
ALGEBRAIC CURVES (MA40188): SOLUTIONS TO 2007 EXAM

1. (a): an ideal is a nonempty subset I ⊂ R such that if a, b ∈ I and r ∈ R then a+ b ∈ I
and ra ∈ I. It is a prime ideal if rs ∈ I implies r ∈ I or s ∈ I.
(b): an affine variety V is a subset of An such that there exists an ideal I of K[t1, . . . , tn]
for which V = V (I), i.e. V = {P ∈ An | f(P ) = 0 for f ∈ I}. It is irreducible if it is not
the union of two proper subvarieties.
The first part of (c) is also bookwork. A polynomial map f :V → W is a collection
f = (f1, . . . , fm) of elements fi ∈ K[t1, . . . , tn] such that if P ∈ V ⊂ An then f(P ) ∈
W ⊂ Am. It induces f∗ by composition: an element of K[W ] is a map g:W → A1 and
f∗(g) = g ◦ f . For the last part of (c), notice that W is irreducible if and only if K[W ] is a
domain. Suppose K[W ] is not a domain, so we have 0 6= a, b ∈ K[W ] with ab = 0. Then
0 = f∗(ab) = f∗(a)f∗(b) and since f∗ is injective f(a) 6= 0 and f(b) 6= 0. So K[V ] is not a
domain, i.e. V is reducible.
For (d), the last two equations give y = z2 and x = z3 if (x, y, z) ∈ W , so (x, y, z) 7→ z

is a morphism W → A1 with inverse z 7→ (z3, z2, z). But the equations in (e) also allow
x = y = 0, z =anything, i.e. W ′ = W ∪ {(0, 0, z)} which is reducible.
2. (a) The function field of a projective variety V is the field of fractions of the integral
domain K[t0, . . . , tn]/I(V ).
(b) A rational map φ:V 99K W , where V ⊆ Pn, W ⊆ Pm are irreducible projective
varieties, is an equivalence class of m+ 1 polynomials f0, . . . , fm in n+ 1 variables, all of
the same degree, where {fi} and {gi} are equivalent if figj − fjgi ∈ I(V ) for all i, j, such
that the fi can be chosen so that they do not all vanish simultaneously on the whole of V
and such that if P ∈ V and (f0(P ) : . . . : fm(P )) ∈ Pm then (f0(P ) : . . . : fm(P )) ∈W .
φ is regular at P if there is a representation φ = (f0 : . . . : fm) such that fi(P ) are not
all zero. It is dominating if the image of φ is Zariski dense in W , i.e. is not contained in
any proper subvariety of W . It is birational if it is dominating and there is a dominating
rational map ψ:W 99K V such that φ ◦ ψ and ψ ◦ φ are both the identity on the (dense)
sets where they are defined.
(c) A curve C, projective or affine, is rational if there is a birational rational map φ:C 99K

P1 (or A1). curves.
For (d), consider the plane y = λx, whose points are (t, λt, s) with s, t ∈ K. This meets C0

when st = λt and t = s2(s− 1), i.e. at (λ2(λ− 1), λ3(λ− 1), λ) so the map A1 → C0 given
by λ 7→ (λ2(λ − 1), λ3(λ − 1), λ) has rational inverse (x, y, z) 7→ z. Hence C0 is rational.
For (e), consider the projection map p: A3 → A2 given by p: (x, y, z) 7→ (x, y). This maps



C0 to C1 (if (x, y, z) ∈ C0 then (x, y) ∈ C1) and it has rational inverse (x, y) 7→ (x, y, y/x)
defined away from (x, y) = (0, 0) (the only point of C1 where x = 0 is (0, 0)).
3. (a) An is simply Kn. Pn is Kn+1/K∗, where K∗ acts by coordinatewise multiplication
in K.
(b) A polynomial is said to be homogeneous of degree d if it is a sum of degree d mono-
mials. And ideal I of K[t0, . . . , tn] is called a homogeneous ideal if it can be generated by
homogeneous polynomials (possibly of different degrees).
(c) If I is a homogeneous ideal generated by f1, . . . , fk homogeneous of degrees di then
the projective variety V (I) is the image in Pn of the variety f1 = · · · = fk = 0 in An+1,
which is also {(x0 : . . . : xn) | fi(x0, . . . , xn) = 0, i = 1, . . . , k}. Note that this makes sense
because if fi(x0, . . . , xn) = 0 then fi(λx0, . . . , λxn) = λdifi(x0, . . . , xn) = 0 also.
(d) If V ⊂ An is an affine variety given by fi(t1, . . . , tn) = 0 its projective closure is the
variety V̄ ⊂ Pn given by f̄I(t0, t1, . . . , tn) = 0, where f̄ is the polynomial obtained from f

by homogenising with respect to t0: that is, any monomial of degree d < deg f is multiplied
by tdeg f−d

0 . The points at infinity are the solutions of f̄i(0, t1, . . . , tn) = 0.
(e) If V is a projective variety and P ∈ V , we say that P is singular if the dimension of
the tangent space to V at P is greater that the dimension of the tangent space to V at
some other point Q ∈ V .
Only (f) is not bookwork. V is given by homogenising: x4+x2y2−3x2z2+3y2z2+8yz3+6z4.
To find the points at infinity, put z = 0: we get x4 + x2y2 = 0 so x = 0 or x = ±y, so the
points are (0 : 1 : 0), (1 : 1 : 0) and (1 : −1 : 0).
To find the singular points, differentiate the equation given and set both partial derivatives
equal to zero. That gives

2x(2x2 + y2 − 6) = 2y(x2 + 3) + 8 = 0.

Since x = 0 gives y = −4 from the second equation and (0,−4) is not on the curve, we
may divide out the x from the first equation and substitute y = −8/(x2 + 3) from the
second (x = ±

√
−3 does not give a point of the curve either). That gives the equation in

the hint; dividing out the x2 − 1 leaves 2x4 + 11x2 + 11. But we don’t need to solve that:
taking x = 1 gives y = −1 and taking x = −1 gives y = 1 also. So two of the singular
points are (1 : 1 : 1) and (−1 : 1 : 1), and (0 : 1 : 0) is singular also so that is the lot as the
question says there are only three.
4. Main points are:
Smooth plane cubic curves are not rational;



As long as the characteristic is not 2 they are up to change of coordinate of the form
y2 = x3 + ax+ b;
They have a group law, which with the equation above is given by taking the point at
infinity to be the origin and making three points on a line add to zero;
The group law is associative (and commutative), and this is an algebraic fact not depending
on the ground field, which may not be algebraically closed.
Optional extras would include singular cases, what happens over C, cryptography,. . .


