2.2. Prime ideals and maximal ideals. We have established a one-to-one corrspon-
dence (2.2) between radical ideals in k[xy, -, z,] and algebraic sets in A”. A major
benefit: we can read off some geometric properties of algebraic sets from algebraic prop-
erties of the corresponding radical ideals. We will see two such examples in this lecture.

Definition 2.10. Let I be an ideal in a ring R.

(1) The ideal I is prime if it is proper, and fg € I implies f € [ or g € I.

(2) The ideal I is mazimal if it is proper, and for any ideal J satisfying I C J C R,
we have either J =1 or J = R.

Example 2.11. We look at some ideals in k|z].

(1) Consider I} = (2* — x). I, is not prime because z(x — 1) € I, while x ¢ I, and
r —1¢ I,. I is not maximal because (z*> — ) C (z) C k[x].

(2) Consider Iy = (z). We claim () is prime. Assume fg € (x), then fg = xh for some
h € k[z]. By unique factorisation, since x is irreducible, it must be a factor of f
or g. Hence f € (z) or g € (). We claim (z) is maximal. Assume (x) C I C k|z].
If I # (z), then there exists f € I\(z). Write f = a9 + a1z + --- + a,2", then
ap # 0, since otherwise f € (x). We observe f —ag = a1z + -+ a,z" € (z) C I.
It follows that ag € I, hence I = k|z] since ag is a unit in k[z].

(3) Consider I3 = (0). I3 is prime because fg = 0 implies that either f =0 or g =0
as k[z] is an integral domain. I3 is not maximal because (0) C (z) C klz, y].

Proposition 2.12. Let I be an ideal in the ring R.

(1) I is a prime ideal if and only if R/ is an integral domain. I is a mazimal ideal

if and only if R/1 is a field.

(2) Every maximal ideal is prime. Fvery prime ideal is radical.
Proof. (1) is non-examinable. (2) is an exercise. O

Under the corrspondence (2.2), we will find out what prime and maximal ideals correspond
to. Now we switch to geometry.

Definition 2.13. An algebraic set X C A" is irreducible if there does not exist a de-
composition of X as a union of two stricly smaller algebraic sets. An irreducible (affine)
algebraic set is also called an affine variety. An algebraic set X C A" is reducible if it is
not irreducible.

Example 2.14. We look at some algebraic sets in A2
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(1) The algebraic set V(zy) C A? is the union of two coordinate axes. In other words,
V(zy) = V(z)UV(y). Since each coordinate axis is an algebraic set stricly smaller
than V(zy), we conclude that V(zy) is reducible.

(2) The algebraic set V(x,y) C A? consists of just one point, hence there is no way
to decompose it as the union of two strictly smaller algebraic sets. It follows that
V(z,y) is irreducible. Similarly, a point is always irreducible.

Next we show that prime ideals correspond to irreducible algebraic sets.

Proposition 2.15. Let I be a radical ideal in K[xq, -+, x,] and X = V(I) the algebraic
set in A™ defined by I. Then I is prime if and only if X s irreducible.

Proof. In fact we prove the contrapositive: X is reducible <= [ is not prime.

We first prove “==". Suppose X = X; U X, with algebraic sets Xy, Xy C X. Then X; C
X implies that I(X;) 2 I(X) by Proposition 2.9 (2). Hence there exists f; € I(X7)\I(X).
Similarly Xy € X implies that there exists fo € I(X3)\I(X). The product f;fo vanishes
at all points of X, hence fify € I(X). Therefore I = I(X) is not prime.

We then prove “<=". Since [ is not prime, there exist fi, fo ¢ I such that ff; € I.
Consider the set S; = I U {f1}. Then X; = V(S5;) is an algebraic set. Since S; D I,
we have X; C X by Proposition 1.7. Moreover, since f; ¢ I, there is some point p € X
such that fi(p) # 0, therefore p ¢ X;. It follows that X; € X. Similarly we can consider
So =T U{fa}, then Xy =V(5,) C X.

It remains to show that X;UX5 = X. Since X; and X5 are subsets of X, we have X;UX, C
X. Conversely, for any p € X, f(p) = 0 for every f € I. Moreover fi(p)f2(p) = 0, which
implies fi(p) = 0 or fa(p) = 0. Therefore p € V(S;) = X; or p € V(S3) = X,. This
implies X C X; U Xs. O

Finally we show that maximal ideals correspond to points.

Proposition 2.16. Let I be a radical ideal in K[xq, -+, x,] and X = V(I) the algebraic
set in A" defined by I. Then I is mazimal if and only if X is a point.

Proof. (This proof is non-examinable and not covered in lectures.)
In fact we prove the contrapositive: X is not a point <= I is not maximal.

We first prove “=". If X is not a point, then either X = @ or X contains more than
one point. If X = @, then by Proposition 2.9 (1), I = I(X) = k[zy,---,x,] is not a
proper ideal hence not maximal. If X contains more than one point, then we can pick a
subset Y of X containing only one point. Hence we have @ C Y C X. By Proposition

2.9 (2), we have klzy,--- ,z,] =1(@) D I(Y) D I(X). Hence I =1(X) is not maximal.
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We then prove “<=". If I is not maximal, then either I is not a proper ideal, or there

exists an ideal J such that I C J C k[xy, -+, 2,]. If I is not proper then I = k[xy, -, z,],
hence X = V(I) = @ which is not a point. If I C J C Kk[zy,---,z,] for some ideal J,
then we claim that we actually have I C v/J C k[zy,---,z,]. Indeed, by Lemma 2.2,

we have I C J C +/J. Moreover, by Nullstellensatz 2.8 (1), we have V(.J) # &, hence
VI =1(V(J)) C k[zy,- - ,z,]. Armed with this claim we apply Proposition 2.9 (2) to get
V(I) 2 V(vJ) 2 @. Tt follows that V(v/.J) contains at least one point, hence X = V(I)

contains more than one point. O

In summary, the V — I correspondences induce bijections in each row of the diagram:

\
{radical ideals in k[zq,- -, x,]} {algebraic sets in A"}
I
\
{prime ideals in k[z1, - - , x,]} Z=——————= {irreducible algebraic sets in A"}
i
v
{maximal ideals in k[z1,--- ,z,]} {points in A"}
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