6. Function Fields

We will study rational functions on projective varieties, and pullback of rational functions along dominant rational maps. Similar to the affine case, we will see that the field of rational functions determines the birational class of a projective variety.
6.1. Bridge between affine and projective algebraic sets. We have seen affine and projective algebraic sets as subsets of affine and projective spaces defined by polynomial equations. They are related in a way that is similar to affine and projective spaces. Recall that \mathbb{P}^{n} is covered by standard affine charts U_{i} for $i=0,1, \cdots, n$.

Proposition 6.1 (From projective to affine). Let $X \subseteq \mathbb{P}^{n}$ be a projective algebraic set, and U_{i} a standard affine chart of \mathbb{P}^{n}. Then $X_{i}:=X \cap U_{i}$ is an affine algebraic set in U_{i}.

Proof. Without loss of generality, we prove the statement for $i=0$. Assume $X=$ $\mathbb{V}_{p}\left(f_{1}, \cdots, f_{m}\right)$ for some homogeneous polynomials $f_{1}, \cdots, f_{m} \in \mathbb{k}\left[z_{0}, \cdots, z_{n}\right]$. Then

$$
\begin{aligned}
p=\left[a_{0}: \cdots: a_{n}\right] \in X \cap U_{0} & \Longleftrightarrow f_{j}\left(a_{0}, a_{1} \cdots, a_{n}\right)=0 \text { for each } j \\
& \Longleftrightarrow f_{j}\left(1, \frac{a_{1}}{a_{0}}, \cdots, \frac{a_{n}}{a_{0}}\right)=0 \text { for each } j \\
& \Longleftrightarrow g_{j}\left(\frac{a_{1}}{a_{0}}, \cdots, \frac{a_{n}}{a_{0}}\right)=0 \text { for each } j
\end{aligned}
$$

where $g_{j}=f_{j}\left(1, z_{1}, \cdots, z_{n}\right)$. Hence $X_{i}=\mathbb{V}_{a}\left(g_{1}, \cdots, g_{m}\right)$ is an affine algebraic set.
Remark 6.2. As in the proof, given a homogeneous polynomial (i.e. f_{j}), we can set one of its variables to be 1 to obtain a (not necessarily homogeneous) polynomial (i.e. g_{j}). This process is often called dehomogenisation.

Definition 6.3. Let $X \subseteq \mathbb{P}^{n}$ be a projective algebraic set, and U_{i} a standard affine chart of \mathbb{P}^{n}. The affine algebraic set $X_{i}=X \cap U_{i}$ is called a standard affine piece of X. The decomposition $X=\cup_{i=0}^{n} X_{i}$ is called the standard affine cover of X.

Example 6.4. Consider the projective algebraic sets $X=\mathbb{V}_{p}\left(x y-z^{2}\right) \subseteq \mathbb{P}^{2}$. By setting one of the variables to be 1 , we obtain the three standard affine pieces of X, which are $X_{0}=\mathbb{V}_{a}\left(y-z^{2}\right) \subseteq \mathbb{A}^{2}, X_{1}=\mathbb{V}_{a}\left(x-z^{2}\right) \subseteq \mathbb{A}^{2}$, and $X_{2}=\mathbb{V}_{a}(x y-1) \subseteq \mathbb{A}^{2}$.

We turn to another relation between affine and projective algebraic sets. Recall that \mathbb{P}^{n} can be understood as \mathbb{A}^{n} together with "points at infinity". We have also seen in Example 4.9 how to find points at infinity for a line in \mathbb{A}^{2}. More generally we have

Definition 6.5 (From affine to projective). For any affine algebraic set $X \subseteq \mathbb{A}^{n}$, let $I=$ $\mathbb{I}_{a}(X)$ and \bar{I} be the ideal in $\mathbb{k}\left[z_{0}, \cdots, z_{n}\right]$ generated by the set of homogeneous polynomials

$$
\left\{\left.z_{0}^{\operatorname{deg} f} f\left(\frac{z_{1}}{z_{0}}, \cdots, \frac{z_{n}}{z_{0}}\right) \right\rvert\, f\left(x_{1}, \cdots, x_{n}\right) \in I\right\} .
$$

Then the projective algebraic set $\bar{X}=\mathbb{V}_{p}(\bar{I})$ is called the projective closure of X. The points in $\left\{\left[z_{0}: \cdots: z_{n}\right] \in \bar{X} \mid z_{0}=0\right\}$ are called points at infinity for X.

