University of Bath

DEPARTMENT OF MATHEMATICAL SCIENCES EXAMINATION

MA40188: ALGEBRAIC CURVES

May 2012

Candidates may use university-supplied calculators.
Full marks will be given for correct answers to THREE questions. Only the best three answers will contribute towards the assessment.

1. (a) $\mathbb{A}_{K}^{n}=K^{n} ; \mathbb{P}^{n}=\mathbb{A}^{n+1} / K^{*}$ with K^{*} acting by coordinatewise multiplication. [2, book]
(b) $\left(x_{0}: \ldots: x_{n}\right)=\left(\lambda x_{0}: \ldots: \lambda x_{n}\right)$ for any x_{i} not all zero and any $\lambda \in K^{*}$. [2, book]
(c) \mathbb{A}_{K}^{n} has q^{n} points; \mathbb{P}_{K}^{n} has $\frac{q^{n+1}-1}{q-1}$ because the action is free. [2, on examples sheet]
(d) f is a homogeneous polynomial of degree d if $f\left(\lambda a_{0}, \ldots \lambda a_{n}\right)=\lambda^{d} f\left(a_{0}, \ldots, a_{n}\right)$ for all $a_{i} \in K, \lambda \in K^{*}$.
(e) $I \subset K\left[X_{0}, \ldots, X_{n}\right]$ is a homogeneous ideal if it is generated by homogeneous polynomials. [2, book]
(f) An affine variety is defined by the conditions $P \in V$ iff $f(P)=0$ for all $f \in I$, some ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$. A projective variety is defined by $f(P)=0$ for all $f \in I$, some homogeneous ideal $I \subset K\left[X_{0}, \ldots, X_{n}\right]$. This makes sense because for homogeneous polynomials, $f\left(\lambda x_{0}, \ldots, \lambda x_{n}\right)=0$ iff $f\left(x_{0}, \ldots, x_{n}\right)$ if $\lambda \neq 0$.
[3, book]
(g) If $I(V)$ is generated by f_{1}, \ldots, f_{k} then W corresponds to the homogeneous ideal generated by the homgenisations g_{i} of f_{i} wrt X_{0}. If $F \in K\left[X_{1}, \ldots, X_{n}\right]$ is of degree d, write $F=\sum_{r \leq d} F_{r}$ with F_{r} homogeneous of degree r : then the homogenisation of F wrt X_{0} is $G=\sum_{r \leq d} X_{0}^{d-r} F_{r}$.
[4, book]
(h) The projective closure is given by

$$
X_{1}^{3}+X_{1}^{2} X_{2}+X_{1} X_{2}^{2}+X_{0} X_{2}^{2}=0
$$

The points at infinity are ($0: x_{1}: x_{2}$), where $x_{1}^{3}+x_{1}^{2} x_{2}+x_{1} x_{2}^{2}=0$: that means $x_{1}=0$, or $x_{1}=1$ and $1+x_{2}+x_{2}^{2}=0$, so the points are ($0: 0: 1$) and $\left(0: 1: e^{ \pm 2 \pi i / 3}\right)$.
[4, unseen]
2. (a) $\sqrt{I}=\left\{f \in A \mid \exists k \in \mathbb{N} f^{k} \in I\right\}$. It is an ideal because if $f^{k} \in I$ and $g^{l} \in I$ and $a, b \in A$ then $(a f+b g)^{k+l}=\sum_{0 \leq r \leq k+l}\binom{k+l}{r} a^{k+l-r} b^{r} f^{k+l-r} g^{r}$, and each term is in I because if $r \geq l$ then $g^{r} \in I$ and if $r<l$ then $k+l-r>k$ so $f^{k+l-r} \in I$. [3, book]
(b) If $K=\bar{K}$ and $V(I)=\emptyset \subset \mathbb{A}_{K}^{n}$ then $1 \in I$. [1, book]
(c) Suppose $f \in A$. Consider $B=A[Y]=K\left[X_{1}, \ldots, X_{n}, Y\right]$ and the ideal $I^{+}:=$ $I B+(y f-1) B$. Notice that $Q=\left(x_{1}, \ldots, x_{n}, y\right) \in V\left(I^{+}\right)$iff $P=\left(x_{1}, \ldots, x_{n}\right) \in V(I)$ and, in addition, $y=1 / f(P)$: in particular $f(P) \neq 0$.
What we want to do is find out when this set $(f \neq 0) \subset V(I)$ is empty: that happens when $f=0$ everywhere on $V(I)$, i.e. when $f \in I(V(I))$. So suppose $f(P)=0$ for all $P \in V(I)$: that means that $V\left(I^{+}\right)=\emptyset$, since the map $P \mapsto(P, 1 / f(P)$ gives a (set-theoretic) bijections between $(f \neq 0) \cap V(I)$ and $V\left(I^{+}\right)$. By the Nullstellensatz, that implies that $1 \in I^{+}$, and because I^{+}is generated by I and $y f-1$ we can find polynomials $g_{0}, g_{1}, \ldots g_{k} \in B$ such that

