
3.2. Homomophisms of coordinate rings. We introduce a terminology which will be

very convenient in our discussion.

Definition 3.16. A finitely generated k-algebra is a ring that is isomorphic to a quotient

of a polynomial ring k[x1, · · · , xn]/I. A k-algebra homomorphism ϕ : k[y1, · · · , ym]/J →
k[x1, · · · , xn]/I is a ring homomorphism such that ϕ(c + J) = c + I for every constant

polynomial c ∈ k.

Recall that a polynomial function can be viewed as a polynomial map to A1.

Definition 3.17. Let X ⊆ An and Y ⊆ Am be algebraic sets. Let ϕ : X → Y be a

polynomial map and g ∈ k[Y ] a polynomial function. The pullback of g along ϕ is the

polynomial function g ◦ ϕ ∈ k[X], denoted ϕ∗(g).

The pullback map along ϕ sends a polynomial function on Y to a polynomial function on

X. We show that it preserves the ring structure and constants.

Lemma 3.18. For any polynomial map ϕ : X → Y , the pullback map

ϕ∗ : k[Y ]→ k[X]; g 7→ g ◦ ϕ

is a k-algebra homomorphism.

Proof. We need to verify ϕ∗ preserves addition, multiplication and constants. For any

g1, g2 ∈ k[Y ], we need to show (g1 + g2) ◦ϕ = g1 ◦ϕ+ g2 ◦ϕ. Indeed, for any point p ∈ X,

((g1 +g2)◦ϕ)(p) = (g1 +g2)(ϕ(p)) = g1(ϕ(p))+g2(ϕ(p)) = (g1 ◦ϕ)(p)+(g2 ◦ϕ)(p). Hence

ϕ∗ preserves addition. Replacing additions by multiplications shows that ϕ∗ preserves

multiplication. Now assume g is a constant function on Y , say, there exists some c ∈ k
such that g(q) = c for every q ∈ Y . Then (g ◦ ϕ)(p) = g(ϕ(p)) = c for every p ∈ X.

Therefore ϕ∗(g) is the constant function on X which takes the same value as g. �

Example 3.19. The polynomial map ϕ : A1 → Y = V(y−x2)(⊆ A2); t 7→ (t, t2) induces a

k-algebra homomorphism ϕ∗ : k[Y ]→ k[A1], or more precisely, ϕ : k[x, y]/(y−x2)→ k[t].

For any polynomial function f(x, y) on Y , ϕ∗(f) = f(t, t2) ∈ k[t]. In particular, for the

coordinate functions x and y on Y , we have ϕ∗(x) = t and ϕ∗(y) = t2. For more examples,

the pullback of the polynomial function x+ y is t+ t2; the pullback of x2y is t4, and the

pullback of 3x3 + 5y + 1 is 3t3 + 5t2 + 1.

We have seen that every polynomial map ϕ : X → Y induces a k-algebra homomorphism

ϕ∗ : k[Y ] → k[X]. Next we show this is a one-to-one correspondence. This is the key

property of the “pullback” construction.

Theorem 3.20. Let X ⊆ An and Y ⊆ Am be algebraic sets. For every k-algebra homo-

morphism Φ : k[Y ] → k[X], there exists a unique polynomial map ϕ : X → Y , such that

Φ = ϕ∗.
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Proof. (This proof is non-examinable and not covered in lectures.)

We show the existence. For every coordinate function yi ∈ k[Y ], by assumption fi =

Φ(yi) ∈ k[X] is a polynomial function on X. Since Φ is a k-algebra homomorphis, for any

polynomial function g(y1, · · · , ym) ∈ k[Y ], the image Φ(g) = g(f1, · · · , fm) ∈ k[X].

We consider the polynomial map ϕ = (f1, · · · , fm) : X → Am. To show it is a polynomial

map to Y , it must be checked that (f1(p), · · · , fm(p)) ∈ Y for every p ∈ X; that is, it must

be checked that h(f1(p), · · · , fm(p)) = 0 for every polynomial h ∈ I(Y ). Since h represents

the zero function in k[Y ], Φ(h) is also the zero function in k[X], hence Φ(h)(p) = 0 for

every p ∈ X. It follows that h(f1(p), · · · , fm(p)) = Φ(h)(p) = 0, as desired.

To show Φ = ϕ∗, it remains to show that Φ(g) = ϕ∗(g) for every g ∈ k[Y ]. Indeed, for

any p ∈ X, Φ(g)(p) = g(f1(p), · · · , fm(p)) = g(ϕ(p)) = (g ◦ ϕ)(p) = ϕ∗(g)(p). Hence

Φ(g) = ϕ∗(g), as required. This finishes the existence.

For uniqueness, assume there is another polynomial map ϕ′ = (f ′1, · · · , f ′m) : X → Y such

that Φ = (f ′)∗. Then for each i, f ′i = (ϕ′)∗(yi) = Φ(yi) = ϕ∗(yi) = fi. Hence ϕ′ = ϕ.

This finishes the uniqueness. �

Remark 3.21. This theorem gives a one-to-one correspondence{
polynomial maps

ϕ : X −→ Y

}
←→

{
k-algebra homomorphisms

ϕ∗ : k[Y ] −→ k[X]

}
.

An application of this result is the following criterion for isomorphisms.

Proposition 3.22. A polynomial map ϕ : X → Y is an isomorphism if and only if

ϕ∗ : k[Y ]→ k[X] is a ring isomorphism.

Proof. (This proof is non-examinable and not covered in lectures.)

Assume ϕ : X → Y is an isomorphism, then there exists ψ : Y → X such that ψ◦ϕ = idX
and ϕ ◦ψ = idY . By applying the pullback construction on both sides, we have ϕ∗ ◦ψ∗ =

(ψ ◦ ϕ)∗ = (idX)∗ = idk[X]. Similarly we have ψ∗ ◦ ϕ∗ = idk[Y ]. Therefore ϕ∗ and ψ∗ are

mutually inverse ring homomorphisms. Hence ϕ∗ : k[Y ]→ k[X] is an isomorphism.

Assume ϕ∗ : k[Y ]→ k[X] is a ring isomorphism, then there exists Ψ : k[X]→ k[Y ] such

that ϕ∗ ◦Ψ = idk[X] and Ψ ◦ ϕ∗ = idk[Y ]. By the existence in Theorem 3.20 we can write

Ψ = ψ∗ for some polynomial map ψ : Y → X. Therefore we have (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗ =

ϕ∗ ◦ Ψ = idk[X] = (idX)∗. By the uniqueness in Theorem 3.20, we get ψ ◦ ϕ = idX .

Similarly we can get ϕ ◦ ψ = idY . Hence ϕ : X → Y is an isomorphism. �

This is a very powerful result as it allows us to show a certain polynomial map is an

isomorphism without writing down another one going backwards. It can also be used to
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show a certain polynomial map is not an isomorphism, especially in some tricky situation

where the map is actually bijective on points, as shown in the following example:

Example 3.23. We consider the polynomial map ϕ : A1 → X = V(y2 − x3) ⊆ A2; t 7→
(t2, t3); see Example 3.10. One can show that it is bijective on points in A1 and X.

However, one can also show that ϕ∗ : k[X]→ k[A1] is not an isomorphism of rings, hence

ϕ is not an isomorphism of algebraic sets. We leave the details as an exercise.
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