2.2. Prime ideals and maximal ideals. We have established a one-to-one corrspondence (2.2) between radical ideals in $\mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$ and algebraic sets in \mathbb{A}^{n}. A major benefit: we can read off some geometric properties of algebraic sets from algebraic properties of the corresponding radical ideals. We will see two such examples in this lecture.

Definition 2.10. Let I be an ideal in a ring R.
(1) The ideal I is prime if it is proper, and $f g \in I$ implies $f \in I$ or $g \in I$.
(2) The ideal I is maximal if it is proper, and for any ideal J satisfying $I \subseteq J \subseteq R$, we have either $J=I$ or $J=R$.

Example 2.11. We look at some ideals in $\mathbb{k}[x]$.
(1) Consider $I_{1}=\left(x^{2}-x\right)$. I_{1} is not prime because $x(x-1) \in I_{1}$, while $x \notin I_{1}$ and $x-1 \notin I_{1} . I_{1}$ is not maximal because $\left(x^{2}-x\right) \subsetneq(x) \subsetneq \mathbb{k}[x]$.
(2) Consider $I_{2}=(x)$. We claim (x) is prime. Assume $f g \in(x)$, then $f g=x h$ for some $h \in \mathbb{k}[x]$. By unique factorisation, since x is irreducible, it must be a factor of f or g. Hence $f \in(x)$ or $g \in(x)$. We claim (x) is maximal. Assume $(x) \subseteq I \subseteq \mathbb{k}[x]$. If $I \neq(x)$, then there exists $f \in I \backslash(x)$. Write $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$, then $a_{0} \neq 0$, since otherwise $f \in(x)$. We observe $f-a_{0}=a_{1} x+\cdots+a_{n} x^{n} \in(x) \subseteq I$. It follows that $a_{0} \in I$, hence $I=\mathbb{k}[x]$ since a_{0} is a unit in $\mathbb{k}[x]$.
(3) Consider $I_{3}=(0) . I_{3}$ is prime because $f g=0$ implies that either $f=0$ or $g=0$ as $\mathbb{k}[x]$ is an integral domain. I_{3} is not maximal because $(0) \subsetneq(x) \subsetneq \mathbb{k}[x, y]$.

Proposition 2.12. Let I be an ideal in the ring R.
(1) I is a prime ideal if and only if R / I is an integral domain. I is a maximal ideal if and only if R / I is a field.
(2) Every maximal ideal is prime. Every prime ideal is radical.

Proof. (1) is non-examinable. (2) is an exercise.

Under the corrspondence (2.2), we will find out what prime and maximal ideals correspond to. Now we switch to geometry.

Definition 2.13. An algebraic set $X \subseteq \mathbb{A}^{n}$ is irreducible if there does not exist a decomposition of X as a union of two stricly smaller algebraic sets. An irreducible (affine) algebraic set is also called an affine variety. An algebraic set $X \subseteq \mathbb{A}^{n}$ is reducible if it is not irreducible.

Example 2.14. We look at some algebraic sets in \mathbb{A}^{2}.
(1) The algebraic set $\mathbb{V}(x y) \subseteq \mathbb{A}^{2}$ is the union of two coordinate axes. In other words, $\mathbb{V}(x y)=\mathbb{V}(x) \cup \mathbb{V}(y)$. Since each coordinate axis is an algebraic set stricly smaller than $\mathbb{V}(x y)$, we conclude that $\mathbb{V}(x y)$ is reducible.
(2) The algebraic set $\mathbb{V}(x, y) \subseteq \mathbb{A}^{2}$ consists of just one point, hence there is no way to decompose it as the union of two strictly smaller algebraic sets. It follows that $\mathbb{V}(x, y)$ is irreducible. Similarly, a point is always irreducible.

Next we show that prime ideals correspond to irreducible algebraic sets.
Proposition 2.15. Let I be a radical ideal in $\mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$ and $X=\mathbb{V}(I)$ the algebraic set in \mathbb{A}^{n} defined by I. Then I is prime if and only if X is irreducible.

