
1. Affine Algebraic Sets

We introduce affine spaces and define an affine algebraic set as the common zeroes of a set

of polynomials. We study some basic properties of algebraic sets, and use the Hilbert basis

theorem to show that every algebraic set is the intersection of finitely many hypersurfaces.

1.1. Affine spaces and affine algebraic sets. In the entire course, a ring always means

a commutative ring with a multiplicative identity 1, and a field always means an alge-

braically closed field of characteristic 0, unless otherwise specified. Here a field k is

algebraically closed if every non-constant polynomial f(x) ∈ k[x] has a root in k. For

example, C is an algebraically closed field of characteristic 0, but R is not algebraically

closed. Although many theorems can be generalised to other fields, their statements are

often simpler with these extra assumptions on the underlying field.

Definition 1.1. Let k be a field, n ∈ Z+. An n-dimensional affine space over k is the set

{(a1, · · · , an) | a1, · · · , an ∈ k}.

denoted by An
k (or simply An if the field is understood in the context).

This notion is actually quite familiar. It is simply the set kn of n-tuples of elements in

k. However, we do not use the notation kn in algebraic geometry because we are not just

interested in its structure as a vector space. Indeed, the geometric objects that we will

study are some subsets of affine spaces. More precisely,

Definition 1.2. A subset X ⊆ An
k is called an affine algebraic set (or simply algebraic

set) if there is a set S of polynomials in k[x1, · · · , xn], such that

X = {(a1, · · · , an) ∈ An
k | f(a1, · · · , an) = 0 for all f ∈ S}.

In such a case we say X is the algebraic set defined by S and write X = V(S).

In this definition S could have finitely many or infinitely many elements. If S con-

tains only finitely many polynomials, say, S = {f1, f2, · · · , fr}, we usually write X =

V(f1, f2, · · · , fr) instead of X = V({f1, f2, · · · , fr}) for simplicity. In particular we have

Definition 1.3. An algebraic set X ⊆ An
k is called a hypersurface if X = V(f) for some

non-constant polynomial f ∈ k[x1, · · · , xn].

Example 1.4. Consider subsets of A1. The set X1 = {5} is an algebraic set because

X1 = V(x−5). One can also say X1 = V((x−5)2), or even X1 = V(x(x−5), (x−1)(x−5)).

We see that different choices of S in Definition 1.2 could possibly define the same algebraic

set X. The set X2 = {5, 7} is an algebraic set because X2 = V((x − 5)(x − 7)). Many

other subsets of A1 are also algebraic sets. You will find all of them in an exercise.
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Example 1.5. Consider subsets of A2. Examples of algebraic sets are V(y − x2) which

is a parabola, and V(xy) which is the union of two coordinate axes. They are both

hypersurfaces in A2. The algebraic set V(x− 5, y− 7) contains only one point. It is not a

hypersurface because we cannot define it by one non-constant polynomial (but we do not

prove this fact).

Example 1.6. Let k = Q (it is not algebraically closed but I just want to mention this

piece of history) and n = 2. For every m > 3, the set X = V(xm + ym − 1) ∈ A2
Q is a

historically important algebraic set. Obviously X contains points (1, 0) and (0, 1) for all

m, and (−1, 0) and (0,−1) for even m. The fact that these are the only points in X is

one of the deepest results in mathematics. An equivalent formulation of this result is the

so-called Fermat’s Last Theorem, which was conjectured in 1637, and proved in 1995.

Here are some simple and useful properties of algebraic sets.

Proposition 1.7. We consider subsets in An.

(1) Let S1 and S2 be two sets of polynomials in k[x1, · · · , xn]. If S1 ⊇ S2, then

V(S1) ⊆ V(S2). In other words, the correspondence V is inclusion-reversing.

(2) ∅ and An are both algebraic sets.

(3) The intersection of any collection of algebraic sets in An is an algebraic set.

(4) The union of finitely many algebraic sets in An is an algebraic set.

Proof. We leave the proof as an exercise. �

We introduce some algebraic language that we need to use later.

Definition 1.8. Let R be a ring (a commutative ring with 1).

(1) For any subset S ⊆ R, the ideal

I = {r1f1 + · · ·+ rkfk | k ∈ Z+; r1, · · · , rk ∈ R; f1, · · · , fk ∈ S}

is called the ideal generated by S. We say S is a set of generators of I.

(2) An ideal I is said to be finitely generated if it is generated by a finite set S =

{f1, · · · , fm} ⊆ R. We write I = (f1, · · · , fm).

(3) An ideal I is principal if it is generated by one element f ∈ R. We write I = (f).

Notice that the notation in Definition 1.8 is slightly different from, indeed, simpler than

what we used in Algebra 2B (which was I = Rf1 + · · ·+Rfm if I is finitely generated, or

I = Rf if I is principal). The notation here is more often used in algebraic geometry.
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Example 1.9. Let I ⊆ Z be the ideal of all even integers. Then one can say I = (2),

or I = (−2), or I = (2, 4) (4 is obviously redundant), or I = (4, 6) (do you see why?).

We can even take S to be evething in I, then the ideal generated by S is still I. Upshot:

there are usually many choices for the generators of a given ideal.

Lemma 1.10. For any subset S ⊆ k[x1, · · · , xn], let I ⊆ k[x1, · · · , xn] be the ideal gen-

erated by S. Then V(S) = V(I).

Proof. We need to show mutual inclusions between V(S) and V(I). The inclusion in one

direction V(S) ⊇ V(I) follows from the fact that S ⊆ I and Proposition 1.7 (1).

We prove V(S) ⊆ V(I). For every point p = (a1, · · · , an) ∈ V(S), we need to show that

p ∈ V(I). Since I is generated by S, every element g ∈ I can be written in the form

g = r1f1 + · · ·+ rkfk for some k ∈ Z+, r1, · · · , rk ∈ k[x1, · · · , xn] and f1, · · · , fk ∈ S. By

assumption f1(p) = · · · = fk(p) = 0, which implies g(p) = r1(p)f1(p)+· · ·+rk(p)fk(p) = 0.

Therefore p ∈ V(I). It follows that V(S) ⊆ V(I). �

This lemma shows that every algebraic set X ⊆ An can be defined by an ideal I ⊆
k[x1, · · · , xn]. Notice that different ideals could still define the same algebraic set.

Example 1.11. Consider X = {0} ⊆ A1. Consider two principal ideals I1 = (x) and

I2 = (x2) in k[x]. Then X = V(I1) = V(I2).

Among the many ideals that define the same algebraic set, we will see next week which

one is “the best”. Stay tuned!
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