BRIEF SUMMARY OF LECTURE 11

If you found the lecture on Monday 02/11 a little/somewhat/very/extremely obscure, I hope this summary helps you understand it better.

We discussed 2 operations on polynomials (dehomogenisation and homogenisation) and 2 operations on algebraic sets (standard affine piece and projective closure) on Monday.

Operations on polynomials

We can dehomogenise a homogeneous polynomial $f\left(z_{0}, z_{1}, \cdots, z_{n}\right)$ simply by choosing one variable z_{i} and setting $z_{i}=1$. For example: the dehomogenisation of f with respect to z_{0} is the polynomial $f\left(1, z_{1}, \cdots, z_{n}\right)$. Notice that the resulting polynomial is not homogenous in general, and has one fewer variable than the original polynomial.

We can homogenise any polynomial $g\left(z_{1}, \cdots, z_{n}\right)$ using an extra variable. If

$$
g=g_{0}+g_{1}+\cdots+g_{d-1}+g_{d}
$$

is the homogeneous decomposition of g, where $d=\operatorname{deg} g$, then its homogenisation with respect to z_{0} is

$$
\bar{g}=z_{0}^{d} \cdot g_{0}+z_{0}^{d-1} \cdot g_{1}+\cdots+z_{0} \cdot g_{d-1}+g_{d}
$$

Notice that \bar{g} is a homogeneous polynomial, and has one more variable than the original polynomial g. Sometimes we write the formula for \bar{g} in a different form

$$
\bar{g}=z_{0}^{d} \cdot g\left(\frac{z_{1}}{z_{0}}, \cdots, \frac{z_{n}}{z_{0}}\right) .
$$

The advantage of this form is that we need not use the homogeneous decomposition of g. It is not difficult to check the two formulas give the same \bar{g}. You can try this in explicit examples.

Operations on algebraic sets

A projective algebraic set $X \subseteq \mathbb{P}^{n}$ has standard affine pieces $X_{i}=X \cap U_{i}$ for $i=$ $0,1, \cdots, n$, which are affine algebraic sets. To obtain each X_{i}, one only needs to dehomogenise the defining equations of X by setting $z_{i}=1$.

An affine algebraic set $X \subseteq \mathbb{A}^{n}$ has a projective closure $\bar{X} \subseteq \mathbb{P}^{n}$, which is a projective algebraic set. A special case: if $X=\mathbb{V}_{a}(f)$ is defined by one polynomial f, then $\bar{X}=$ $\mathbb{V}_{p}(\bar{f})$ is defined by the homogenisation \bar{f} of f. The general case: if X is defined by more than one polynomial, one has to homogenise all polynomials $f \in \mathbb{I}_{a}(X)$; see Definition 6.5. This definition is impractical for doing any explicit calculation.

