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Full marks will be given for correct answers to THREE questions.
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MA40188 2.

1. Let k be a field and let A™ denote affine space of dimension n over k.

(a) Let J Cklzy,...,2,] be an ideal and let X C A™ be a subset. Define the algebraic

subset V(J) and the ideal I(X). 2]
(b) Define what it means for an algebraic subset X C A™ to be irreducible, and prove
that X is irreducible if and only if [(X) is prime. (7]

(c) Consider the ideal J = (2? — y3,y? — 23) in k[z, y, 2]

(i) For f € k[z,y, 2], describe how to find g € J and a,b,¢,d € k[z] such that

f=g+a+bxr+cy+dzy. [4]
(i) By using part (i) or otherwise, show that J is the kernel of the k-algebra
homomorphism ¢:k(z, y, 2] — k[t] satisfying [4]

o(z) =t%  @ly) =t% ¢(z) ="

(iii) Assume that k is algebraically closed. Using part (ii) or otherwise, prove that
V(J) is irreducible. [3]

2. Let k be an infinite field, and let X C A™ and Y C A™ be algebraic subsets and write

klz1,...,2zn] and Kk[y1, ..., ym] for the coordinate rings of A™ and A™ respectively.

(a) Define the coordinate ring k[X]. 1]

(b) Show that k[X] is isomorphic as a k-algebra to a quotient of a polynomial ring (you
need not prove that your map is a k-algebra homomorphism). (3]

(¢) Define what it means for a map ¢: X — Y to be a polynomial map, and write down
the definition of the pullback ¢* of ¢. 3]

(d) Show that a k-algebra homomorphism a: k[Y] — k[X] determines a polynomial map
¢: X — Y such that ¢* = a. 18]

(e) Let k[z,y] denote the coordinate ring of A?. The following curves arise as the image
of the given polynomial maps:

(i) €y =V(y? —2®—2?) is the image of ¢y: At — A? with ¢, (t) = (12 — 1,3 —¢);
(ii) Co = V(y — 2”) is the image of ¢p: A' — A? with ¢o(t) = (¢, 7).

In each case, state whether the map induces an isomorphism between A' and its
image. Justify your response. 5]
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3. Let C be the field of complex numbers, and let Clz1,...,z,] denote the coordinate ring
of A™.
(a) Let f € C[xy,...,2n] be irreducible such that f ¢ C, and write X = V(f) C A"
Define the tangent space T,X at a point p € X. 2]
(b) Use the Nullstellensatz to prove that every g € Clz1,...,z,] that vanishes at each
point of X is of the form g = hf for some h € Clz1,...,%s]. [4]
() What does it mean to say that p is a singular point of the hypersurface X from part
(a)? Using part (b) or otherwise, prove that the set of non-singular points of X is
a nonempty, Zariski-open subset. 7]
(d) Consider the following hypersurfaces:

(i) X =V(f) CA?for f=19y?— a3 —2* € Cla,yl;

(i) Y =V(g) C A% for g = (2 — 1)%22% + 2%y% + 22 € Clz,y, 2].

In each case, determine the set of singular points on the hypersurface, explaining
fully your conclusion. [7]

4.  Let k be a subfield of the field of complex numbers C.

(a)

(b)

(d)

ANC/JN

Define the projective plane P2 over k, and explain briefly how to regard P? as ‘A? plus
asymptotic directions’, illustrating your understanding with a discussion of parallel
lines in AZ2. [5]
Let C = V(f) C P? be a nonsingular cubic curve for f € k(z,y, 2], and let L C P2
be a line. Show that LN C comprises at most 3 points (equal to 3 in a suitable field
extension of k), and describe briefly how multiple intersections of L and C relate to
geometric notions of tangency and inflection. (5]
Suppose C = V(%2 — 2° — azz? — bz®) C P? is nonsingular, and let O = [0:1: 0].
Show how to construct a group law on C with O as identity element. Explain the

construction of the inverse, and how your construction deals with multiple points of
intersection. [You do need not prove the group axioms.| [5]

Suppose C is given in affine coordinates by the equation y* = z* + 4, and O is
chosen to be the point at infinity on C.

(i) Interpret the condition 2p = O in the group law in geometric terms. 2]
(ii) Show that the tangent line to C at p = (2,4) passes through (0,0). Hence or
otherwise, deduce that p is a point of order 4 in the group law. (3]
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