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1. (a) If K is an algebraically closed field and I is an ideal of K[x1, . . . , xn] such that
V (I) = ∅ in An

K , then 1 ∈ I. [3, bookwork]

(b)
√
I = {a ∈ R | an ∈ I for some n ∈ N}. It is an ideal because if an ∈ I and r ∈ R

then (ra)n ∈ I and if an, bm ∈ I then

(a+ b)n+m =
∑ (

n+m

r

)
arbn+m−r ∈ I

since either r ≥ n or n+m− r ≥ m. [4, unseen but hint given in lectures.]

(c) V (I) = {(a1, . . . , an) ∈ An | f(a1, . . . , an) = 0 for all f ∈ I}, and I(V ) = {f ∈
K[x1, . . . , xn] | f(a1, . . . , an) for all a1, . . . an ∈ V }.
If n = 1 and I = 〈x2〉 then V (I) = {0} ⊂ A1 but I(V (I)) = 〈x〉. [3, bookwork]

(d) Suppose f ∈ A = K[x1, . . . , xn]. Consider the ring B = A[y] = K[x1, . . . , xn, y], and
the ideal I+ = IB + (yf − 1)B of B.
Notice that Q ∈ An+1 is in V (I+) if and only if the point P ∈ An got by taking
the first n coordinates of Q is in V (I) and, in addition, the last coordinate of Q is
1/f(P ) (in particular f(P ) 6= 0). The set (f 6= 0) ⊂ V (I) is empty when f = 0
everywhere on V (I), i.e. when f ∈ I(V (I)). So suppose f(P ) = 0 for all P ∈ V (I):
that means that V (I+) = ∅. By the Nullstellensatz, that implies that 1 ∈ I+, and
because I+ is generated by I and yf − 1 we can find polynomials g0, g1, . . . gk ∈ B
such that

g0(yf − 1) + g1f1 + · · ·+ gkfk = 1,

where f1, . . . , fk are generators for the ideal I.
This equation is an identity, so writing 1/f instead of y we have

k∑
i=1

gi

(
x1, . . . , xn, 1/f(x1, . . . , xn)

)
fi(x1, . . . , xn) = 1.

The left-hand side is a rational function with denominator fN where N is the
maximum of the degrees of the gi in y), so

gi

(
x1, . . . , xn, 1/f(x1, . . . , xn)

)
= hi(x1, . . . , xn)/

(
f(x1, . . . , xn)

)N

for some polynomials hi. If we multiply through by fN we get

k∑
i=1

hi(x1, . . . , xn, 1)fi(x1, . . . , xn) = f(x1, . . . , xn)N

so f ∈
√
I as claimed. [10, bookwork]
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2. Let E be the projective curve over a field K in P2 given in affine coordinates by

y2 = x3 + ax+ b.

(a) The group law on E is given by the rule “three collinear points add to zero”
and the identity element is the point at infinity, (0 : 1 : 0). The point −P is
(p,−q). [4, bookwork]

(b) The tangent line `P to E at P = (p, q) has equation

2q(y − q) = (3p2 + a)(x− p).

[4, unseen but standard]

(c) On `P we have y = (3p2+a)(x−p)
2q + q. Hence

y2 =
(3p2 + a)2(x− p)2

4q2
+ (3p2 + a)(x− p) + q2

on `P , so `P meets E where

x3 + ax+ b− (3p2 + a)2(x− p)2

4q2
− (3p2 + a)(x− p)− q2 = 0.

This cubic equation in x has three solutions, two of which are x = p. Let the third
solution be x = r: then

(x− p)2(x− r) = x3 + ax+ b− (3p2 + a)2(x− p)2

4q2
− (3p2 + a)(x− p)− q2 = 0.

Comparing the x2 terms we have

−r − 2p = −(3p2 + a)2

4q2

so, using q2 = p3 + ap+ b (since P ∈ E)

r =
(3p2 + a)2

4q2
− 2p

=
(3p2 + a)2 − 8pq2

4q2

=
(3p2 + a)2 − 8p(p3 + ap+ b)

4q2

=
p4 − 2p2a+ a2 − 8pb

4q2

=
(p2 − a)2 − 8pb

4q2
.

