Exercise Sheet 9

This sheet will be discussed in the exercise class on 4 December. You are welcome to submit your solutions at the end of the exercise class or anytime earlier.

Exercise 9.1. Example: understanding the simplified group law.
(1) Show that $[0: 1: 0]$ is an inflection point of C in the simplified group law 9.4.
(2) In the simplified group law 9.4, explain briefly how to find all points $P \in C$ such that $P+P=O$.
(3) Consider the curve and the group law in Example 9.6. Let $A=[2: 1: 1]$ and $B=[-2:-1: 1]$. Use the simplified group law to find out $-A,-B$ and $A+B$.

Exercise 9.2. Example of group law. Consider the non-singular cubic curve $C=\mathbb{V}\left(y^{2} z-\right.$ $\left.x^{3}-4 x z^{2}\right) \subseteq \mathbb{P}^{2}$. Let $O=[0: 1: 0]$ be the identity element in the group law.
(1) Find all points where C meets the line $L_{1}=\mathbb{V}(z)$ and specify their multiplicities. Do the same for the lines $L_{2}=\mathbb{V}(x)$ and $L_{3}=\mathbb{V}(y-2 x)$.
(2) Find the order of the subgroup generated by the point $P=[2: 4: 1] \in C$.
(3) Find all points $Q \in C$ such that $Q+Q=O$.

Exercise 9.3. Example: Tate's normal form. Consider the projective closure C of the cubic curve $C_{2}=\mathbb{V}\left(y^{2}+s x y-t y-x^{3}+t x^{2}\right) \subseteq \mathbb{A}^{2}$ for some fixed $s, t \in \mathbb{k}$ where $t \neq 0$. Assume C is non-singular. Let the point at infinity $O=[0: 1: 0]$ be the identity element in the group law on C.
(1) For any point $P=(a, b) \in C_{2}$, show that $-P=(a,-b-s a+t)$ in the group law.
(2) Suppose $Q=(0,0) \in C_{2}$. Show that $Q+Q=(t, t(1-s))$ in the group law.

Exercise 9.4. Pascal's mystic hexagon. Let $X \subseteq \mathbb{P}^{2}$ be an irreducible conic. Let $A B C D E F$ be a hexagon whose vertices are inscribed in X. Assume the three pairs of opposite sides meet in points P, Q, R respectively. (To be precise, the lines $F A$ and $C D$ meet at P; the lines $A B$ and $D E$ meet at Q; the lines $B C$ and $E F$ meet at R.) Show that P, Q, R are colinear. (That means, the three points are on the same line in \mathbb{P}^{2}.) You can follow these steps (the idea is already used in the proof of Proposition 9.13):
(1) Sketch a picture to illustrate the given situation.
(2) The three lines $F A, B C$ and $D E$ form a cubic curve C_{1}; the three lines $A B, C D$ and $E F$ form a cubic curve C_{2}. Find $C_{1} \cap C_{2}$.
(3) Consider a third cubic C_{3} given by the union of the conic X and the line $P Q$. Then apply Lemma 9.12.

