2.2. Prime ideals and maximal ideals. We have established a one-to-one correspondence (2.2) between radical ideals in $\mathbb{k}[x_1, \dots, x_n]$ and algebraic sets in \mathbb{A}^n . A major benefit: we can read off some geometric properties of algebraic sets from algebraic properties of the corresponding radical ideals. We will see two such examples in this lecture.

Definition 2.10. Let I be an ideal in a ring R.

- (1) The ideal I is prime if it is proper, and $fg \in I$ implies $f \in I$ or $g \in I$.
- (2) The ideal I is maximal if it is proper, and for any ideal J satisfying $I \subseteq J \subseteq R$, we have either J = I or J = R.

Example 2.11. We look at some ideals in $\Bbbk[x]$.

- (1) Consider $I_1 = (x^2 x)$. I_1 is not prime because $x(x 1) \in I_1$, while $x \notin I_1$ and $x 1 \notin I_1$. I_1 is not maximal because $(x^2 x) \subsetneq (x) \subsetneq \Bbbk[x]$.
- (2) Consider I₂ = (x). We claim (x) is prime. Assume fg ∈ (x), then fg = xh for some h ∈ k[x]. By unique factorisation, since x is irreducible, it must be a factor of f or g. Hence f ∈ (x) or g ∈ (x). We claim (x) is maximal. Assume (x) ⊆ I ⊆ k[x]. If I ≠ (x), then there exists f ∈ I\(x). Write f = a₀ + a₁x + ··· + a_nxⁿ, then a₀ ≠ 0, since otherwise f ∈ (x). We observe f a₀ = a₁x + ··· + a_nxⁿ ∈ (x) ⊆ I. It follows that a₀ ∈ I, hence I = k[x] since a₀ is a unit in k[x].
- (3) Consider $I_3 = (0)$. I_3 is prime because fg = 0 implies that either f = 0 or g = 0 as $\Bbbk[x]$ is an integral domain. I_3 is not maximal because $(0) \subsetneq (x) \subsetneq \Bbbk[x, y]$.

Proposition 2.12. Let I be an ideal in the ring R.

- (1) I is a prime ideal if and only if R/I is an integral domain. I is a maximal ideal if and only if R/I is a field.
- (2) Every maximal ideal is prime. Every prime ideal is radical.

Proof. (1) is non-examinable. (2) is an exercise.

Under the correspondence (2.2), we will find out what prime and maximal ideals correspond to. Now we switch to geometry.

Definition 2.13. An algebraic set $X \subseteq \mathbb{A}^n$ is *irreducible* if there does not exist a decomposition of X as a union of two strictly smaller algebraic sets. An irreducible (affine) algebraic set is also called an *affine variety*. An algebraic set $X \subseteq \mathbb{A}^n$ is *reducible* if it is not irreducible.

Example 2.14. We look at some algebraic sets in \mathbb{A}^2 .

- (1) The algebraic set $\mathbb{V}(xy) \subseteq \mathbb{A}^2$ is the union of two coordinate axes. In other words, $\mathbb{V}(xy) = \mathbb{V}(x) \cup \mathbb{V}(y)$. Since each coordinate axis is an algebraic set strictly smaller than $\mathbb{V}(xy)$, we conclude that $\mathbb{V}(xy)$ is reducible.
- (2) The algebraic set $\mathbb{V}(x, y) \subseteq \mathbb{A}^2$ consists of just one point, hence there is no way to decompose it as the union of two strictly smaller algebraic sets. It follows that $\mathbb{V}(x, y)$ is irreducible. Similarly, a point is always irreducible.

Next we show that prime ideals correspond to irreducible algebraic sets.

Proposition 2.15. Let I be a radical ideal in $\mathbb{k}[x_1, \dots, x_n]$ and $X = \mathbb{V}(I)$ the algebraic set in \mathbb{A}^n defined by I. Then I is prime if and only if X is irreducible.

Proof. In fact we prove the contrapositive: X is reducible $\iff I$ is not prime.

We first prove " \Longrightarrow ". Suppose $X = X_1 \cup X_2$ with algebraic sets $X_1, X_2 \subsetneq X$. Then $X_1 \subsetneq X$ implies that $\mathbb{I}(X_1) \supsetneq \mathbb{I}(X)$ by Proposition 2.9 (2). Hence there exists $f_1 \in \mathbb{I}(X_1) \setminus \mathbb{I}(X)$. Similarly $X_2 \subsetneq X$ implies that there exists $f_2 \in \mathbb{I}(X_2) \setminus \mathbb{I}(X)$. The product $f_1 f_2$ vanishes at all points of X, hence $f_1 f_2 \in \mathbb{I}(X)$. Therefore $I = \mathbb{I}(X)$ is not prime.

