
2.2. Prime ideals and maximal ideals. We have established a one-to-one corrspon-

dence (2.2) between radical ideals in k[x1, · · · , xn] and algebraic sets in An. A major

benefit: we can read off some geometric properties of algebraic sets from algebraic prop-

erties of the corresponding radical ideals. We will see two such examples in this lecture.

Definition 2.10. Let I be an ideal in a ring R.

(1) The ideal I is prime if it is proper, and fg ∈ I implies f ∈ I or g ∈ I.

(2) The ideal I is maximal if it is proper, and for any ideal J satisfying I ⊆ J ⊆ R,

we have either J = I or J = R.

Example 2.11. We look at some ideals in k[x].

(1) Consider I1 = (x2 − x). I1 is not prime because x(x − 1) ∈ I1, while x /∈ I1 and

x− 1 /∈ I1. I1 is not maximal because (x2 − x) ( (x) ( k[x].

(2) Consider I2 = (x). We claim (x) is prime. Assume fg ∈ (x), then fg = xh for some

h ∈ k[x]. By unique factorisation, since x is irreducible, it must be a factor of f

or g. Hence f ∈ (x) or g ∈ (x). We claim (x) is maximal. Assume (x) ⊆ I ⊆ k[x].

If I 6= (x), then there exists f ∈ I\(x). Write f = a0 + a1x + · · · + anx
n, then

a0 6= 0, since otherwise f ∈ (x). We observe f − a0 = a1x+ · · ·+ anx
n ∈ (x) ⊆ I.

It follows that a0 ∈ I, hence I = k[x] since a0 is a unit in k[x].

(3) Consider I3 = (0). I3 is prime because fg = 0 implies that either f = 0 or g = 0

as k[x] is an integral domain. I3 is not maximal because (0) ( (x) ( k[x, y].

Proposition 2.12. Let I be an ideal in the ring R.

(1) I is a prime ideal if and only if R/I is an integral domain. I is a maximal ideal

if and only if R/I is a field.

(2) Every maximal ideal is prime. Every prime ideal is radical.

Proof. (1) is non-examinable. (2) is an exercise. �

Under the corrspondence (2.2), we will find out what prime and maximal ideals correspond

to. Now we switch to geometry.

Definition 2.13. An algebraic set X ⊆ An is irreducible if there does not exist a de-

composition of X as a union of two stricly smaller algebraic sets. An irreducible (affine)

algebraic set is also called an affine variety. An algebraic set X ⊆ An is reducible if it is

not irreducible.

Example 2.14. We look at some algebraic sets in A2.
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(1) The algebraic set V(xy) ⊆ A2 is the union of two coordinate axes. In other words,

V(xy) = V(x)∪V(y). Since each coordinate axis is an algebraic set stricly smaller

than V(xy), we conclude that V(xy) is reducible.

(2) The algebraic set V(x, y) ⊆ A2 consists of just one point, hence there is no way

to decompose it as the union of two strictly smaller algebraic sets. It follows that

V(x, y) is irreducible. Similarly, a point is always irreducible.

Next we show that prime ideals correspond to irreducible algebraic sets.

Proposition 2.15. Let I be a radical ideal in k[x1, · · · , xn] and X = V(I) the algebraic

set in An defined by I. Then I is prime if and only if X is irreducible.

Proof. In fact we prove the contrapositive: X is reducible ⇐⇒ I is not prime.

We first prove “=⇒”. Suppose X = X1∪X2 with algebraic sets X1, X2 ( X. Then X1 (
X implies that I(X1) ) I(X) by Proposition 2.9 (2). Hence there exists f1 ∈ I(X1)\I(X).

Similarly X2 ( X implies that there exists f2 ∈ I(X2)\I(X). The product f1f2 vanishes

at all points of X, hence f1f2 ∈ I(X). Therefore I = I(X) is not prime.

We then prove “⇐=”. Since I is not prime, there exist f1, f2 /∈ I such that f1f2 ∈ I.

Consider the set S1 = I ∪ {f1}. Then X1 = V(S1) is an algebraic set. Since S1 ⊇ I,

we have X1 ⊆ X by Proposition 1.7. Moreover, since f1 /∈ I, there is some point p ∈ X
such that f1(p) 6= 0, therefore p /∈ X1. It follows that X1 ( X. Similarly we can consider

S2 = I ∪ {f2}, then X2 = V(S2) ( X.

It remains to show thatX1∪X2 = X. SinceX1 andX2 are subsets ofX, we haveX1∪X2 ⊆
X. Conversely, for any p ∈ X, f(p) = 0 for every f ∈ I. Moreover f1(p)f2(p) = 0, which

implies f1(p) = 0 or f2(p) = 0. Therefore p ∈ V(S1) = X1 or p ∈ V(S2) = X2. This

implies X ⊆ X1 ∪X2. �

Finally we show that maximal ideals correspond to points.

Proposition 2.16. Let I be a radical ideal in k[x1, · · · , xn] and X = V(I) the algebraic

set in An defined by I. Then I is maximal if and only if X is a point.

Proof. (This proof is non-examinable and not covered in lectures.)

In fact we prove the contrapositive: X is not a point ⇐⇒ I is not maximal.

We first prove “=⇒”. If X is not a point, then either X = ∅ or X contains more than

one point. If X = ∅, then by Proposition 2.9 (1), I = I(X) = k[x1, · · · , xn] is not a

proper ideal hence not maximal. If X contains more than one point, then we can pick a

subset Y of X containing only one point. Hence we have ∅ ( Y ( X. By Proposition

2.9 (2), we have k[x1, · · · , xn] = I(∅) ) I(Y ) ) I(X). Hence I = I(X) is not maximal.
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We then prove “⇐=”. If I is not maximal, then either I is not a proper ideal, or there

exists an ideal J such that I ( J ( k[x1, · · · , xn]. If I is not proper then I = k[x1, · · · , xn],

hence X = V(I) = ∅ which is not a point. If I ( J ( k[x1, · · · , xn] for some ideal J ,

then we claim that we actually have I (
√
J ( k[x1, · · · , xn]. Indeed, by Lemma 2.2,

we have I ( J ⊆
√
J . Moreover, by Nullstellensatz 2.8 (1), we have V(J) 6= ∅, hence√

J = I(V(J)) ( k[x1, · · · , xn]. Armed with this claim we apply Proposition 2.9 (2) to get

V(I) ) V(
√
J) ) ∅. It follows that V(

√
J) contains at least one point, hence X = V(I)

contains more than one point. �

In summary, the V− I correspondences induce bijections in each row of the diagram:

{radical ideals in k[x1, · · · , xn]}
V

// {algebraic sets in An}
I

oo

{prime ideals in k[x1, · · · , xn]}
V

//
?�

OO

{irreducible algebraic sets in An}
I

oo

?�

OO

{maximal ideals in k[x1, · · · , xn]}
V

//
?�

OO

{points in An}
I

oo

?�

OO
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