EXERCISE SHEET 5

This sheet will be discussed in the exercise class on 6 November. You are welcome to submit your solutions at the end of the exercise class or anytime earlier.

Exercise 5.1. Example: linear embedding and linear projection.

- (1) Show that $\varphi : \mathbb{P}^1 \longrightarrow \mathbb{P}^3$; $[z_0 : z_1] \longmapsto [z_0 : z_1 : 0 : 0]$ is a morphism. Is it dominant? (*Remark:* in general, for any $n \leq m$, there is a *linear embedding* from \mathbb{P}^n to \mathbb{P}^m by identifying homogeneous coordinates in \mathbb{P}^n with a subset of homogeneous coordinates in \mathbb{P}^m and setting the remaining coordinates 0.)
- (2) Show that $\psi : \mathbb{P}^3 \dashrightarrow \mathbb{P}^1; [z_0 : z_1 : z_2 : z_3] \longmapsto [z_2 : z_3]$ is a rational map. Is it dominant? (*Remark:* in general, for any $m \ge n$, there is a *linear projection* from \mathbb{P}^m to \mathbb{P}^n by choosing a subset of the homogeneous coordinates in \mathbb{P}^m .)
- (3) Is the composition $\psi \circ \varphi$ a well-defined rational map? Explain your reason.

Exercise 5.2. Example: the cooling tower. Consider $Y = \mathbb{V}(y_0y_3 - y_1y_2) \subseteq \mathbb{P}^3$.

- (1) Show that $y_0y_3 y_1y_2$ is irreducible. Conclude that Y is a projective variety.
- (2) Show that $\varphi : \mathbb{P}^2 \dashrightarrow Y; [x_0 : x_1 : x_2] \longmapsto [x_0^2 : x_0x_1 : x_0x_2 : x_1x_2]$ is a rational map. Show that φ is dominant. (*Hint:* first show that each point $q = [y_0 : y_1 : y_2 : y_3] \in Y$ with $y_0 \neq 0$ is in the image of φ , then use Lemma 5.16.)
- (3) Show that $\psi: Y \dashrightarrow \mathbb{P}^2$; $[y_0: y_1: y_2: y_3] \longmapsto [y_0: y_1: y_2]$ is a rational map. Show that ψ is dominant. (*Hint:* first show that each point $p = [x_0: x_1: x_2] \in \mathbb{P}^2$ with $x_0 \neq 0$ is in the image of ψ , then use Lemma 5.16.)
- (4) Show that φ and ψ are birational maps. Conclude that Y is rational.

Exercise 5.3. Example: the projective twisted cubic. Consider the projective variety $Y = \mathbb{V}(y_0y_2 - y_1^2, y_1y_3 - y_2^2, y_0y_3 - y_1y_2) \subseteq \mathbb{P}^3.$

- (1) Show that $\varphi : \mathbb{P}^1 \longrightarrow Y; [u:v] \longmapsto [u^3: u^2v: uv^2: v^3]$ is a morphism.
- (2) Show that φ is an isomorphism by finding the inverse morphism $\psi: Y \longrightarrow \mathbb{P}^1$ and computing their compositions. Conclude that Y is isomorphic to \mathbb{P}^1 .

Exercise 5.4. A famous example: blow-up at a point. Consider the projective variety $Y = \mathbb{V}(y_0y_2 - y_1^2, y_0y_4 - y_1y_3, y_1y_4 - y_2y_3) \subseteq \mathbb{P}^4$.

- (1) Show $\varphi : \mathbb{P}^2 \dashrightarrow Y; [x_0 : x_1 : x_2] \longmapsto [x_0^2 : x_0 x_1 : x_1^2 : x_0 x_2 : x_1 x_2]$ is a rational map.
- (2) Show that φ is a birational map by finding the inverse rational map $\psi: Y \dashrightarrow \mathbb{P}^2$ and computing their compositions. Conclude that Y is rational.
- (3) Show that ψ can be chosen to be a morphism. Show that ψ is surjective on points. Find all points $q \in Y$, such that $\psi(q) = [0:0:1]$.