
2. Nullstellensatz

We will introduct radical ideals, and use Nullstellensatz to establish the V− I correspon-

dence between radical ideals and algebraic sets. We will also see the geometric meaning

of prime ideals and maximal ideals.

2.1. Nullstellensatz and V− I correspondence. Recall the V map in Definition 1.2.

By Lemma 1.10, it defines a surjective map

V : {ideals in k[x1, · · · , xn]} −→ {algebraic sets in An}. (2.1)

However the map is not injective as different ideals could possibly define the same al-

gebraic set. Among all ideals that define the same algebraic set, we want to choose a

“good” one, so that we can establish a one-to-one correspondence between “good” ideals

in k[x1, · · · , xn] and algebraic sets in An. We start with some algebra.

Definition 2.1. Let I be an ideal in a ring R. The radical of I is
√
I = {f ∈ R | fn ∈ I for some n ∈ Z+}.

An ideal I is said to be a radical ideal if I =
√
I.

Lemma 2.2. Let I be an ideal in a ring R. Then
√
I is an ideal in R containing I.

Proof. We leave it as an exercise. �

This definition does not look very intuitive at a first glance. But it will be clear why we

define it this way after we relate it to some geometry. We give a quick example.

Example 2.3. Consider the ideals I1 = (x) and I2 = (x2) in k[x]. It is not difficult to

find out that
√
I1 =

√
I2 = (x). Therefore I1 is a radical ideal in k[x] while I2 is not. We

leave the details in an exercise.

Definition 2.4. For any subset X ⊆ An,

I(X) := {f ∈ k[x1, · · · , xn] | f(p) = 0 for all p ∈ X}

is called the ideal of X.

In other words, I(X) consists of all polynomials that vanish on X. Notice that this

definition makes sense for any subset X ⊆ An which is not necessarily algebraic.

Example 2.5. For the subset X = {0} ⊆ A1, I(X) is the set of all f(x) ∈ k[x] such that

f(0) = 0. Therefore I(X) = (x) ⊆ k[x].

Lemma 2.6. The map I has the following properties:

(1) Let X1 and X2 be two subsets of An. If X1 ⊇ X2, then I(X1) ⊆ I(X2).
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(2) For any subset X ⊆ An, I(X) is a radical ideal in k[x1, · · · , xn].

Proof. (1) For any f ∈ I(X1), we have that f(p) = 0 for every p ∈ X1. In particular, since

X1 ⊇ X2, f(p) = 0 for every p ∈ X2. Hence f ∈ I(X2). It follows that I(X1) ⊆ I(X2).

(2) We first show I(X) is an ideal. For any f, g ∈ I(X) and r ∈ k[x1, · · · , xn], we have

(f + g)(p) = f(p) + g(p) = 0 and (rf)(p) = r(p)f(p) = 0 for all p ∈ X. Therefore

f + g, rf ∈ I(X), hence I(X) is an ideal. Then we need to show that
√
I(X) = I(X). We

have that

f ∈
√

I(X) ⇐⇒ ∃ m ∈ Z+ such that fm ∈ I(X)

⇐⇒ ∃ m ∈ Z+ such that f(p)m = 0 for any p ∈ X
⇐⇒ f(p) = 0 for any p ∈ X
⇐⇒ f ∈ I(X).

It follows that
√

I(X) = I(X), hence the ideal I(X) is radical. �

We return to the question at the beginning of the section. The V-map (2.1) hits all alge-

braic sets in An, but each algebraic set can be hit by many different ideals. However, the

I-map in Definition 2.4 assigns to each algebraic set in An a radical ideal in k[x1, · · · , xn].

Therefore if we only consider the radical ideals, there is hope that the two maps

{radical ideals I ⊆ k[x1, · · · , xn]}
V

// {algebraic sets X ⊆ An}
I

oo (2.2)

are inverse to each other, hence establish a one-to-one correspondence between radical

ideals in k[x1, · · · , xn] and algebraic sets in An. This holds as long as k is algebraically

closed. The proof relies on the so-called Nullstellensatz, which is a difficult theorem.

Definition 2.7. An ideal I in a ring R is proper if I 6= R.

Theorem 2.8 (Hilbert’s Nullstellensatz). For any algebraically closed field k,

(1) Let I be any proper ideal in k[x1, · · · , xn]. Then V(I) 6= ∅.

(2) Let I be any ideal in k[x1, · · · , xn]. Then I(V(I)) =
√
I.

Proof. Non-examinable. Interested reader can find the proof in [Section 3.10, Reid, Un-

dergraduate Algebraic Geometry] or [Section 1.7, Fulton, Algebraic Curves]. �

Proposition 2.9. For any algebraically closed field k,

(1) Assume I is a radical ideal in k[x1, · · · , xn] and X is an algebraic set in An. Then

X = V(I) if and only if I = I(X).

(2) Assume I1 are I2 radical ideals in k[x1, · · · , xn], X1 = V(I1) and X2 = V(I2).

Then I1 ⊆ I2 (resp. I1 ( I2) if and only if X1 ⊇ X2 (resp. X1 ) X2).
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Proof. (1) We prove “=⇒”. By Nullstellensatz 2.8 we have I(X) = I(V(I)) =
√
I = I

since I is a radical ideal.

We prove “⇐=”. The algebraic set X can be written as X = V(J) for some ideal

J ⊆ k[x1, · · · , xn]. By Nullstellensatz 2.8, V(I) = V(I(X)) = V(I(V(J))) = V(
√
J).

Since
√
J ⊇ J by Lemma 2.2, we have V(I) = V(

√
J) ⊆ V(J) = X by Proposition 1.7

(1). It remains to show that X ⊆ V(I). For every point p ∈ X, by the definition of V,

we need to show that f(p) = 0 for every f ∈ I. This is clear since I = I(X).

(2) The equivalence “I1 ⊆ I2 ⇐⇒ X1 ⊇ X2” follows from Proposition 1.7 (1) and Lemma

2.6 (1). By (1), we see that if one of the inclusions is an equality, then so is the other.

Therefore if one of them is a strict inclusion, then so is the other. �

In other words, Proposition 2.9 shows that V and I induce mutually inverse bijections

between radical ideals in k[x1, · · · , xn] and algebraic sets in An. Moreover, the bijection

is inclusion-reversing. Next time we will see how this correspondence relates algebra and

geometry.
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