3.2. Homomophisms of coordinate rings. We introduce a terminology which will be very convenient in our discussion.

Definition 3.16. A finitely generated \mathbb{k}-algebra is a ring that is isomorphic to a quotient of a polynomial ring $\mathbb{k}\left[x_{1}, \cdots, x_{n}\right] / I$. A \mathbb{k}-algebra homomorphism $\varphi: \mathbb{k}\left[y_{1}, \cdots, y_{m}\right] / J \rightarrow$ $\mathbb{k}\left[x_{1}, \cdots, x_{n}\right] / I$ is a ring homomorphism such that $\varphi(c+J)=c+I$ for every constant polynomial $c \in \mathbb{k}$.

Recall that a polynomial function can be viewed as a polynomial map to \mathbb{A}^{1}.
Definition 3.17. Let $X \subseteq \mathbb{A}^{n}$ and $Y \subseteq \mathbb{A}^{m}$ be algebraic sets. Let $\varphi: X \rightarrow Y$ be a polynomial map and $g \in \mathbb{k}[Y]$ a polynomial function. The pullback of g along φ is the polynomial function $g \circ \varphi \in \mathbb{k}[X]$, denoted $\varphi^{*}(g)$.

The pullback map along φ sends a polynomial function on Y to a polynomial function on X. We show that it preserves the ring structure and constants.

Lemma 3.18. For any polynomial map $\varphi: X \rightarrow Y$, the pullback map

$$
\varphi^{*}: \quad \mathbb{k}[Y] \rightarrow \mathbb{k}[X] ; \quad g \mapsto g \circ \varphi
$$

is $a \mathbb{k}$-algebra homomorphism.
Proof. We need to verify φ^{*} preserves addition, multiplication and constants. For any $g_{1}, g_{2} \in \mathbb{k}[Y]$, we need to show $\left(g_{1}+g_{2}\right) \circ \varphi=g_{1} \circ \varphi+g_{2} \circ \varphi$. Indeed, for any point $p \in X$, $\left(\left(g_{1}+g_{2}\right) \circ \varphi\right)(p)=\left(g_{1}+g_{2}\right)(\varphi(p))=g_{1}(\varphi(p))+g_{2}(\varphi(p))=\left(g_{1} \circ \varphi\right)(p)+\left(g_{2} \circ \varphi\right)(p)$. Hence φ^{*} preserves addition. Replacing additions by multiplications shows that φ^{*} preserves multiplication. Now assume g is a constant function on Y, say, there exists some $c \in \mathbb{k}$ such that $g(q)=c$ for every $q \in Y$. Then $(g \circ \varphi)(p)=g(\varphi(p))=c$ for every $p \in X$. Therefore $\varphi^{*}(g)$ is the constant function on X which takes the same value as g.

Example 3.19. The polynomial map $\varphi: \mathbb{A}^{1} \rightarrow Y=\mathbb{V}\left(y-x^{2}\right)\left(\subseteq \mathbb{A}^{2}\right) ; t \mapsto\left(t, t^{2}\right)$ induces a \mathbb{k}-algebra homomorphism $\varphi^{*}: \mathbb{k}[Y] \rightarrow \mathbb{k}\left[\mathbb{A}^{1}\right]$, or more precisely, $\varphi: \mathbb{k}[x, y] /\left(y-x^{2}\right) \rightarrow \mathbb{k}[t]$. For any polynomial function $f(x, y)$ on $Y, \varphi^{*}(f)=f\left(t, t^{2}\right) \in \mathbb{k}[t]$. In particular, for the coordinate functions x and y on Y, we have $\varphi^{*}(x)=t$ and $\varphi^{*}(y)=t^{2}$. For more examples, the pullback of the polynomial function $x+y$ is $t+t^{2}$; the pullback of $x^{2} y$ is t^{4}, and the pullback of $3 x^{3}+5 y+1$ is $3 t^{3}+5 t^{2}+1$.

We have seen that every polynomial map $\varphi: X \rightarrow Y$ induces a \mathbb{k}-algebra homomorphism $\varphi^{*}: \mathbb{k}[Y] \rightarrow \mathbb{k}[X]$. Next we show this is a one-to-one correspondence. This is the key property of the "pullback" construction.

Theorem 3.20. Let $X \subseteq \mathbb{A}^{n}$ and $Y \subseteq \mathbb{A}^{m}$ be algebraic sets. For every \mathbb{k}-algebra homomorphism $\Phi: \mathbb{k}[Y] \rightarrow \mathbb{k}[X]$, there exists a unique polynomial map $\varphi: X \rightarrow Y$, such that $\Phi=\varphi^{*}$.

Proof. (This proof is non-examinable and not covered in lectures.)
We show the existence. For every coordinate function $y_{i} \in \mathbb{k}[Y]$, by assumption $f_{i}=$ $\Phi\left(y_{i}\right) \in \mathbb{k}[X]$ is a polynomial function on X. Since Φ is a \mathbb{k}-algebra homomorphis, for any polynomial function $g\left(y_{1}, \cdots, y_{m}\right) \in \mathbb{k}[Y]$, the image $\Phi(g)=g\left(f_{1}, \cdots, f_{m}\right) \in \mathbb{k}[X]$.