Remark 6.6. We have already used the above modification of a polynomial in Example 4.9; that is, first replacing all non-homogeneous coordinates by ratios of homogeneous coordinates, then clearing the denominators. This process is often called homogenisation. More precisely, for a polynomial $f\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$, assume $\operatorname{deg} f=d$ and let

$$
f=f_{0}+f_{1}+\cdots+f_{d-1}+f_{d}
$$

be its homogeneous decomposition, then the homogenisation of f is given by

$$
z_{0}^{d} \cdot f\left(\frac{z_{1}}{z_{0}}, \cdots, \frac{z_{n}}{z_{0}}\right)=z_{0}^{d} f_{0}+z_{0}^{d-1} f_{1}+\cdots+z_{0} f_{d-1}+f_{d} .
$$

Example 6.7. The projective closure of \mathbb{A}^{n} is \mathbb{P}^{n}. The points at infinity are all points in H_{0}, namely, all points $\left\{\left[z_{0}: z_{1}: \cdots: z_{n}\right] \in \mathbb{P}^{n} \mid z_{0}=0\right\}$.

This definition is not easy to use in general, as it requires to homogenise infinitely many polynomials in $\mathbb{I}_{a}(X)$. The following criterion is more convenient for computations.

Proposition 6.8. Let $X=\mathbb{V}_{a}(f) \subseteq \mathbb{A}^{n}$ be an affine hypersurface for some polynomial $f \in \mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$ of degree d. Let

$$
\bar{f}\left(z_{0}, z_{1}, \cdots, z_{n}\right)=z_{0}^{d} f\left(\frac{z_{1}}{z_{0}}, \cdots, \frac{z_{n}}{z_{0}}\right)
$$

be the homogenisation of f. Then $\bar{X}=\mathbb{V}_{p}(\bar{f})$.
Proof. Non-examinable.
Remark 6.9. In general, when an affine algebraic set X is defined by more than one polynomial, the projective closure of X is not defined by homogenisation of the generators of $\mathbb{I}_{a}(X)$. We will see an example in Exercise 6.3.

Example 6.10. In Example 4.9, we have seen that the projective closure of $\mathbb{V}_{a}\left(x_{2}-x_{1}+\right.$ 1) $\subseteq \mathbb{A}^{2}$ is $\mathbb{V}_{p}\left(x_{2}-x_{1}+x_{0}\right) \subseteq \mathbb{P}^{2}$, and that the projective closure of $\mathbb{V}_{a}\left(x_{2}-x_{1}-1\right) \subseteq \mathbb{A}^{2}$ is $\mathbb{V}_{p}\left(x_{2}-x_{1}-x_{0}\right) \subseteq \mathbb{P}^{2}$. The point at infinity for both affine algebraic sets is $[0: 1: 1]$.

Example 6.11. We compute the projective closure and points at infinity for the heart curve $X=\mathbb{V}_{a}\left(\left(x^{2}+y^{2}-1\right)^{3}-x^{2} y^{3}\right)$. We use z for the extra variable. By Proposition 6.8 , the projective closure is given by one homogeneous equation of degree 6 ; that is

$$
\bar{X}=\mathbb{V}_{p}\left(\left(x^{2}+y^{2}-z^{2}\right)^{3}-x^{2} y^{3} z\right) .
$$

To find the points at infinity, we set $z=0$. Then we have $\left(x^{2}+y^{2}\right)^{3}=0$, hence $y=$ $\pm \sqrt{-1} x$. It follows that there are two points at infinity given by $[x: y: z]=[1: \sqrt{-1}: 0]$ and $[1:-\sqrt{-1}: 0]$.

Finally we briefly mention the relation of the two constructions. They are almost inverse to each other, subject to some assumptions. For simplicity, we only state the correspondece in the case of varieties. We have the following bijection. Recall that $H_{0}=\mathbb{P}^{n} \backslash U_{0}$.

$$
\left\{\begin{array}{c}
\text { projective varieties } X \subseteq \mathbb{P}^{n} \\
\text { such that } X \nsubseteq H_{0}
\end{array}\right\} \stackrel{Y=X \cap U_{0}}{\stackrel{X=\bar{Y}}{\rightleftarrows}}\left\{\begin{array}{c}
\text { affine varieties } Y \subseteq U_{0} \cong \mathbb{A}^{n} \\
\text { such that } Y \neq \varnothing
\end{array}\right\}
$$

We summarise the content of the correspondence in the following result:
Proposition 6.12. There is a bijection between projective varieties in \mathbb{P}^{n} which are not contained in $H_{0}=\mathbb{P}^{n} \backslash U_{0}$ and non-empty affine varieties in U_{0}, given by the mutually inverse correspondences of taking the standard affine piece in U_{0} and taking the projective closure.

Proof. Non-examinable. Interested reader can find the proof in [Section 5.5, Reid, Undergraduate Algebraic Geometry] or [Section 4.3, Fulton, Algebraic Curves].

The importance of the two constructions relating affine and projective varieties is that they allow us to study some properties in a relatively easier context, i.e., either affine or projective, and deduce some similar properties in the other context. We will see two examples in future lectures.