We then prove " \Leftarrow ". Since I is not prime, there exist $f_1, f_2 \notin I$ such that $f_1 f_2 \in I$. Consider the set $S_1 = I \cup \{f_1\}$. Then $X_1 = \mathbb{V}(S_1)$ is an algebraic set. Since $S_1 \supseteq I$, we have $X_1 \subseteq X$ by Proposition 1.7. Moreover, since $f_1 \notin I$, there is some point $p \in X$ such that $f_1(p) \neq 0$, therefore $p \notin X_1$. It follows that $X_1 \subsetneq X$. Similarly we can consider $S_2 = I \cup \{f_2\}$, then $X_2 = \mathbb{V}(S_2) \subsetneq X$.

It remains to show that $X_1 \cup X_2 = X$. Since X_1 and X_2 are subsets of X, we have $X_1 \cup X_2 \subseteq X$. Conversely, for any $p \in X$, f(p) = 0 for every $f \in I$. Moreover $f_1(p)f_2(p) = 0$, which implies $f_1(p) = 0$ or $f_2(p) = 0$. Therefore $p \in \mathbb{V}(S_1) = X_1$ or $p \in \mathbb{V}(S_2) = X_2$. This implies $X \subseteq X_1 \cup X_2$.

Finally we show that maximal ideals correspond to points.

Proposition 2.16. Let I be a radical ideal in $\mathbb{k}[x_1, \dots, x_n]$ and $X = \mathbb{V}(I)$ the algebraic set in \mathbb{A}^n defined by I. Then I is maximal if and only if X is a point.

Proof. (This proof is non-examinable and not covered in lectures.)

In fact we prove the contrapositive: X is not a point $\iff I$ is not maximal.

We first prove " \Longrightarrow ". If X is not a point, then either $X = \emptyset$ or X contains more than one point. If $X = \emptyset$, then by Proposition 2.9 (1), $I = \mathbb{I}(X) = \mathbb{k}[x_1, \dots, x_n]$ is not a proper ideal hence not maximal. If X contains more than one point, then we can pick a subset Y of X containing only one point. Hence we have $\emptyset \subsetneq Y \subsetneq X$. By Proposition 2.9 (2), we have $\mathbb{k}[x_1, \dots, x_n] = \mathbb{I}(\emptyset) \supseteq \mathbb{I}(Y) \supseteq \mathbb{I}(X)$. Hence $I = \mathbb{I}(X)$ is not maximal. We then prove " \Leftarrow ". If I is not maximal, then either I is not a proper ideal, or there exists an ideal J such that $I \subsetneq J \subsetneq \Bbbk[x_1, \cdots, x_n]$. If I is not proper then $I = \Bbbk[x_1, \cdots, x_n]$, hence $X = \mathbb{V}(I) = \emptyset$ which is not a point. If $I \subsetneq J \subsetneq \Bbbk[x_1, \cdots, x_n]$ for some ideal J, then we claim that we actually have $I \subsetneq \sqrt{J} \subsetneq \Bbbk[x_1, \cdots, x_n]$. Indeed, by Lemma 2.2, we have $I \subsetneq J \subseteq \sqrt{J}$. Moreover, by Nullstellensatz 2.8 (1), we have $\mathbb{V}(J) \neq \emptyset$, hence $\sqrt{J} = \mathbb{I}(\mathbb{V}(J)) \subsetneq \Bbbk[x_1, \cdots, x_n]$. Armed with this claim we apply Proposition 2.9 (2) to get $\mathbb{V}(I) \supseteq \mathbb{V}(\sqrt{J}) \supseteq \emptyset$. It follows that $\mathbb{V}(\sqrt{J})$ contains at least one point, hence $X = \mathbb{V}(I)$ contains more than one point.

In summary, the $\mathbb{V} - \mathbb{I}$ correspondences induce bijections in each row of the diagram:

$$\{ \text{radical ideals in } \mathbb{k}[x_1, \cdots, x_n] \} \xleftarrow{\mathbb{V}} \{ \text{algebraic sets in } \mathbb{A}^n \}$$

$$forme ideals in \mathbb{k}[x_1, \cdots, x_n] \} \xleftarrow{\mathbb{V}} \{ \text{irreducible algebraic sets in } \mathbb{A}^n \}$$

$$formula ideals in \mathbb{k}[x_1, \cdots, x_n] \} \xleftarrow{\mathbb{V}} \{ \text{points in } \mathbb{A}^n \}$$