
6.2. Rational functions and function fields. As we have seen, polynomials cannot

be used to define functions on projective algebraic sets. Therefore we have to find a more

flexible way to define functions on them, namely, rational functions. For simplicity, we

only consider varieties. We will first define rational functions on affine varieties, then on

projective varieties.

For any affine variety X ⊆ An, I(X) is a prime ideal in k[x1, · · · , xn] by Proposition 2.15.

It follows that k[X] = k[x1, · · · , xn]/I(X) is an integral domain by Proposition 2.12 (1).

Definition 6.13. Let X ⊆ An be an affine variety. Its function field k(X) is the field of

fractions of the integral domain k[X]. In other words,

k(X) :=

{
ϕ

ψ
| ϕ, ψ ∈ k[X] with ψ 6= 0

}
/ ∼,

where ∼ is an equivalence relation defined by

ϕ1

ψ1

∼ ϕ2

ψ2

⇐⇒ ϕ1ψ2 − ψ1ϕ2 = 0 ∈ k[X].

An element in k(X) is called a rational function on X.

Remark 6.14. Recall that ϕ and ψ can be given by polynomials, so we can also write

k(X) =

{
f

g
| f, g ∈ k[x1, · · · , xn] with g /∈ I(X)

}
/ ∼,

where ∼ is an equivalence relation defined by

f1
g1
∼ f2
g2

⇐⇒ f1g2 − g1f2 ∈ I(X).

As a quick example, 1
x

defines a rational function on the affine variety X = A1. Every

polynomial function is clearly a rational function which is defined everywhere on X. But

in general, a rational function is only a partially defined function on X.

Example 6.15. The coordinate ring of the affine variety X = An is k[An] = k[x1, · · · , xn].

By Definition 6.13, its function field is the field of fractions of k[x1, · · · , xn], usually written

as k(An) = k(x1, · · · , xn). A rational function on X = An is given by a fraction of the

form f
g

with g 6= 0. Two such fractions are considered to define the same rational function

if and only if they can be reduced to the same form after cancelling common factors in

the numerator and the denomirator.

We want to find out how to make a similar definition on projective varieties. Recall from

equation (4.3) that a non-constant homogeneous polynomial cannot define a function

on a projective algebraic set, because its value at a point depends on the choice of the

homogeneous coordinates. However, for two homogeneous polynomials f, g ∈ k[z0, · · · , zn]
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of the same degree d, their ratio f
g

is well-defined at any point p = [a0 : · · · : an] provided

that g(p) 6= 0, because for any λ 6= 0, we have

f(λa0, · · · , λan)

g(λa0, · · · , λan)
=
λdf(a0, · · · , an)

λdg(a0, · · · , an)
=
f(a0, · · · , an)

g(a0, · · · , an)
,

which is independent of the choice of the homogeneous coordinates of p. Therefore f
g

can

be thought as a partially defined function on a projective variety. More precisely,

Definition 6.16. Let X ⊆ Pn be a projective variety. The function field of X is

k(X) :=

{
f

g

∣∣∣∣ f, g ∈ k[z0, · · · , zn] are homogeneous of the same degree, g /∈ I(X)

}
/ ∼,

where ∼ is an equivalence relation defined by

f1
g1
∼ f2
g2
⇐⇒ f1g2 − f2g1 ∈ I(X).

An element in k(X) is called a rational function on X.

It is in general not easy to explicitly compute the function field of a projective variety.

However, the following result allows one to reduce the question to the affine situation.

Lemma 6.17. Let X ⊆ An be an affine variety and X ⊆ Pn its projective closure. Then

k(X) ∼= k(X).

Sketch of proof. (This proof is non-examinable and not covered in lectures.)

We sketch a proof. For every rational function on X

f(x1, · · · , xn)

g(x1, · · · , xn)
∈ k(X),

assume m = max{deg f, deg g}, then we can get a rational function on X

zm0 f( z1
z0
, · · · , zn

z0
)

zm0 g( z1
z0
, · · · , zn

z0
)
∈ k(X),

since it is the ratio of two homogeneous polynomials of degree m. In this way we can

define a map k(X)→ k(X). On the other hand, for every rational function on X

p(z0, · · · , zn)

q(z0, · · · , zn)
∈ k(X),

we have a rational function on X

p(1, x1, · · · , xn)

q(1, x1, · · · , xn)
∈ k(X).

In this way we can define a map k(X) → k(X). We need to verify that both maps

are well-defined (i.e., independent of the choice of the representative in each equivalence

class), and are homomorphisms. More work is required to check that they are inverse of

each other hence are isomorphisms. �
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Example 6.18. By Example 6.15 we know k(An) = k(x1, · · · , xn). Since Pn is the

projective closure of An by Example 6.7, we have k(Pn) ∼= k(x1, · · · , xn) by Lemma 6.17.

Recall that polynomial maps can pullback polynomial functions on affine algebraic sets.

Similarly, a dominant rational map can pullback rational functions on projective varieties.

Definition 6.19. Let ϕ : X 99K Y be a dominant rational map between projective

varieties. For every rational function g on Y , the pullback of g along ϕ is the rational

function g ◦ ϕ on X, denoted ϕ∗(g).

Example 6.20. Consider the dominant rational map ϕ : P2 99K P2 studied in Example

5.18. Then the pullback of the rational function x
y+z
∈ k(P2) along ϕ is

ϕ∗
(

x

y + z

)
=

yz

zx+ xy
∈ k(P2).

Recall that two affine algebraic sets are isomorphic if and only if they have isomorphic

coordinate rings. A similar result holds for projective varieties.

Proposition 6.21. A rational map ϕ : X 99K Y between projective varieties is a bira-

tional map if and only if ϕ is dominant and ϕ∗ : k(Y ) −→ k(X) is a field isomorphism.

Two projective varieties X and Y are birational if and only if k(X) ∼= k(Y ).

Proof. Non-examinable. Interested reader can find the proof in [Section 5.8, Reid, Un-

dergraduate Algebraic Geometry] or [Section 6.6, Fulton, Algebraic Curves]. �
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