EXERCISE SHEET 9

This sheet will be discussed in the exercise class on 4 December. You are welcome to submit your solutions at the end of the exercise class or anytime earlier.

Exercise 9.1. Example: understanding the simplified group law.

- (1) Show that [0:1:0] is an inflection point of C in the simplified group law 9.4.
- (2) In the simplified group law 9.4, explain briefly how to find all points $P \in C$ such that P + P = O.
- (3) Consider the curve and the group law in Example 9.6. Let A = [2 : 1 : 1] and B = [-2 : -1 : 1]. Use the simplified group law to find out -A, -B and A + B.

Exercise 9.2. Example of group law. Consider the non-singular cubic curve $C = \mathbb{V}(y^2 z - x^3 - 4xz^2) \subseteq \mathbb{P}^2$. Let O = [0:1:0] be the identity element in the group law.

- (1) Find all points where C meets the line $L_1 = \mathbb{V}(z)$ and specify their multiplicities. Do the same for the lines $L_2 = \mathbb{V}(x)$ and $L_3 = \mathbb{V}(y - 2x)$.
- (2) Find the order of the subgroup generated by the point $P = [2:4:1] \in C$.
- (3) Find all points $Q \in C$ such that Q + Q = O.

Exercise 9.3. Example: Tate's normal form. Consider the projective closure C of the cubic curve $C_2 = \mathbb{V}(y^2 + sxy - ty - x^3 + tx^2) \subseteq \mathbb{A}^2$ for some fixed $s, t \in \mathbb{K}$ where $t \neq 0$. Assume C is non-singular. Let the point at infinity O = [0:1:0] be the identity element in the group law on C.

- (1) For any point $P = (a, b) \in C_2$, show that -P = (a, -b sa + t) in the group law.
- (2) Suppose $Q = (0,0) \in C_2$. Show that Q + Q = (t, t(1-s)) in the group law.

Exercise 9.4. Pascal's mystic hexagon. Let $X \subseteq \mathbb{P}^2$ be an irreducible conic. Let ABCDEF be a hexagon whose vertices are inscribed in X. Assume the three pairs of opposite sides meet in points P, Q, R respectively. (To be precise, the lines FA and CD meet at P; the lines AB and DE meet at Q; the lines BC and EF meet at R.) Show that P, Q, R are collinear. (That means, the three points are on the same line in \mathbb{P}^2 .) You can follow these steps (the idea is already used in the proof of Proposition 9.13):

- (1) Sketch a picture to illustrate the given situation.
- (2) The three lines FA, BC and DE form a cubic curve C_1 ; the three lines AB, CD and EF form a cubic curve C_2 . Find $C_1 \cap C_2$.
- (3) Consider a third cubic C_3 given by the union of the conic X and the line PQ. Then apply Lemma 9.12.