Proof. In fact we prove the contrapositive: X is reducible $\Longleftrightarrow I$ is not prime.
We first prove " \Longrightarrow ". Suppose $X=X_{1} \cup X_{2}$ with algebraic sets $X_{1}, X_{2} \subsetneq X$. Then $X_{1} \subsetneq$ X implies that $\mathbb{I}\left(X_{1}\right) \supsetneq \mathbb{I}(X)$ by Proposition 2.9 (2). Hence there exists $f_{1} \in \mathbb{I}\left(X_{1}\right) \backslash \mathbb{I}(X)$. Similarly $X_{2} \subsetneq X$ implies that there exists $f_{2} \in \mathbb{I}\left(X_{2}\right) \backslash \mathbb{I}(X)$. The product $f_{1} f_{2}$ vanishes at all points of X, hence $f_{1} f_{2} \in \mathbb{I}(X)$. Therefore $I=\mathbb{I}(X)$ is not prime.

We then prove " \Longleftarrow ". Since I is not prime, there exist $f_{1}, f_{2} \notin I$ such that $f_{1} f_{2} \in I$. Consider the set $S_{1}=I \cup\left\{f_{1}\right\}$. Then $X_{1}=\mathbb{V}\left(S_{1}\right)$ is an algebraic set. Since $S_{1} \supseteq I$, we have $X_{1} \subseteq X$ by Proposition 1.7. Moreover, since $f_{1} \notin I$, there is some point $p \in X$ such that $f_{1}(p) \neq 0$, therefore $p \notin X_{1}$. It follows that $X_{1} \subsetneq X$. Similarly we can consider $S_{2}=I \cup\left\{f_{2}\right\}$, then $X_{2}=\mathbb{V}\left(S_{2}\right) \subsetneq X$.

It remains to show that $X_{1} \cup X_{2}=X$. Since X_{1} and X_{2} are subsets of X, we have $X_{1} \cup X_{2} \subseteq$ X. Conversely, for any $p \in X, f(p)=0$ for every $f \in I$. Moreover $f_{1}(p) f_{2}(p)=0$, which implies $f_{1}(p)=0$ or $f_{2}(p)=0$. Therefore $p \in \mathbb{V}\left(S_{1}\right)=X_{1}$ or $p \in \mathbb{V}\left(S_{2}\right)=X_{2}$. This implies $X \subseteq X_{1} \cup X_{2}$.

Finally we show that maximal ideals correspond to points.
Proposition 2.16. Let I be a radical ideal in $\mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$ and $X=\mathbb{V}(I)$ the algebraic set in \mathbb{A}^{n} defined by I. Then I is maximal if and only if X is a point.

Proof. (This proof is non-examinable and not covered in lectures.)
In fact we prove the contrapositive: X is not a point $\Longleftrightarrow I$ is not maximal.
We first prove " \Longrightarrow ". If X is not a point, then either $X=\varnothing$ or X contains more than one point. If $X=\varnothing$, then by Proposition $2.9(1), I=\mathbb{I}(X)=\mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$ is not a proper ideal hence not maximal. If X contains more than one point, then we can pick a subset Y of X containing only one point. Hence we have $\varnothing \subsetneq Y \subsetneq X$. By Proposition 2.9 (2), we have $\mathbb{k}\left[x_{1}, \cdots, x_{n}\right]=\mathbb{I}(\varnothing) \supsetneq \mathbb{I}(Y) \supsetneq \mathbb{I}(X)$. Hence $I=\mathbb{I}(X)$ is not maximal.

We then prove " \Longleftarrow ". If I is not maximal, then either I is not a proper ideal, or there exists an ideal J such that $I \subsetneq J \subsetneq \mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$. If I is not proper then $I=\mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$, hence $X=\mathbb{V}(I)=\varnothing$ which is not a point. If $I \subsetneq J \subsetneq \mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$ for some ideal J, then we claim that we actually have $I \subsetneq \sqrt{J} \subsetneq \mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$. Indeed, by Lemma 2.2, we have $I \subsetneq J \subseteq \sqrt{J}$. Moreover, by Nullstellensatz 2.8 (1), we have $\mathbb{V}(J) \neq \varnothing$, hence $\sqrt{J}=\mathbb{I}(\mathbb{V}(J)) \subsetneq \mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$. Armed with this claim we apply Proposition 2.9 (2) to get $\mathbb{V}(I) \supsetneq \mathbb{V}(\sqrt{J}) \supsetneq \varnothing$. It follows that $\mathbb{V}(\sqrt{J})$ contains at least one point, hence $X=\mathbb{V}(I)$ contains more than one point.

In summary, the $\mathbb{V}-\mathbb{I}$ correspondences induce bijections in each row of the diagram:

