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1. (a) An
K = Kn; Pn = An+1/K∗ with K∗ acting by coordinatewise

multiplication. [2, book]

(b) (x0 : . . . : xn) = (λx0 : . . . : λxn) for any xi not all zero and any λ ∈ K∗. [2, book]

(c) An
K has qn points; PnK has qn+1−1

q−1 because the action is
free. [2, on examples sheet]

(d) f is a homogeneous polynomial of degree d if f(λa0, . . . λan) = λdf(a0, . . . , an) for
all ai ∈ K, λ ∈ K∗. [1, book]

(e) I ⊂ K[X0, . . . , Xn] is a homogeneous ideal if it is generated by homogeneous
polynomials. [2, book]

(f) An affine variety is defined by the conditions P ∈ V iff f(P ) = 0 for all f ∈ I,
some ideal I ⊂ K[X1, . . . , Xn]. A projective variety is defined by f(P ) = 0
for all f ∈ I, some homogeneous ideal I ⊂ K[X0, . . . , Xn]. This makes sense
because for homogeneous polynomials, f(λx0, . . . , λxn) = 0 iff f(x0, . . . , xn) if
λ 6= 0. [3, book]

(g) If I(V ) is generated by f1, . . . , fk then W corresponds to the homogeneous ideal
generated by the homgenisations gi of fi wrt X0. If F ∈ K[X1, . . . , Xn] is of degree d,
write F =

∑
r≤d Fr with Fr homogeneous of degree r: then the homogenisation of

F wrt X0 is G =
∑

r≤dX
d−r
0 Fr. [4, book]

(h) The projective closure is given by

X3
1 +X2

1X2 +X1X
2
2 +X0X

2
2 = 0.

The points at infinity are (0 : x1 : x2), where x3
1 + x2

1x2 + x1x
2
2 = 0: that means

x1 = 0, or x1 = 1 and 1 + x2 + x2
2 = 0, so the points are (0 : 0 : 1) and

(0 : 1 : e±2πi/3). [4, unseen]
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2. (a)
√
I = {f ∈ A | ∃k ∈ N fk ∈ I}. It is an ideal because if fk ∈ I and gl ∈ I and

a, b ∈ A then (af +bg)k+l =
∑

0≤r≤k+l
(
k+l
r

)
ak+l−rbrfk+l−rgr, and each term is in I

because if r ≥ l then gr ∈ I and if r < l then k+l−r > k so fk+l−r ∈ I. [3, book]

(b) If K = K and V (I) = ∅ ⊂ An
K then 1 ∈ I. [1, book]

(c) Suppose f ∈ A. Consider B = A[Y ] = K[X1, . . . , Xn, Y ] and the ideal I+ :=
IB+(yf−1)B. Notice that Q = (x1, . . . , xn, y) ∈ V (I+) iff P = (x1, . . . , xn) ∈ V (I)
and, in addition, y = 1/f(P ): in particular f(P ) 6= 0.
What we want to do is find out when this set (f 6= 0) ⊂ V (I) is empty: that happens
when f = 0 everywhere on V (I), i.e. when f ∈ I(V (I)). So suppose f(P ) = 0 for
all P ∈ V (I): that means that V (I+) = ∅, since the map P 7→ (P, 1/f(P ) gives a
(set-theoretic) bijections between (f 6= 0)∩V (I) and V (I+). By the Nullstellensatz,
that implies that 1 ∈ I+, and because I+ is generated by I and yf − 1 we can find
polynomials g0, g1, . . . gk ∈ B such that

g0(Y f − 1) + g1f1 + · · ·+ gkfk = 1,

where f1, . . . , fk are generators for the ideal I.
This equation is an identity, so we may write 1/f instead of Y and it will still hold:
that is

k∑
i=1

gi
(
X1, . . . , Xn, 1/f(X1, . . . , Xn)

)
fi(X1, . . . , Xn) = 1

(since the g0 term is now zero). The left-hand side here is a rational function, but
the denominator is some power of f (namely, fN where N is the maximum of the
degrees of the gi in Y ): in other words,

gi
(
X1, . . . , Xn, 1/f(X1, . . . , Xn)

)
= hi(X1, . . . , Xn)/

(
f(X1, . . . , Xn)

)N
for some polynomials hi. If we multiply through by fN we get

k∑
i=1

hi(X1, . . . , Xn, 1)fi(X1, . . . , Xn) = f(X1, . . . , Xn)N

so f ∈
√
I as claimed. [7, book]

(d) K[V ] = A/I(V ) and K(V ) is the field of fractions of K[V ]. We say f ∈ K(V ) is
regular at P ∈ V if there exist g, h ∈ A such that (g + I)/(h+ I) = f ∈ K(V ) and
h(P ) 6= 0. [4, book]

(e) Let J ⊂ K[V ] be the ideal of denominators of f , i.e. h ∈ J if f = g/h for some
g ∈ K[V ], or h = 0. If f is regular at P then P 6∈ V (I + J): so if f is regular at
every P ∈ V then 1 ∈ I + J so 1 + I ∈ J , i.e. f ∈ K[V ]. [3, on sheet]

(f) From the equation, x/y = x+ y − 1 so this is regular everywhere. [2, unseen]

MA40188 continued



MA40188 continued 4.

