
1.2. Noetherian rings and Hilbert basis theorem. We start with some algebra. But

eventually we will see its geometric applications.

Recall that a ring R is a principal ideal domain (or PID) if every ideal of R is generated

by one element. PIDs have many good properties. But unfortunately many interesting

rings in algebraic geometry, for example, k[x1, · · · , xn] when n > 2, are not PIDs. It will

be helpful to generalise the notion of PID to include examples like these.

Definition 1.12. A ring R is Noetherian if every ideal of R is finitely generated.

It is immediately clear from the definition that every PID is Noetherian. We want to see

more examples. A powerful tool to produce such examples is the following

Theorem 1.13 (Hilbert Basis Theorem). If a ring R is Noetherian, then R[x] is also

Noetherian.

Proof. Non-examinable. Interested reader can find the proof in [Section 3.3, Reid, Un-

dergraduate Algebraic Geometry] or [Section 1.4, Fulton, Algebraic Curves]. �

Corollary 1.14. For any field k and n ∈ Z+, the ring k[x1, · · · , xn] is Noetherian.

Proof. We prove by induction on n. When n = 1, we know k[x1] is a PID, hence is

Noetherian. Assume Rn = k[x1, · · · , xn] is a Noetherian ring. We need to show that

Rn+1 = k[x1, · · · , xn, xn+1] is also Noetherian. Notice that by collecting terms with respect

to the variable xn+1, every polynomial in Rn+1 can be written as a polynomial in xn+1

with coefficients in Rn. In other words, we have Rn+1 = Rn[xn+1]. By Hilbert Basis

Theorem 1.13 and the induction assumption, we conclude that Rn+1 is Noetherian. �

There is yet another powerful tool very useful for producing examples of Noetherian rings.

Before stating it we need to give an equivalent description of a Noetherian ring.

Proposition 1.15. A ring R is Noetherian if and only if the following ascending chain

condition (or ACC) holds: for every ascending chain of ideals in R

I1 ⊆ I2 ⊆ I3 ⊆ · · · ,

there exists a positive integer N such that In = IN for all n > N .

Proof. (This proof is non-examinable and not covered in lectures.)

We first prove that the Noetherian condition implies ACC. Take any ascending chain of

ideals in R, say, I1 ⊆ I2 ⊆ I3 ⊆ · · · . Set I = ∪∞n=1In. We claim that I is an ideal in

R. Indeed, for any r ∈ R and a, b ∈ I, assume a ∈ Ii and b ∈ Ij. Then a, b ∈ Imax{i,j}.

It follows that a + b ∈ Imax{i,j}, hence a + b ∈ I. Moreover, ra ∈ Ii hence ra ∈ I. This

concludes that I is an ideal.
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Since R is Noetherian, I is finitely generated, say, I = (f1, · · · , fm). Then each fi is an

element in Ini for some ni. Take N = max{n1, · · · , nm}. We claim that IN = I. On one

hand fi ∈ Ini ⊆ IN for every i, hence r1f1 + · · · + rmfm ∈ IN for any r1, · · · , rm ∈ R,

which implies I ⊆ IN . On the other hand we have IN ⊆ I by the construction of I. It

follows that IN = I. For every n > N , we have IN ⊆ In ⊆ I = IN , hence In = IN .

We then prove that ACC implies the Noetherian condition. We use contradiction. Assume

R has an ideal J which is not finitely generated. We pick an element g1 ∈ J and define

I1 = (g1). Since J is not finitely generated we have I1 ( J , hence we can pick an element

g2 ∈ J\I1 and define I2 = (g1, g2). Similarly we can pick g3 ∈ J\I2 and define I3 =

(g1, g2, g3). Repeat this process indefinitely, we get a chain of ideals I1 ( I2 ( I3 ( · · ·
where each Ii = (g1, · · · , gi). Every inclusion in the chain is strict, hence the chain never

stabilises, which is a contradiction to ACC. �

Now we are ready to state our second tool for producing examples of Noetherian rings.

Proposition 1.16. Let R be a Noetherian ring and I is an ideal in R. Then the quotient

ring R/I is also Noetherian.

Proof. We leave the proof as an exercise. �

Corollary 1.17. For any ideal I in k[x1, · · · , xn], k[x1, · · · , xn]/I is a Noetherian ring.

Proof. This is a consequence of Corollary 1.14 and Proposition 1.16. �

Why are we so interested in Noetherian rings? Can we understand more geometry from

the fact that k[x1, · · · , xn] is Noetherian? The following is the answer.

Theorem 1.18. Let X ⊆ An be an algebraic set, such that ∅ 6= X 6= An. Then X is the

intersection of finitely many hypersurfaces.

Proof. By Lemma 1.10, we can write X = V(I) for some ideal I in k[x1, · · · , xn]. By

Corollary 1.14, I is finitely generated, say, I = (f1, · · · , fm). By Lemma 1.10 again we

can write X = V(I) = V(f1, · · · , fm). Without loss of generality, we can assume every fi
is non-constant. Indeed, if a certain fi is zero, then we can simply remove it from the set

of generators; if a certain fi is a non-zero constant, then X = ∅ which is excluded by the

assumption. Notice that

X = V(f1, · · · , fm)

= {p ∈ An | f1(p) = · · · = fm(p) = 0}
= {p ∈ An | f1(p) = 0} ∩ · · · ∩ {p ∈ An | fm(p) = 0}
= V(f1) ∩ · · · ∩ V(fm).
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Since each V(fi) is a hypersurface in An, we conclude that X is the intersection of finitely

many hypersurfaces. �

Equivalently, we can say that every algebraic set in An can be defined by finitely many

polynomials (this even includes the algebraic sets ∅ and An, as they are defined by {1} and

{0} respectively). Notice that a geometric result like Theorem 1.18 cannot be obtained

without the algebraic theory of Noetherian rings. In fact, thoroughout this course, we will

always strive to build up a bridge, or a dictionary, between geometry and algebra. How

to translate a geometric question into algebra, and how to interpret an algebraic result in

the geometric language, will always be our main themes in this course.
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