2.2. Prime ideals and maximal ideals. We have established a one-to-one correspondence (2.2) between radical ideals in \(k[x_1, \ldots, x_n] \) and algebraic sets in \(\mathbb{A}^n \). A major benefit: we can read off some geometric properties of algebraic sets from algebraic properties of the corresponding radical ideals. We will see two such examples in this lecture.

Definition 2.10. Let \(I \) be an ideal in a ring \(R \).

1. The ideal \(I \) is prime if it is proper, and \(fg \in I \) implies \(f \in I \) or \(g \in I \).
2. The ideal \(I \) is maximal if it is proper, and for any ideal \(J \) satisfying \(I \subseteq J \subseteq R \), we have either \(J = I \) or \(J = R \).

Example 2.11. We look at some ideals in \(k[x] \).

1. Consider \(I_1 = (x^2 - x) \). \(I_1 \) is not prime because \(x(x - 1) \in I_1 \), while \(x \notin I_1 \) and \(x - 1 \notin I_1 \). \(I_1 \) is not maximal because \((x^2 - x) \nsubseteq (x) \nsubseteq k[x] \).
2. Consider \(I_2 = (x) \). We claim \((x) \) is prime. Assume \(fg \in (x) \), then \(fg = xh \) for some \(h \in k[x] \). By unique factorisation, since \(x \) is irreducible, it must be a factor of \(f \) or \(g \). Hence \(f \in (x) \) or \(g \in (x) \). We claim \((x) \) is maximal. Assume \((x) \subseteq J \subseteq k[x] \). If \(I \neq (x) \), then there exists \(f \in I \setminus (x) \). Write \(f = a_0 + a_1x + \cdots + a_nx^n \), then \(a_0 \neq 0 \), since otherwise \(f \in (x) \). We observe \(f - a_0 = a_1x + \cdots + a_nx^n \in (x) \subseteq I \). It follows that \(a_0 \in I \), hence \(I = k[x] \) since \(a_0 \) is a unit in \(k[x] \).
3. Consider \(I_3 = (0) \). \(I_3 \) is prime because \(fg = 0 \) implies that either \(f = 0 \) or \(g = 0 \) as \(k[x] \) is an integral domain. \(I_3 \) is not maximal because \((0) \nsubseteq (x) \nsubseteq k[x, y] \).

Proposition 2.12. Let \(I \) be an ideal in the ring \(R \).

1. \(I \) is a prime ideal if and only if \(R/I \) is an integral domain. \(I \) is a maximal ideal if and only if \(R/I \) is a field.
2. Every maximal ideal is prime. Every prime ideal is radical.

Proof. (1) is non-examinable. (2) is an exercise. \(\square \)

Under the correspondence (2.2), we will find out what prime and maximal ideals correspond to. Now we switch to geometry.

Definition 2.13. An algebraic set \(X \subseteq \mathbb{A}^n \) is irreducible if there does not exist a decomposition of \(X \) as a union of two strictly smaller algebraic sets. An irreducible (affine) algebraic set is also called an affine variety. An algebraic set \(X \subseteq \mathbb{A}^n \) is reducible if it is not irreducible.

Example 2.14. We look at some algebraic sets in \(\mathbb{A}^2 \).
(1) The algebraic set \(\mathbb{V}(xy) \subseteq \mathbb{A}^2 \) is the union of two coordinate axes. In other words, \(\mathbb{V}(xy) = \mathbb{V}(x) \cup \mathbb{V}(y) \). Since each coordinate axis is an algebraic set strictly smaller than \(\mathbb{V}(xy) \), we conclude that \(\mathbb{V}(xy) \) is reducible.

(2) The algebraic set \(\mathbb{V}(x,y) \subseteq \mathbb{A}^2 \) consists of just one point, hence there is no way to decompose it as the union of two strictly smaller algebraic sets. It follows that \(\mathbb{V}(x,y) \) is irreducible. Similarly, a point is always irreducible.

Next we show that prime ideals correspond to irreducible algebraic sets.

Proposition 2.15. Let \(I \) be a radical ideal in \(k[x_1, \ldots, x_n] \) and \(X = \mathbb{V}(I) \) the algebraic set in \(\mathbb{A}^n \) defined by \(I \). Then \(I \) is prime if and only if \(X \) is irreducible.

Proof. In fact we prove the contrapositive: \(X \) is reducible \(\iff \) \(I \) is not prime.

We first prove \(\implies \). Suppose \(X = X_1 \cup X_2 \) with algebraic sets \(X_1, X_2 \subseteq X \). Then \(X_1 \subseteq X \) implies that \(\mathbb{I}(X_1) \supseteq \mathbb{I}(X) \) by Proposition 2.9 (2). Hence there exists \(f_1 \in \mathbb{I}(X_1) \setminus \mathbb{I}(X) \).

Similarly \(X_2 \subseteq X \) implies that there exists \(f_2 \in \mathbb{I}(X_2) \setminus \mathbb{I}(X) \). The product \(f_1 f_2 \) vanishes at all points of \(X \), hence \(f_1 f_2 \in \mathbb{I}(X) \). Therefore \(I = \mathbb{I}(X) \) is not prime.

