
4. Projective Algebraic Sets

Instead of affine spaces, it is more natural to study algebraic geometry in projective

spaces. We first introduce projective spaces, then study projective algebraic sets. There

is a similar projective Nullstellensatz and V− I correspondence.

4.1. Projective spaces. We will study algebraic geometry in projective spaces. We

prefer projective spaces because results in projective spaces are usually nicer. One such

example is that: two curves in A2 may or may not intersect each other. When they in-

tersect, the number of intersection is not known until one solves the system of equations.

However, in projective spaces P2, two curves always intersect, and the number of intersec-

tion points can be easily read off from their equations. In this lecture we will understand

the projective space Pn from the following three different points of views:

• Pn is the set of 1-dimensional subspaces in An+1 (definition);

• Pn is covered by n+ 1 subsets which are all An (aka from projective to affine);

• Pn is obtained by adding to An a “boundary at infinity”, whose points correspond

to “asymptotic directions” in An (aka from affine to projective).

Definition 4.1. For every integer n > 0, the projective space Pnk (or Pn if k is understood)

of dimension n over a field k is the set of 1-dimensional vector subspaces in An+1
k .

Remark 4.2. Each point a = (a0, a1, · · · , an) 6= (0, 0, · · · , 0) in An+1 determines a 1-

dimensional subspace. Two such points a = (a0, a1, · · · , an) and b = (b0, b1, · · · , bn) define

the same subspace if and only if there is some λ 6= 0 such that bi = λai for each 0 6 i 6 n.

We say two such points are equivalent, and write a ∼ b. Then points in Pn can be

identified with such equivalence classes. More precisely,

Pn =
(
An+1\{(0, · · · , 0)}

)
/ ∼ .

Definition 4.3. If a point p ∈ Pn is determined by (a0, a1, · · · , an) ∈ An+1\{(0, · · · , 0)},
we say that a0, a1, · · · , an are homogeneous coordinates of p, denoted p = [a0 : a1 : · · · : an].

Remark 4.4. The homoeneous coordinates of p ∈ Pn are only determined up to a non-zero

scalar multiplication, so the i-th coordinate ai is not a well-defined number. However, it

is a well-defined notion to say whether ai is zero or non-zero; and if ai 6= 0, the ratios

aj/ai are also well-defined (since they remain unchanged under equivalence).

We want to relate projective spaces to our familiar affine spaces, so that we can “visualise”

them easily. There are two typical ways to do this.

Construction 4.5 (From projective to affine). We will see how to find subsets in Pn

which are affine spaces. For each 0 6 i 6 n, consider the subset

Ui = {[a0 : a1 : · · · : an] ∈ Pn | ai 6= 0}.
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Each point p ∈ Ui can be written as

p =

[
a0
ai

: · · · : ai−1
ai

: 1 :
ai+1

ai
: · · · : an

ai

]
.

Since we insist that the i-th coordinate is 1, the other n coordinates are uniquely deter-

mined, which can be used to identify Ui with An. Moreover, since every point in Pn has at

least one non-zero homogeneous coordinate, it lies in at least one of the Ui’s. This implies

Pn = ∪ni=0Ui. (4.1)

So Pn is covered by n+ 1 subsets, each of which looks just like An.

Definition 4.6. Each subset Ui = {[a0 : a1 : · · · : an] ∈ Pn | ai 6= 0} of Pn is called a

standard affine chart of Pn. For every point p = [a0 : a1 : · · · : an] ∈ Ui, the n-tuple(
a0
ai
, · · · , ai−1

ai
, ai+1

ai
, · · · , an

ai

)
are called the non-homogeneous coordinates of p with respect

to Ui. The cover Pn = ∪ni=0Ui is called a standard affine cover of Pn.

Example 4.7. P1 has two standard affine charts. The point [2 : 3] ∈ P1 has non-

homogeneous coordinate 3
2

with respect to U0, and 2
3

with respect to U1. P2 has three

standard affine charts. The point [2 : 3 : 0] ∈ P2 has non-homogeneous coordinates (3
2
, 0)

with respect to U0, and (2
3
, 0) with respect to U1. This point is not in U2 because the

corresponding coordinate is 0.

Construction 4.8 (From affine to projective). We will see how to get Pn by adding

“points at infinity” to the affine space An. We work with U0 but each Ui works in the

same way. The complement of U0 in Pn is

H0 = Pn\U0 = {[0 : a1 : · · · : an] ∈ Pn},

which can be identified with Pn−1 as each point in H0 is given by n homogeneous coor-

dinates which are not simultaneously zero. Hence Pn can be decomposed into an affine

space U0
∼= An and a set of “points at infinity” H0

∼= Pn−1:

Pn = U0 ∪H0
∼= An ∪ Pn−1. (4.2)

Now we explain why we can view points in H0 as “asymptotic directions” of lines in

U0 = An. This is best illustrated for n = 2, but works for any positive integer n.

Example 4.9. Consider two lines V(x2−x1 +1) and V(x2−x1−1) in A2 ∼= U0. They are

parallel since they have the same slope. We can regard x1 and x2 as the non-homogeneous

coordinates with respect to U0, and substitute xi by ai
a0

. Then the defining equations of

the two lines become
a2
a0
− a1
a0
± 1 = 0.

We clear the denominators to get

a2 − a1 ± a0 = 0.
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Notice that after clearing the denominator, we no longer require a0 to be non-zero. There-

fore we could possibly get extra solutions corresponding to points in H0. To see which

points in H0 satisfy the equation, we set a0 = 0. Then the equation becomes

a2 − a1 = 0.

Up to a non-zero scalar multiplication we get one extra solution [a0 : a1 : a2] = [0 : 1 : 1].

So we can say both lines pass through (and intersect at) the point [0 : 1 : 1] at infinity.

Since parallel lines always acquire the same point at infinity, we get an idea that points

in H0 correspond to “asymptotic directions”.

This example shows us how to understand points at infinity. We use the line V(x2−x1+1)

to preview some notions that will come up later. After clearing the denominators, we get

a polynomial a2 − a1 + a0 in which every monomial has the same degree. We say such a

polynomial is homogeneous. Its solutions in P2 is called a projective algebraic set. Since

it is obtained by adding the appropriate “points at infinity” to the affine algebraic set

V(x2 − x1 + 1), we say this projective algebraic set is the projective closure of the affine

algebraic set V(x2 − x1 + 1). In fact, every affine algebraic set in An (not necessarily a

line) has a projective closure in Pn obtained by adding the appropiate “points at infinity”,

which can be computed using a similar calculation. We will see more examples later.
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