
6. Function Fields

We will study rational functions on projective varieties, and pullback of rational functions

along dominant rational maps. Similar to the affine case, we will see that the field of

rational functions determines the birational class of a projective variety.

6.1. Bridge between affine and projective algebraic sets. We have seen affine and

projective algebraic sets as subsets of affine and projective spaces defined by polynomial

equations. They are related in a way that is similar to affine and projective spaces. Recall

that Pn is covered by standard affine charts Ui for i = 0, 1, · · · , n.

Proposition 6.1 (From projective to affine). Let X ⊆ Pn be a projective algebraic set,

and Ui a standard affine chart of Pn. Then Xi := X ∩ Ui is an affine algebraic set in Ui.

Proof. Without loss of generality, we prove the statement for i = 0. Assume X =

Vp(f1, · · · , fm) for some homogeneous polynomials f1, · · · , fm ∈ k[z0, · · · , zn]. Then

p = [a0 : · · · : an] ∈ X ∩ U0 ⇐⇒ fj(a0, a1 · · · , an) = 0 for each j

⇐⇒ fj

(
1,
a1
a0
, · · · , an

a0

)
= 0 for each j

⇐⇒ gj

(
a1
a0
, · · · , an

a0

)
= 0 for each j

where gj = fj(1, z1, · · · , zn). Hence Xi = Va(g1, · · · , gm) is an affine algebraic set. �

Remark 6.2. As in the proof, given a homogeneous polynomial (i.e. fj), we can set one of

its variables to be 1 to obtain a (not necessarily homogeneous) polynomial (i.e. gj). This

process is often called dehomogenisation.

Definition 6.3. Let X ⊆ Pn be a projective algebraic set, and Ui a standard affine chart

of Pn. The affine algebraic set Xi = X ∩ Ui is called a standard affine piece of X. The

decomposition X = ∪ni=0Xi is called the standard affine cover of X.

Example 6.4. Consider the projective algebraic sets X = Vp(xy − z2) ⊆ P2. By setting

one of the variables to be 1, we obtain the three standard affine pieces of X, which are

X0 = Va(y − z2) ⊆ A2, X1 = Va(x− z2) ⊆ A2, and X2 = Va(xy − 1) ⊆ A2.

We turn to another relation between affine and projective algebraic sets. Recall that Pn

can be understood as An together with “points at infinity”. We have also seen in Example

4.9 how to find points at infinity for a line in A2. More generally we have

Definition 6.5 (From affine to projective). For any affine algebraic set X ⊆ An, let I =

Ia(X) and I be the ideal in k[z0, · · · , zn] generated by the set of homogeneous polynomials{
zdeg f0 f

(
z1
z0
, · · · , zn

z0

) ∣∣∣∣ f(x1, · · · , xn) ∈ I
}
.
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Then the projective algebraic set X = Vp(I) is called the projective closure of X. The

points in {[z0 : · · · : zn] ∈ X | z0 = 0} are called points at infinity for X.

Remark 6.6. We have already used the above modification of a polynomial in Example

4.9; that is, first replacing all non-homogeneous coordinates by ratios of homogeneous

coordinates, then clearing the denominators. This process is often called homogenisation.

More precisely, for a polynomial f(x1, · · · , xn) ∈ k[x1, · · · , xn], assume deg f = d and let

f = f0 + f1 + · · ·+ fd−1 + fd

be its homogeneous decomposition, then the homogenisation of f is given by

zd0 · f
(
z1
z0
, · · · , zn

z0

)
= zd0f0 + zd−10 f1 + · · ·+ z0fd−1 + fd.

Example 6.7. The projective closure of An is Pn. The points at infinity are all points in

H0, namely, all points {[z0 : z1 : · · · : zn] ∈ Pn | z0 = 0}.

This definition is not easy to use in general, as it requires to homogenise infinitely many

polynomials in Ia(X). The following criterion is more convenient for computations.

Proposition 6.8. Let X = Va(f) ⊆ An be an affine hypersurface for some polynomial

f ∈ k[x1, · · · , xn] of degree d. Let

f(z0, z1, · · · , zn) = zd0f

(
z1
z0
, · · · , zn

z0

)
be the homogenisation of f . Then X = Vp(f).

Proof. Non-examinable. �

Remark 6.9. In general, when an affine algebraic set X is defined by more than one

polynomial, the projective closure of X is not defined by homogenisation of the generators

of Ia(X). We will see an example in Exercise 6.3.

Example 6.10. In Example 4.9, we have seen that the projective closure of Va(x2−x1 +

1) ⊆ A2 is Vp(x2− x1 + x0) ⊆ P2, and that the projective closure of Va(x2− x1− 1) ⊆ A2

is Vp(x2 − x1 − x0) ⊆ P2. The point at infinity for both affine algebraic sets is [0 : 1 : 1].

Example 6.11. We compute the projective closure and points at infinity for the heart

curve X = Va((x
2 + y2 − 1)3 − x2y3). We use z for the extra variable. By Proposition

6.8, the projective closure is given by one homogeneous equation of degree 6; that is

X = Vp((x
2 + y2 − z2)3 − x2y3z).

To find the points at infinity, we set z = 0. Then we have (x2 + y2)3 = 0, hence y =

±
√
−1x. It follows that there are two points at infinity given by [x : y : z] = [1 :

√
−1 : 0]

and [1 : −
√
−1 : 0].
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Finally we briefly mention the relation of the two constructions. They are almost inverse to

each other, subject to some assumptions. For simplicity, we only state the correspondece

in the case of varieties. We have the following bijection. Recall that H0 = Pn\U0.

{
projective varieties X ⊆ Pn

such that X 6⊆ H0

}
Y=X∩U0

//

{
affine varieties Y ⊆ U0

∼= An

such that Y 6= ∅

}
X=Y

oo

We summarise the content of the correspondence in the following result:

Proposition 6.12. There is a bijection between projective varieties in Pn which are not

contained in H0 = Pn\U0 and non-empty affine varieties in U0, given by the mutually

inverse correspondences of taking the standard affine piece in U0 and taking the projective

closure.

Proof. Non-examinable. Interested reader can find the proof in [Section 5.5, Reid, Un-

dergraduate Algebraic Geometry] or [Section 4.3, Fulton, Algebraic Curves]. �

The importance of the two constructions relating affine and projective varieties is that

they allow us to study some properties in a relatively easier context, i.e., either affine

or projective, and deduce some similar properties in the other context. We will see two

examples in future lectures.
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