Exercise Sheet 5

This sheet will be discussed in the exercise class on 6 November. You are welcome to submit your solutions at the end of the exercise class or anytime earlier.

Exercise 5.1. Example: linear embedding and linear projection.
(1) Show that $\varphi: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{3} ;\left[z_{0}: z_{1}\right] \longmapsto\left[z_{0}: z_{1}: 0: 0\right]$ is a morphism. Is it dominant? (Remark: in general, for any $n \leqslant m$, there is a linear embedding from \mathbb{P}^{n} to \mathbb{P}^{m} by identifying homogeneous coordinates in \mathbb{P}^{n} with a subset of homogeneous coordinates in \mathbb{P}^{m} and setting the remaining coordinates 0 .)
(2) Show that $\psi: \mathbb{P}^{3} \rightarrow \mathbb{P}^{1} ;\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \longmapsto\left[z_{2}: z_{3}\right]$ is a rational map. Is it dominant? (Remark: in general, for any $m \geqslant n$, there is a linear projection from \mathbb{P}^{m} to \mathbb{P}^{n} by choosing a subset of the homogeneous coordinates in \mathbb{P}^{m}.)
(3) Is the composition $\psi \circ \varphi$ a well-defined rational map? Explain your reason.

Exercise 5.2. Example: the cooling tower. Consider $Y=\mathbb{V}\left(y_{0} y_{3}-y_{1} y_{2}\right) \subseteq \mathbb{P}^{3}$.
(1) Show that $y_{0} y_{3}-y_{1} y_{2}$ is irreducible. Conclude that Y is a projective variety.
(2) Show that $\varphi: \mathbb{P}^{2} \rightarrow Y ;\left[x_{0}: x_{1}: x_{2}\right] \longmapsto\left[x_{0}^{2}: x_{0} x_{1}: x_{0} x_{2}: x_{1} x_{2}\right]$ is a rational map. Show that φ is dominant. (Hint: first show that each point $q=\left[y_{0}: y_{1}\right.$: $\left.y_{2}: y_{3}\right] \in Y$ with $y_{0} \neq 0$ is in the image of φ, then use Lemma 5.16.)
(3) Show that $\psi: Y \rightarrow \mathbb{P}^{2} ;\left[y_{0}: y_{1}: y_{2}: y_{3}\right] \longmapsto\left[y_{0}: y_{1}: y_{2}\right]$ is a rational map. Show that ψ is dominant. (Hint: first show that each point $p=\left[x_{0}: x_{1}: x_{2}\right] \in \mathbb{P}^{2}$ with $x_{0} \neq 0$ is in the image of ψ, then use Lemma 5.16.)
(4) Show that φ and ψ are birational maps. Conclude that Y is rational.

Exercise 5.3. Example: the projective twisted cubic. Consider the projective variety $Y=\mathbb{V}\left(y_{0} y_{2}-y_{1}^{2}, y_{1} y_{3}-y_{2}^{2}, y_{0} y_{3}-y_{1} y_{2}\right) \subseteq \mathbb{P}^{3}$.
(1) Show that $\varphi: \mathbb{P}^{1} \longrightarrow Y ;[u: v] \longmapsto\left[u^{3}: u^{2} v: u v^{2}: v^{3}\right]$ is a morphism.
(2) Show that φ is an isomophism by finding the inverse morphism $\psi: Y \longrightarrow \mathbb{P}^{1}$ and computing their compositions. Conclude that Y is isomorphic to \mathbb{P}^{1}.

Exercise 5.4. A famous example: blow-up at a point. Consider the projective variety $Y=\mathbb{V}\left(y_{0} y_{2}-y_{1}^{2}, y_{0} y_{4}-y_{1} y_{3}, y_{1} y_{4}-y_{2} y_{3}\right) \subseteq \mathbb{P}^{4}$.
(1) Show $\varphi: \mathbb{P}^{2} \longrightarrow Y ;\left[x_{0}: x_{1}: x_{2}\right] \longmapsto\left[x_{0}^{2}: x_{0} x_{1}: x_{1}^{2}: x_{0} x_{2}: x_{1} x_{2}\right]$ is a rational map.
(2) Show that φ is a birational map by finding the inverse rational map $\psi: Y \rightarrow \mathbb{P}^{2}$ and computing their compositions. Conclude that Y is rational.
(3) Show that ψ can be chosen to be a morphism. Show that ψ is surjective on points. Find all points $q \in Y$, such that $\psi(q)=[0: 0: 1]$.