$$
g_{0}(Y f-1)+g_{1} f_{1}+\cdots+g_{k} f_{k}=1,
$$

where f_{1}, \ldots, f_{k} are generators for the ideal I.
This equation is an identity, so we may write $1 / f$ instead of Y and it will still hold: that is

$$
\sum_{i=1}^{k} g_{i}\left(X_{1}, \ldots, X_{n}, 1 / f\left(X_{1}, \ldots, X_{n}\right)\right) f_{i}\left(X_{1}, \ldots, X_{n}\right)=1
$$

(since the g_{0} term is now zero). The left-hand side here is a rational function, but the denominator is some power of f (namely, f^{N} where N is the maximum of the degrees of the g_{i} in Y): in other words,

$$
g_{i}\left(X_{1}, \ldots, X_{n}, 1 / f\left(X_{1}, \ldots, X_{n}\right)\right)=h_{i}\left(X_{1}, \ldots, X_{n}\right) /\left(f\left(X_{1}, \ldots, X_{n}\right)\right)^{N}
$$

for some polynomials h_{i}. If we multiply through by f^{N} we get

$$
\sum_{i=1}^{k} h_{i}\left(X_{1}, \ldots, X_{n}, 1\right) f_{i}\left(X_{1}, \ldots, X_{n}\right)=f\left(X_{1}, \ldots, X_{n}\right)^{N}
$$

so $f \in \sqrt{I}$ as claimed.
(d) $K[V]=A / I(V)$ and $K(V)$ is the field of fractions of $K[V]$. We say $f \in K(V)$ is regular at $P \in V$ if there exist $g, h \in A$ such that $(g+I) /(h+I)=f \in K(V)$ and $h(P) \neq 0$. [4, book]
(e) Let $J \subset K[V]$ be the ideal of denominators of f, i.e. $h \in J$ if $f=g / h$ for some $g \in K[V]$, or $h=0$. If f is regular at P then $P \notin V(I+J)$: so if f is regular at every $P \in V$ then $1 \in I+J$ so $1+I \in J$, i.e. $f \in K[V]$. [3, on sheet]
(f) From the equation, $x / y=x+y-1$ so this is regular everywhere. [2, unseen]
3. (a) An affine (projective) hypersurface is given by the vanishing of a single (homogeneous) polynomial.
[3, book]
(b) If $V=(f=0)$ then V is singular at $P \in V$ iff $\frac{\partial f}{\partial x_{i}}(P)=0$ for all $i . \quad[2$, book]
(c) By the Nullstellensatz, if not then $\frac{\partial f}{\partial x_{i}} \in \sqrt{I(V)}$ which is generated by f. So $f \left\lvert\, \frac{\partial f}{\partial x_{i}}\right.$, which is impossible in characteristic zero because the x_{i}-degree of the derivative is less than the degree of f : so all the derivatives are zero, so f is a constant and $V=\emptyset$. In characteristic p it could happen that $\frac{\partial f}{\partial x_{i}} \equiv 0$ for all i even though $f \not \equiv 0$; but then $f \in K\left[X_{1}^{p}, \ldots, X_{n}^{p}\right]$, and if $f=\sum_{m} a_{m} \prod_{i} X_{i}^{m_{i} p}$ then $f=g^{p}$ where $g=\sum_{m} a_{m}^{1 / p} \prod_{i} X_{i}^{m_{i}}$: since $K=\bar{K}$ these coefficients exist, so f is not irreducible. [6, book]
(d) W is singular at $Q \in W$ if the affine hypersurface $W \cap U_{j}$ is singular at Q, where $U_{j} \cong \mathbb{A}_{K}^{n}$ is an affine piece containing Q.
[3, book]
(e) Start with $z=1$: then we have $x^{3}(x+1)-2 x^{2} y-2 y^{3}=0,4 x^{3}+3 x^{2}-4 x y=0$, and $2 x^{2}-6 y^{2}=0$. One solution to all of these is $x=y=0$, i.e. the point $(0: 0: 1)$. Otherwise the first equation gives $x \neq 0$. The third equation gives $y= \pm x / \sqrt{3}$ and substituting in the first equation gives $x=-1 \pm 8 / 3 \sqrt{3}$ (since $x \neq 0$) while the second gives $x=-3 / 4 \pm 1 / \sqrt{3}$. As these do not agree there are no more singular points with $z=1$. On the other hand, if $z=0$ then the only point of the curve is $(0: 1: 0)$, so let us look at the affine piece $y=1$. There we have $\partial f / \partial z=x^{3}-2 x^{2}-2$ which does not vanish when $x=z=0$. So ($0: 0: 1$) is the only singular point. [6, unseen]
4. (a) W is rational if there are mutually inverse dominating rational maps $\phi: W \rightarrow \mathbb{P}_{K}^{1}$ and $\psi: \mathbb{P}_{K}^{1} \rightarrow W$ defined over K.
(b) $K[t]$ is a UFD. To show that $C=\left(y^{2}=x(x-1)(x-a)\right)$ is not rational for $a \neq 0,1$ we show that $K(C) \not \equiv K(t)$. If $K(C) \cong K(t)$, then there exist $f, g \in K(t)$ such that $f^{2}=g(g-1)(g-a)$. We may assume $K=\bar{K}$: we claim that then $f, g \in K$. Suppose that $f=p / q$ and $g=r / s$, where $p, q, r, s \in K[t]$ and p, q are coprime and r, s are coprime. Then