3. (a) An affine (projective) hypersurface is given by the vanishing of a single
(homogeneous) polynomial. [3, book]

(b) If V = (f = 0) then V is singular at P ∈ V iff ∂f
∂xi

(P ) = 0 for all i. [2, book]

(c) By the Nullstellensatz, if not then ∂f
∂xi
∈
√
I(V ) which is generated by f . So f | ∂f∂xi

,
which is impossible in characteristic zero because the xi-degree of the derivative is
less than the degree of f : so all the derivatives are zero, so f is a constant and
V = ∅. In characteristic p it could happen that ∂f

∂xi
≡ 0 for all i even though

f 6≡ 0; but then f ∈ K[Xp
1 , . . . , X

p
n], and if f =

∑
m am

∏
iX

mip
i then f = gp

where g =
∑

m a
1/p
m
∏
iX

mi
i : since K = K these coefficients exist, so f is not

irreducible. [6, book]

(d) W is singular at Q ∈ W if the affine hypersurface W ∩ Uj is singular at Q, where
Uj ∼= An

K is an affine piece containing Q. [3, book]

(e) Start with z = 1: then we have x3(x + 1) − 2x2y − 2y3 = 0, 4x3 + 3x2 − 4xy = 0,
and 2x2−6y2 = 0. One solution to all of these is x = y = 0, i.e. the point (0 : 0 : 1).
Otherwise the first equation gives x 6= 0. The third equation gives y = ±x/

√
3 and

substituting in the first equation gives x = −1±8/3
√

3 (since x 6= 0) while the second
gives x = −3/4±1/

√
3. As these do not agree there are no more singular points with

z = 1. On the other hand, if z = 0 then the only point of the curve is (0 : 1 : 0), so
let us look at the affine piece y = 1. There we have ∂f/∂z = x3−2x2−2 which does
not vanish when x = z = 0. So (0 : 0 : 1) is the only singular point. [6, unseen]
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4. (a) W is rational if there are mutually inverse dominating rational maps φ : W 99K P1
K

and ψ : P1
K 99K W defined over K. [2, book]

(b) K[t] is a UFD. To show that C = (y2 = x(x− 1)(x− a)) is not rational for a 6= 0, 1
we show that K(C) 6∼= K(t). If K(C) ∼= K(t), then there exist f, g ∈ K(t) such
that f2 = g(g − 1)(g − a). We may assume K = K: we claim that then f, g ∈ K.
Suppose that f = p/q and g = r/s, where p, q, r, s ∈ K[t] and p, q are coprime and
r, s are coprime. Then

p2s3 = q2r(r − s)(r − as).

Hence, by coprimality, q2|s3 and similarly s3|q2, since s does not divide r(r− s)(r−
as). Hence, q2 = αs3 for some α ∈ K, so p2 = αr(r − s)(r − as). Now, αs = (q/s)2

is a square in K[t], and so are βr, γ(r− s) and δ(r− as) for some β, γ, δ ∈ K. Now
consider this situation: r, s ∈ K[t] and four different linear combinations of r and s
are all squares. This forces r and s to be constant polynomials. It may be assumed
(replacing r and s by ar+bs and cr+ds with ad−bc = 1 if necessary) that r, s, r−s
and r − µs are squares, so write r = u2 and s = v2. Given such a pair (r, s), define
the size of the pair to be max{deg r, deg s}. Suppose (r, s) is of least possible size
(not zero). Notice that max{deg u,deg v} < max{deg r, deg s}. Moreover, because
K is an algebraically closed field of characteristic not 2,

r − s = u2 − v2 = (u+ v)(u− v), r − µs = u2 − µv2 = (u+
√
µv)(u−√µv)

and since r − s, r − µs are squares, so are u+ v, u− v, u+
√
µv and u−√µv: but

this contradicts the minimality. [9, book]

(c) The map t 7→ (t2 − 1, t3 − t) is a rational map with inverse (x, y) 7→ y/x ∈ A1 ⊂
P1. [3, book]

(d) The projection gives x = t2 and y = t+ t2. So y = t+ tx and therefore t = y/(1+x):
hence the image is given by x = y2/(1 + x)2, i.e. y2 = x(1 + x)2 which is a nodal
cubic (not the same one, but by the assumption in part (c) that doesn’t matter),
and the inverse map is given by (x, y) 7→ ( y

1+x , (
y

1+x)2, ( y
1+x)3). [6, unseen]
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