1.2. Noetherian rings and Hilbert basis theorem. We start with some algebra. But
eventually we will see its geometric applications.

Recall that a ring R is a principal ideal domain (or PID) if every ideal of R is generated
by one element. PIDs have many good properties. But unfortunately many interesting
rings in algebraic geometry, for example, klxy, - -, z,| when n > 2, are not PIDs. It will
be helpful to generalise the notion of PID to include examples like these.

Definition 1.12. A ring R is Noetherian if every ideal of R is finitely generated.

It is immediately clear from the definition that every PID is Noetherian. We want to see
more examples. A powerful tool to produce such examples is the following

Theorem 1.13 (Hilbert Basis Theorem). If a ring R is Noetherian, then R[z] is also
Noetherian.

Proof. Non-examinable. Interested reader can find the proof in [Section 3.3, Reid, Un-
dergraduate Algebraic Geometry| or [Section 1.4, Fulton, Algebraic Curves]. O

Corollary 1.14. For any field k and n € Z., the ring k[xq,--- , x,] is Noetherian.

Proof. We prove by induction on n. When n = 1, we know k[z{] is a PID, hence is
Noetherian. Assume R, = k[zq,---,x,] is a Noetherian ring. We need to show that
Rn1 =Kk[z1,- -+, 2y, x,41] is also Noetherian. Notice that by collecting terms with respect
to the variable x,;, every polynomial in R, .; can be written as a polynomial in x,
with coefficients in R,. In other words, we have R,.; = R,[r,.1]. By Hilbert Basis
Theorem 1.13 and the induction assumption, we conclude that R, ; is Noetherian. [

There is yet another powerful tool very useful for producing examples of Noetherian rings.
Before stating it we need to give an equivalent description of a Noetherian ring.

Proposition 1.15. A ring R is Noetherian if and only if the following ascending chain
condition (or ACC) holds: for every ascending chain of ideals in R

LCLCI3C -,

there exists a positive integer N such that I, = Ix for alln > N.

Proof. (This proof is non-examinable and not covered in lectures.)

We first prove that the Noetherian condition implies ACC. Take any ascending chain of
ideals in R, say, [; C I C I3 C ---. Set I = U2 ,I,. We claim that I is an ideal in
R. Indeed, for any r € R and a,b € I, assume a € I; and b € I;. Then a,b € i -
It follows that a + b € Iax{ij}, hence a +b € I. Moreover, ra € I; hence ra € I. This

concludes that I is an ideal.
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Since R is Noetherian, I is finitely generated, say, I = (fi,- -, fi). Then each f; is an
element in I,,, for some n;. Take N = max{ni,--- ,n,}. We claim that Iy = I. On one
hand f; € I,, C Iy for every ¢, hence rif; + -+ + 1y fmm € Iy for any ry,--- , 7, € R,
which implies I C Iy. On the other hand we have Iy C I by the construction of . It
follows that Iy = I. For every n > N, we have Iy C I,, C I = Iy, hence I, = Iy.

We then prove that ACC implies the Noetherian condition. We use contradiction. Assume
R has an ideal J which is not finitely generated. We pick an element g; € J and define
I = (g1). Since J is not finitely generated we have I; C J, hence we can pick an element
g2 € J\I; and define I, = (g1, 92). Similarly we can pick g3 € J\I and define I3 =
(91, 92, g3). Repeat this process indefinitely, we get a chain of ideals Iy C Io C I3 C - --
where each I; = (g1, -+ ,¢;). Every inclusion in the chain is strict, hence the chain never
stabilises, which is a contradiction to ACC. O

Now we are ready to state our second tool for producing examples of Noetherian rings.

Proposition 1.16. Let R be a Noetherian ring and I is an ideal in R. Then the quotient
ring R/I is also Noetherian.

Proof. We leave the proof as an exercise. 0

Corollary 1.17. For any ideal I in k[xy,--- ,x,], K[z, -+ ,2,]/] is a Noetherian ring.
Proof. This is a consequence of Corollary 1.14 and Proposition 1.16. U

Why are we so interested in Noetherian rings? Can we understand more geometry from
the fact that k[zq, -, x,] is Noetherian? The following is the answer.

Theorem 1.18. Let X C A" be an algebraic set, such that @ # X # A". Then X is the
intersection of finitely many hypersurfaces.

Proof. By Lemma 1.10, we can write X = V(I) for some ideal I in klzy, - ,z,]. By
Corollary 1.14, I is finitely generated, say, I = (f1, -, fm). By Lemma 1.10 again we
can write X = V(I) =V(fy,---, fin). Without loss of generality, we can assume every f;
is non-constant. Indeed, if a certain f; is zero, then we can simply remove it from the set
of generators; if a certain f; is a non-zero constant, then X = & which is excluded by the
assumption. Notice that

X =V(fi, - fm)
={peA"| filp) == fm(p) =0}
={peA™| filp) =0}N---N{p € A" | fu(p) = 0}
=V(fi)N---NV(fpn).



Since each V(f;) is a hypersurface in A", we conclude that X is the intersection of finitely

many hypersurfaces. 0

Equivalently, we can say that every algebraic set in A™ can be defined by finitely many
polynomials (this even includes the algebraic sets @ and A", as they are defined by {1} and
{0} respectively). Notice that a geometric result like Theorem 1.18 cannot be obtained
without the algebraic theory of Noetherian rings. In fact, thoroughout this course, we will
always strive to build up a bridge, or a dictionary, between geometry and algebra. How
to translate a geometric question into algebra, and how to interpret an algebraic result in
the geometric language, will always be our main themes in this course.



