3.2. Homomophisms of coordinate rings. We introduce a terminology which will be
very convenient in our discussion.

Definition 3.16. A finitely generated k-algebra is a ring that is isomorphic to a quotient
of a polynomial ring k[zy, -+, x,]/I. A k-algebra homomorphism ¢ : K[y1, -+, ym|/J —
k[zy, -+ ,x,]/I is a ring homomorphism such that ¢(c + J) = ¢+ I for every constant
polynomial ¢ € k.

Recall that a polynomial function can be viewed as a polynomial map to Al

Definition 3.17. Let X C A” and Y C A™ be algebraic sets. Let ¢ : X — Y be a
polynomial map and g € k[Y] a polynomial function. The pullback of g along ¢ is the
polynomial function g o ¢ € k[X], denoted p*(g).

The pullback map along ¢ sends a polynomial function on Y to a polynomial function on
X. We show that it preserves the ring structure and constants.

Lemma 3.18. For any polynomial map ¢ : X — 'Y, the pullback map
o' Kk[Y] = k[X]; g gop

18 a k-algebra homomorphism.

Proof. We need to verify ¢* preserves addition, multiplication and constants. For any
g1, g2 € k[Y], we need to show (g1 + g2) 09 = g1 0 p + g2 0 p. Indeed, for any point p € X,
((91+92)00)(p) = (91+92)(2(P)) = 91(2(P)) + 92((P)) = (g10©)(p) + (920¢)(p). Hence
©* preserves addition. Replacing additions by multiplications shows that ¢* preserves
multiplication. Now assume ¢ is a constant function on Y, say, there exists some ¢ € k
such that g(q) = ¢ for every ¢ € Y. Then (g o ¢)(p) = g(¢(p)) = ¢ for every p € X.
Therefore ¢*(g) is the constant function on X which takes the same value as g. U

Example 3.19. The polynomial map ¢ : A' — Y = V(y—2?)(C A?); t — (¢,t*) induces a
k-algebra homomorphism ¢* : k[Y] — k[A!], or more precisely, o : k[z, y]/(y —2?) — K[t].
For any polynomial function f(z,y) on Y, ¢*(f) = f(t,t*) € k[t]. In particular, for the
coordinate functions x and y on Y, we have p*(x) = t and ¢*(y) = t*. For more examples,
the pullback of the polynomial function z + y is t + t2; the pullback of 22y is t*, and the
pullback of 323 + 5y + 1 is 3t% + 5t% + 1.

We have seen that every polynomial map ¢ : X — Y induces a k-algebra homomorphism

©* : k[Y] — k[X]. Next we show this is a one-to-one correspondence. This is the key
property of the “pullback” construction.

Theorem 3.20. Let X C A" and Y C A™ be algebraic sets. For every k-algebra homo-
morphism ® : k[Y| — k[X], there exists a unique polynomial map ¢ : X — Y, such that
b = .
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Proof. (This proof is non-examinable and not covered in lectures.)

We show the existence. For every coordinate function y; € k[Y], by assumption f; =
®(y;) € k[X] is a polynomial function on X. Since @ is a k-algebra homomorphis, for any
polynomial function g(yi,- - ,ym) € k[Y], the image ®(g) = g(f1, -, fm) € k[ X].

We consider the polynomial map ¢ = (fi,--+, fin) : X — A™. To show it is a polynomial
map to Y, it must be checked that (fi(p),- -+, fm(p)) € Y for every p € X; that is, it must
be checked that A(f1(p),- -, fm(p)) = 0 for every polynomial h € I(Y"). Since h represents
the zero function in k[Y], ®(h) is also the zero function in k[X], hence ®(h)(p) = 0 for
every p € X. It follows that A(f1(p), -+, fm(p)) = ®(h)(p) = 0, as desired.

To show ® = ¢*, it remains to show that ®(g) = ¢*(g) for every g € k[Y]. Indeed, for

any p € X, ®(g)(p) = g(fi(p),--, fm(p)) = gle(p)) = (90 ¥)(p) = ¢ (9)(p). Hence
®(g) = ¢*(g), as required. This finishes the existence.

For uniqueness, assume there is another polynomial map ¢ = (f{,---, f/ ) : X — Y such
that ® = (f')*. Then for each i, f/ = (¢')*(v;) = ®(v;) = ¢*(v;) = fi. Hence ¢’ = .
This finishes the uniqueness. O

Remark 3.21. This theorem gives a one-to-one correspondence

polynomial maps PN k-algebra homomorphisms
p: X —Y o* : k[Y] — k[X]

An application of this result is the following criterion for isomorphisms.

Proposition 3.22. A polynomial map ¢ : X — Y is an isomorphism if and only if
o* 1 k[Y] = k[X] is a ring isomorphism.

Proof. (This proof is non-examinable and not covered in lectures.)

Assume ¢ : X — Y is an isomorphism, then there exists ¢ : Y — X such that Yoy = idx
and p o1 = idy. By applying the pullback construction on both sides, we have p* o 9)* =
(Y op) = (idx)* = idyy). Similarly we have 9* o ¢* = idy[y]. Therefore ¢* and ¢* are
mutually inverse ring homomorphisms. Hence ¢* : k[Y] — k[X] is an isomorphism.

Assume ¢* : k[Y] — k[X] is a ring isomorphism, then there exists ¥ : k[X| — k[Y'] such
that ¢* o U = idyx] and ¥ o p* = idyy]. By the existence in Theorem 3.20 we can write
U = 9* for some polynomial map ¢ : Y — X. Therefore we have (1 o p)* = ¢* 0 * =
¢* o ¥ = idyx) = (idx)*. By the uniqueness in Theorem 3.20, we get ¥ o ¢ = idx.
Similarly we can get ¢ ot =idy. Hence ¢ : X — Y is an isomorphism. U

This is a very powerful result as it allows us to show a certain polynomial map is an

isomorphism without writing down another one going backwards. It can also be used to
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show a certain polynomial map is not an isomorphism, especially in some tricky situation
where the map is actually bijective on points, as shown in the following example:

Example 3.23. We consider the polynomial map ¢ : A' - X = V(y? — 23) C A%t —
(t2,13); see Example 3.10. One can show that it is bijective on points in A! and X.
However, one can also show that ¢* : k[ X] — k[A!] is not an isomorphism of rings, hence
v is not an isomorphism of algebraic sets. We leave the details as an exercise.
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