[7, unseen]

Question 2 continues on next page . . .
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Question 2 continued . . .

(d) First, P ∈ E because b = 19 = −4 and 13 + 9× 1− 4 = 6 = 112 (mod 23). By the
formula, the x-coordinate of −2P is

(12 − 9)2 − 8× 1× (−4)
24

=
64 + 32

1
= 96
= 4 mod 23.

So the x-coordinate of 4P is

(42 − 9)2 − 8× 4× (−4)
4× (43 + 9× 4− 4)

=
49 + 4× 32

16

=
49 + 4× 9

16

=
3 + 36

16

=
16
16

= 1.

Therefore 4P = ±P , but if 4P = P then 2P = −P ; but we have already seen that P
and 2P have different x-coordinates, whereas P and −P have the same x-coordinate.
So 4P = −P , so 5P = 0. [7, unseen]
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3. (a) A rational map φ : V 99K W is given by φ = (f0 : . . . : fn) with fi ∈ K[x0, . . . , xn]
all homogeneous of the same degree, such that the fi are not all in the homogenous
ideal of V and φ(x) ∈W if x ∈ V and φ(x) is defined. [3, bookwork]

(b) V and W are birationally equivalent if there exist rational maps φ : V 99K W
and ψ : W 99K V such that ψ ◦ φ and φ ◦ ψ are the identity where they are
defined. [2, bookwork]

(c) V is rational if V is birationally equivalent to some Pr. [2, bookwork]

(d) P ∈ V is singular if dimTPV > dimTQV for some Q ∈ V . [2, bookwork]

(e) The singular points of the curve C in P2 given by

f = x2(x− y)(x+ y)z + x5 + 3y5 = 0

are found by setting z = 1 and fx = fy = 0 (writing fx for ∂f
∂x ), and similarly for y

and z.
It is easiest to begin with y = 1. Then f = x4z − x2z + x5 + 3, so fz = x4 − x2 and
fx = 4x3z − 2x+ 5x4. The equation fz = 0 gives x = 0, x = 1 or x = −1: but none
of these satisfy both f = 0 and fx = 0.
If y 6= 1 then y = 0 and on that line the equation is x4z + x5 = 0, so x = 0 or
x = −z, i.e. the points (0 : 0 : 1) and (−1 : 0 : 1). So we can check these on the
z = 1 part, where we have f = x4 − x2y2 + x5 + 3y5, fx = 4x3 − 2xy2 + 5x4 and
fy = −2x2y + 15y4. At the point (−1 : 0 : 1), fx does not vanish so that is not
a singular point, but all three vanish at (0 : 0 : 1) which is thus the only singular
point of C. [6, unseen]

(f) Projecting from the singular point gives a birational map π : C 99K P1. We may do
this on the part z = 1, since the line z = 0 is not contained in C. Then the line
of slope t has y = tx and passes through C where x4(1 − t2) + x5(1 + 3t5) = 0, so
the unique nonzero point is at x = t2−1

3t5+1
and this gives a birational map P1 99K C.

inverse to π. [5, unseen]
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4. (a) If V ⊂ An, W ⊂ Am are irreducible then a map φ : V → W is given by m elements
f1, ldots, fm ∈ K[V ] such that for all P ∈ V , (f1(P ), . . . , fm(P )) ∈ W . φ∗ is
given by composition with φ. The map φ is an isomorphism if there exists a map
ψ : W → V such that φψ = idw and ψφ = idV : then φ∗ : K[W ] → K[V ] is an
isomorphism. [8, bookwork]

(b) (x− a)p = xp − b+
∑

0<r<p

(
p
r

)
xrap−rap and since the binomial coefficients are zero

mod p we have (x− a)p = xp − b. [3, unseen]

(c) Certainly for any b such an a exists because K is algebraically closed, so Φ is
surjective. But because (x − a)p = xp − b. Hence if xp = b then x = a, so Φ is
injective. [3, unseen]

(d) K[A1] = K[x] and Φ is given by the polynomial map f(x) = xp, so Φ is a map
of affine varieties. Φ∗ : K[x] → K[x] is x 7→ xp. Hence Φ is not an isomorphism
because the image of Φ∗ is K[xp], which is not the whole of K[x]. [6, unseen]
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