φ : X 99K Y and what is meant by a morphism f : X → Y .

(b) What does it mean to say that X and Y are birationally equivalent? What does it
mean to say that X and Y are isomorphic?

(c) The Segre embedding
σ : P

1
× P

1
→ P

3

is given by
σ
(

(x0 : x1), (y0 : y1)
)

= (x0y0 : x0y1 : x1y0 : x1y1).

Show that σ is a morphism and that it is injective.

(d) By considering the rational map

φ : P
1
× P

1
99K P

2

given by
φ
(

(x0 : x1), (y0 : y1)
)

= (x0y1 : x1y0 : x1y1)

show that P
1 × P

1 is birationally equivalent to P
2. Find the domain and the image

of φ.

(e) Is P
1 × P

1 isomorphic to P
2? Justify your answer briefly.
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3. (a) Suppose that P1, . . . , P8 ∈ P
2 are eight points, no three of which lie on a line and no

six of which lie on a conic. Show that at most two independent cubics pass through
P1, . . . , P8.

(b) Suppose that E ⊂ P
2 is a smooth plane cubic curve over a field K. Explain, either

in words or by drawing a diagram, how to define a group law on the set of points of
E whose coordinates lie in K, assuming that this set is non-empty.

(c) Take K = F31 and let E be given by the affine equation

y2 = x3 + 11x + 3.

If P = (2,−8) and Q = (16, 11), calculate (P + P ) + Q and P + (P + Q) and show
that they are equal.

[You may find it useful to know that 14 × 20 ≡ 1 mod 31 and that 13 × 12 ≡ 1
mod 31. You should find that P + P = (4, 7) and that P + Q = (15,−3).]

4. (a) Define the tangent space TP V to a hypersurface V ⊂ A
n in affine space at a point

P ∈ V . What does it mean to say that P is a singular point of V ?

(b) Show that if the ground field K is algebraically closed and of characteristic zero,
then the set of non-singular points of V is non-empty.

[Hilbert’s Nullstellensatz may be assumed.]

(c) Find the singular points of the Cayley sextic, which is the curve in P
2 over K = C

given by
4(x2 + y2

− xz)3 = 27(x2 + y2)2z2.
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