We then prove \(\Leftarrow \). Since \(I \) is not prime, there exist \(f_1, f_2 \notin I \) such that \(f_1 f_2 \in I \). Consider the set \(S_1 = I \cup \{ f_1 \} \). Then \(X_1 = \mathbb{V}(S_1) \) is an algebraic set. Since \(S_1 \supseteq I \), we have \(X_1 \subseteq X \) by Proposition 1.7. Moreover, since \(f_1 \notin I \), there is some point \(p \in X \) such that \(f_1(p) \neq 0 \), therefore \(p \notin X_1 \). It follows that \(X_1 \subseteq X \). Similarly we can consider \(S_2 = I \cup \{ f_2 \} \), then \(X_2 = \mathbb{V}(S_2) \subseteq X \).

It remains to show that \(X_1 \cup X_2 = X \). Since \(X_1 \) and \(X_2 \) are subsets of \(X \), we have \(X_1 \cup X_2 \subseteq X \). Conversely, for any \(p \in X \), \(f(p) = 0 \) for every \(f \in I \). Moreover \(f_1(p) f_2(p) = 0 \), which implies \(f_1(p) = 0 \) or \(f_2(p) = 0 \). Therefore \(p \in \mathbb{V}(S_1) = X_1 \) or \(p \in \mathbb{V}(S_2) = X_2 \). This implies \(X \subseteq X_1 \cup X_2 \).

Finally we show that maximal ideals correspond to points.

Proposition 2.16. Let \(I \) be a radical ideal in \(k[x_1, \cdots, x_n] \) and \(X = \mathbb{V}(I) \) the algebraic set in \(\mathbb{A}^n \) defined by \(I \). Then \(I \) is maximal if and only if \(X \) is a point.

Proof. (This proof is non-examinable and not covered in lectures.)

In fact we prove the contrapositive: \(X \) is not a point \(\iff \) \(I \) is not maximal.

We first prove \(\implies \). If \(X \) is not a point, then either \(X = \emptyset \) or \(X \) contains more than one point. If \(X = \emptyset \), then by Proposition 2.9 (1), \(I = \mathbb{I}(X) = k[x_1, \cdots, x_n] \) is not a proper ideal hence not maximal. If \(X \) contains more than one point, then we can pick a subset \(Y \) of \(X \) containing only one point. Hence we have \(\emptyset \subseteq Y \subseteq X \). By Proposition 2.9 (2), we have \(k[x_1, \cdots, x_n] = \mathbb{I}(\emptyset) \supseteq \mathbb{I}(Y) \supseteq \mathbb{I}(X) \). Hence \(I = \mathbb{I}(X) \) is not maximal.
We then prove “⇐”. If \(I \) is not maximal, then either \(I \) is not a proper ideal, or there exists an ideal \(J \) such that \(I \subseteq J \subsetneq \mathbb{k}[x_1, \ldots, x_n] \). If \(I \) is not proper then \(I = \mathbb{k}[x_1, \ldots, x_n] \), hence \(X = \mathcal{V}(I) = \emptyset \) which is not a point. If \(I \subsetneq J \subsetneq \mathbb{k}[x_1, \ldots, x_n] \) for some ideal \(J \), then we claim that we actually have \(I \subsetneq \sqrt{J} \subsetneq \mathbb{k}[x_1, \ldots, x_n] \). Indeed, by Lemma 2.2, we have \(I \subsetneq J \subsetneq \sqrt{J} \). Moreover, by Nullstellensatz 2.8 (1), we have \(\mathcal{V}(J) \neq \emptyset \), hence \(\sqrt{J} = \mathbb{I}((\mathcal{V}(J)) \subsetneq \mathbb{k}[x_1, \ldots, x_n] \). Armed with this claim we apply Proposition 2.9 (2) to get \(\mathcal{V}(I) \supseteq \mathcal{V}(\sqrt{J}) \supseteq \emptyset \). It follows that \(\mathcal{V}(\sqrt{J}) \) contains at least one point, hence \(X = \mathcal{V}(I) \) contains more than one point. \(\square \)

In summary, the \(\mathcal{V} - \mathbb{I} \) correspondences induce bijections in each row of the diagram:

\[
\begin{array}{ccc}
\{\text{radical ideals in } \mathbb{k}[x_1, \ldots, x_n]\} & \overset{\mathcal{V}}{\longrightarrow} & \{\text{algebraic sets in } \mathbb{A}^n\} \\
\downarrow & & \downarrow \\
\{\text{prime ideals in } \mathbb{k}[x_1, \ldots, x_n]\} & \overset{\mathbb{I}}{\longrightarrow} & \{\text{irreducible algebraic sets in } \mathbb{A}^n\} \\
\downarrow & & \downarrow \\
\{\text{maximal ideals in } \mathbb{k}[x_1, \ldots, x_n]\} & \overset{\mathcal{V}}{\longrightarrow} & \{\text{points in } \mathbb{A}^n\} \\
\end{array}
\]