
4.2. Projective algebraic sets and projective Nullstellensatz. We develop the the-

ory of projective algebraic sets. Most of the results and proofs are similar to those in the

affine case. We will be brief on the similar part, but careful on a few special features.

Definition 4.10. A non-zero polynomial f ∈ k[z0, z1, · · · , zn] is homogeneous of degree d

if each term of f has the same total degree d.

As easy examples, z2 − z21 is not homogeneous while z0z2 − z21 is homogeneous of degree

2. The importance of this notion is the following. If f is homogeneous of degree d, then

f(λa0, λa1, · · · , λan) = λdf(a0, a1, · · · , an). (4.3)

In particular this means f(λa0, λa1, · · · , λan) = 0 if and only if f(a0, a1, · · · , an) = 0 for

any λ 6= 0. Therefore for any point p = [a0 : a1 : · · · : an] ∈ Pn, the condition f(p) = 0 is

independent of the choice of its homogeneous coordinates. Hence the zero locus of f

{[a0 : a1 : · · · : an] ∈ Pn | f(a0, a1, · · · , an) = 0}

is also well-defined.

Remark 4.11. Since the zero polynomial satisfies (4.3) for every non-negative integer d, as

a convention, the zero polynomial is considered to be a homogeneous polynomial of any

degree. By doing so, we can avoid many unnecessary exceptions. For instance, the sum

of two homogeneous polynomial of degree d is again a homogeneous polynomial of degree

d when we include the zero polynomial.

Definition 4.12. For any non-zero polynomial f ∈ k[z0, z1, · · · , zn] of degree m, we say

f = f0 + f1 + · · ·+ fm is the homogeneous decomposition of f , if for each i, 0 6 i 6 m, fi
is homogeneous of degree i. Each fi is called a homogeneous component of f .

Definition 4.13. An ideal I ⊆ k[z0, z1, · · · , zn] is homogeneous if for every non-zero

polynomial f ∈ I, each of its homogeneous components fi ∈ I.

In practice, this condition for an ideal being homogeneous is not very easy to check. The

following criterion is usually more convenient.

Proposition 4.14. An ideal I ⊆ k[z0, z1, · · · , zn] is homogeneous if and only if it can be

generated by a finite set of homogeneous polynomials.

Proof. We leave the proof as an exercise. �

Example 4.15. The ideals (x) and (x, y2) in k[x, y] are both homogeneous, while the

ideal (x+y2) in k[x, y] is not homogeneous, because the degree 1 part of x+y2 is x, which

is not in this ideal.
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Notice that an ideal could have many different sets of generators. The statement only

requires one set of generators consists of only homogeneous polynomials. It is still possible

that some other generating set is not given by homogeneous polynomials. Next we can

define the correspondences V and I.

Definition 4.16. For any homogeneous ideal I ⊆ k[z0, z1, · · · , zn], the set

V(I) = {p ∈ Pn | f(p) = 0 for every homogeneous polynomial f ∈ I}

is called the projective algebraic set defined by I.

Similar to the affine case, the following result is usually convenient in practice.

Lemma 4.17. Suppose a homogeneous ideal I ⊆ k[z0, z1, · · · , zn] is generated by a finite

set of homogeneous polynomials S = {f1, · · · , fm}. Let

V(S) = {p ∈ Pn | f1(p) = · · · fm(p) = 0}.

Then V(S) = V(I).

Proof. Similar to the proof of Lemma 1.10. We leave it as an exercise. �

Corollary 4.18. Every projective algebraic set X ⊆ Pn can be written as V(S) for a

finite set S of homogeneneous polynomials in k[z0, · · · , zn].

Proof. It follows immediately from Propositions 4.14 and 4.17. �

Example 4.19. In P1, the projective algebraic set V(3z0 − 2z1) is the single-point set

{[2 : 3]}. In P2, the projective algebraic set V(z2 − z1 + z0) is one of the affine lines in

Example 4.9 together with the corresponding point at infinity.

Definition 4.20. A projective algebraic set X ⊆ Pn is called a hypersurface if X = V(f)

for some non-constant homogeneous polynomial f ∈ k[z0, z1, · · · , zn].

Definition 4.21. For any subset X ⊆ Pn, the set

I(X) =

{
f ∈ k[z0, z1, · · · , zn]

∣∣∣∣∣ f(p) = 0 for every choice of homogeneous

coordinates of every point p ∈ X

}
is called the ideal of X.

Lemma 4.22. For any subset X ⊆ Pn, I(X) is a homogeneous radical ideal.

Proof. The proof of Lemma 2.6 (2) works literally here to show I(X) is a radical ideal. To

show it is homogeneous, let f ∈ I(X) and write f = f0+f1+ · · ·+fm for the homogeneous
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decomposition of f where m is the degree of f . For each p = [a0 : a1 : · · · : an] ∈ X and

λ ∈ k\{0}, we can also write p = [λa0 : λa1 : · · · : λan], hence we have

0 = f(p) = f(λa0, λa1, · · · , λan)

=
m∑
i=0

fi(λa0, λa1, · · · , λan)

=
m∑
i=0

λifi(a0, a1, · · · , an) =
m∑
i=0

λifi(p).

This means that every λ ∈ k\{0} is a root of the polynomial
∑m

i=0 fi(p)x
i ∈ k[x]. This

must be a zero polynomial, because the number of roots of any non-zero polynomial is at

most equal to its degree m. It follows that fi(p) = 0 for every 0 6 i 6 m, so fi ∈ I(X). �

Remark 4.23. We have used the same notation V and I in both affine and projective cases.

In practice it is usually clear which is meant; but if there is any danger of confusion, we

will write Vp and Ip for the projective operations, Va and Ia for the affine ones.

Now we state the projective Nullstellensatz. It is similar to the affine version, but there

is one point where care is needed. Clearly the trivial ideal (1) = k[z0, z1, · · · , zn] defines

the empty set in An+1, hence the empty set in Pn, as it should be. However, the ideal

(z0, z1, · · · , zn) defines a single-point set {(0, · · · , 0)} in An+1, which also corresponds

to the empty set in Pn. This ideal (z0, z1, · · · , zn) is an awkward exception to several

statements in the theory, and is traditionally known as the “irrelevant ideal”. Keeping

that in mind, we state the projective version of Nullstellensatz.

Theorem 4.24 (Projective Nullstellensatz). Let k be an algebraically closed field. For

any homogeneous ideal I ⊆ k[z0, z1, · · · , zn],

(1) V(I) = ∅ if and only if
√
I ⊇ (z0, z1, · · · , zn).

(2) If V(I) 6= ∅, then I(V(I)) =
√
I.

Proof. This is an easy consequence of the affine Nullstellensatz. Non-examinable. Inter-

ested reader can find the proof in [Section 5.3, Reid, Undergraduate Algebraic Geometry]

or [Section 4.2, Fulton, Algebraic Curves]. �
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