$$
p^{2} s^{3}=q^{2} r(r-s)(r-a s) .
$$

Hence, by coprimality, $q^{2} \mid s^{3}$ and similarly $s^{3} \mid q^{2}$, since s does not divide $r(r-s)(r-$ $a s)$. Hence, $q^{2}=\alpha s^{3}$ for some $\alpha \in K$, so $p^{2}=\alpha r(r-s)(r-a s)$. Now, $\alpha s=(q / s)^{2}$ is a square in $K[t]$, and so are $\beta r, \gamma(r-s)$ and $\delta(r-a s)$ for some $\beta, \gamma, \delta \in K$. Now consider this situation: $r, s \in K[t]$ and four different linear combinations of r and s are all squares. This forces r and s to be constant polynomials. It may be assumed (replacing r and s by $a r+b s$ and $c r+d s$ with $a d-b c=1$ if necessary) that $r, s, r-s$ and $r-\mu s$ are squares, so write $r=u^{2}$ and $s=v^{2}$. Given such a pair (r, s), define the size of the pair to be $\max \{\operatorname{deg} r, \operatorname{deg} s\}$. Suppose (r, s) is of least possible size (not zero). Notice that $\max \{\operatorname{deg} u, \operatorname{deg} v\}<\max \{\operatorname{deg} r, \operatorname{deg} s\}$. Moreover, because K is an algebraically closed field of characteristic not 2 ,

$$
r-s=u^{2}-v^{2}=(u+v)(u-v), \quad r-\mu s=u^{2}-\mu v^{2}=(u+\sqrt{\mu} v)(u-\sqrt{\mu} v)
$$

and since $r-s, r-\mu s$ are squares, so are $u+v, u-v, u+\sqrt{\mu} v$ and $u-\sqrt{\mu} v$: but this contradicts the minimality.
[9, book]
(c) The map $t \mapsto\left(t^{2}-1, t^{3}-t\right)$ is a rational map with inverse $(x, y) \mapsto y / x \in \mathbb{A}^{1} \subset$ \mathbb{P}^{1}.
[3, book]
(d) The projection gives $x=t^{2}$ and $y=t+t^{2}$. So $y=t+t x$ and therefore $t=y /(1+x)$: hence the image is given by $x=y^{2} /(1+x)^{2}$, i.e. $y^{2}=x(1+x)^{2}$ which is a nodal cubic (not the same one, but by the assumption in part (c) that doesn't matter), and the inverse map is given by $(x, y) \mapsto\left(\frac{y}{1+x},\left(\frac{y}{1+x}\right)^{2},\left(\frac{y}{1+x}\right)^{3}\right)$.
[6, unseen]