We consider the polynomial map $\varphi=\left(f_{1}, \cdots, f_{m}\right): X \rightarrow \mathbb{A}^{m}$. To show it is a polynomial map to Y, it must be checked that $\left(f_{1}(p), \cdots, f_{m}(p)\right) \in Y$ for every $p \in X$; that is, it must be checked that $h\left(f_{1}(p), \cdots, f_{m}(p)\right)=0$ for every polynomial $h \in \mathbb{I}(Y)$. Since h represents the zero function in $\mathbb{k}[Y], \Phi(h)$ is also the zero function in $\mathbb{k}[X]$, hence $\Phi(h)(p)=0$ for every $p \in X$. It follows that $h\left(f_{1}(p), \cdots, f_{m}(p)\right)=\Phi(h)(p)=0$, as desired.

To show $\Phi=\varphi^{*}$, it remains to show that $\Phi(g)=\varphi^{*}(g)$ for every $g \in \mathbb{k}[Y]$. Indeed, for any $p \in X, \Phi(g)(p)=g\left(f_{1}(p), \cdots, f_{m}(p)\right)=g(\varphi(p))=(g \circ \varphi)(p)=\varphi^{*}(g)(p)$. Hence $\Phi(g)=\varphi^{*}(g)$, as required. This finishes the existence.

For uniqueness, assume there is another polynomial map $\varphi^{\prime}=\left(f_{1}^{\prime}, \cdots, f_{m}^{\prime}\right): X \rightarrow Y$ such that $\Phi=\left(f^{\prime}\right)^{*}$. Then for each $i, f_{i}^{\prime}=\left(\varphi^{\prime}\right)^{*}\left(y_{i}\right)=\Phi\left(y_{i}\right)=\varphi^{*}\left(y_{i}\right)=f_{i}$. Hence $\varphi^{\prime}=\varphi$. This finishes the uniqueness.

Remark 3.21. This theorem gives a one-to-one correspondence

$$
\left\{\begin{array}{c}
\text { polynomial maps } \\
\varphi: X \longrightarrow Y
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\mathbb{k} \text {-algebra homomorphisms } \\
\varphi^{*}: \mathbb{k}[Y] \longrightarrow \mathbb{k}[X]
\end{array}\right\}
$$

An application of this result is the following criterion for isomorphisms.
Proposition 3.22. A polynomial map $\varphi: X \rightarrow Y$ is an isomorphism if and only if $\varphi^{*}: \mathbb{k}[Y] \rightarrow \mathbb{k}[X]$ is a ring isomorphism.

Proof. (This proof is non-examinable and not covered in lectures.)
Assume $\varphi: X \rightarrow Y$ is an isomorphism, then there exists $\psi: Y \rightarrow X$ such that $\psi \circ \varphi=\operatorname{id}_{X}$ and $\varphi \circ \psi=\mathrm{id}_{Y}$. By applying the pullback construction on both sides, we have $\varphi^{*} \circ \psi^{*}=$ $(\psi \circ \varphi)^{*}=\left(\operatorname{id}_{X}\right)^{*}=\mathrm{id}_{\mathbb{k}[X]}$. Similarly we have $\psi^{*} \circ \varphi^{*}=\mathrm{id}_{\mathbb{k}[Y]}$. Therefore φ^{*} and ψ^{*} are mutually inverse ring homomorphisms. Hence $\varphi^{*}: \mathbb{k}[Y] \rightarrow \mathbb{k}[X]$ is an isomorphism.

Assume $\varphi^{*}: \mathbb{k}[Y] \rightarrow \mathbb{k}[X]$ is a ring isomorphism, then there exists $\Psi: \mathbb{k}[X] \rightarrow \mathbb{k}[Y]$ such that $\varphi^{*} \circ \Psi=\operatorname{id}_{\mathbb{k}[X]}$ and $\Psi \circ \varphi^{*}=\operatorname{id}_{\mathbb{k}[Y]}$. By the existence in Theorem 3.20 we can write $\Psi=\psi^{*}$ for some polynomial map $\psi: Y \rightarrow X$. Therefore we have $(\psi \circ \varphi)^{*}=\varphi^{*} \circ \psi^{*}=$ $\varphi^{*} \circ \Psi=\operatorname{id}_{\mathbb{k}[X]}=\left(\mathrm{id}_{X}\right)^{*}$. By the uniqueness in Theorem 3.20, we get $\psi \circ \varphi=\operatorname{id}_{X}$. Similarly we can get $\varphi \circ \psi=\operatorname{id}_{Y}$. Hence $\varphi: X \rightarrow Y$ is an isomorphism.

This is a very powerful result as it allows us to show a certain polynomial map is an isomorphism without writing down another one going backwards. It can also be used to
show a certain polynomial map is not an isomorphism, especially in some tricky situation where the map is actually bijective on points, as shown in the following example:

Example 3.23. We consider the polynomial map $\varphi: \mathbb{A}^{1} \rightarrow X=\mathbb{V}\left(y^{2}-x^{3}\right) \subseteq \mathbb{A}^{2} ; t \mapsto$ $\left(t^{2}, t^{3}\right)$; see Example 3.10. One can show that it is bijective on points in \mathbb{A}^{1} and X. However, one can also show that $\varphi^{*}: \mathbb{k}[X] \rightarrow \mathbb{k}\left[\mathbb{A}^{1}\right]$ is not an isomorphism of rings, hence φ is not an isomorphism of algebraic sets. We leave the details as an exercise.

