EXERCISE SHEET 3

This sheet will be discussed in the exercise class on 23 October. You are welcome to submit your solutions at the end of the exercise class or anytime earlier.

Exercise 3.1. Example: the graph of a polynomial function.

- (1) Show that the projection map $\pi : \mathbb{A}^n \to \mathbb{A}^r$, $n \ge r$, defined by $\pi(a_1, \dots, a_n) = (a_1, \dots, a_r)$ is a polynomial map.
- (2) Let $X \subseteq \mathbb{A}^n$ be an algebraic set and $f \in \mathbb{k}[X]$. Define the subset $G(f) \subseteq \mathbb{A}^{n+1}$ by $G(f) = \{(a_1, \cdots, a_n, a_{n+1}) \in \mathbb{A}^{n+1} \mid (a_1, \cdots, a_n) \in X \text{ and } a_{n+1} = f(a_1, \cdots, a_n)\}$. Show that G(f) is an algebraic set. (*Remark:* G(f) is called the graph of f.)
- (3) Show that the map $\varphi : X \to G(f); (a_1, \dots, a_n) \mapsto (a_1, \dots, a_n, f(a_1, \dots, a_n))$ is a polynomial map.
- (4) Show that φ is an isomorphism of algebraic sets by writing down the inverse polynomial map $\psi: G(f) \to X$, and checking both compositions are identities.
- (5) Briefly explain why Example 3.14 is a special case of this.

Exercise 3.2. Example: a nodal cubic. Consider $X = \mathbb{V}(y^2 - x^3 - x^2) \subseteq \mathbb{A}^2$.

- (1) Show that $\varphi : \mathbb{A}^1 \to X$; $t \mapsto (t^2 1, t^3 t)$ is a polynomial map.
- (2) Show that φ is surjective but not injective on points, hence not an isomorphism.
- (3) Show that $y^2 x^3 x^2$ is an irreducible polynomial. Use Exercise 2.2 to conclude that $I = (y^2 x^3 x^2)$ is a prime ideal, hence radical. Use Propositions 2.15 and 2.9 to conclude that X is an affine variety and $\mathbb{I}(X) = I$.

Exercise 3.3. Example: a cuspidal cubic. Consider $X = \mathbb{V}(y^2 - x^3) \subseteq \mathbb{A}^2$.

- (1) Show that $\varphi : \mathbb{A}^1 \to X$; $t \mapsto (t^2, t^3)$ is a polynomial map.
- (2) Show that φ is injective and surjective on points.
- (3) Show that $y^2 x^3$ is an irreducible polynomial. Conclude that $I = (y^2 x^3)$ is a prime ideal, hence radical. Conclude that X is an affine variety and $\mathbb{I}(X) = I$.
- (4) Show that the k-algebra homomorphism $\varphi^* : k[X] \to k[\mathbb{A}^1]$ is not surjective. Conclude by Proposition 3.22 that φ is not an isomorphism.

Exercise 3.4. Example: the twisted cubic, revisited. This is a continuation of Exercise 2.4. We consider the polynomial map $\varphi : \mathbb{A}^1 \to X; t \mapsto (t, t^2, t^3)$.

- (1) Show that φ is an isomorphism by writing down the inverse $\psi : X \to \mathbb{A}^1$ and computing the two compositions.
- (2) Show that φ is an isomorphism by proving that φ^* is an isomorphism.