
7. Non-singularity

The non-singularity is an algebraic version of smoothness in analysis. We will find out

how to determine the non-singularity of a variety from its defining equations, and study

the related notions of tangent spaces and dimensions.

7.1. Non-singularity of irreducible hypersurfaces. In this lecture we consider the

case of irreducible hypersurfaces. We start with the affine case. Let f ∈ k[x1, · · · , xn] be

a non-constant irreducible polynomial. By Lemma 5.4, we know that V(f) ⊆ An is an

affine irreducible hypersurface.

Definition 7.1. Let X = V(f) ⊆ An be an affine irreducible hypersurface defined by a

non-constant irreducible polynomial f ∈ k[x1, · · · , xn]. For any point p ∈ X, we say X is

singular at p if ∂f
∂xi

(p) = 0 for every i, 1 6 i 6 n; otherwise we say X is non-singular at

p. If X is non-singular at every point p ∈ X, then we say X is non-singular ; otherwise

we say X is singular.

Remark 7.2. From Definition 7.1 we see that the singular points in X = V(f) form an

affine algebraic set Xsing = V(f, ∂f
∂x1
, · · · , ∂f

∂xn
) ⊆ X. To find all singular points, we just

need to solve the system of equations given by f and all its partial derivatives.

Example 7.3. Consider the affine variety X = V(f) ⊆ A2 where f = x3 + y3 − 3xy. To

find all singular points, we need to solve the system of equations given by f = x3 + y3 −
3xy = 0 and the partial derivatives ∂f

∂x
= 3x2 − 3y = 0 and ∂f

∂y
= 3y2 − 3x = 0. From the

two partial derivatives we get x = y2 = x4, therefore x(x3 − 1) = 0, which implies x = 0

or x3 = 1. When x = 0, we have y = 0. It is clear that (x, y) = (0, 0) is a solution to the

system of equations. When x3 = 1, we have x3 + y3 − 3xy = x3 + x6 − 3x3 = −1 6= 0.

Contradition. Therefore the only point at which X is singular is (0, 0).

The following result shows that X = V(f) cannot be singular everywhere. Recall that we

always assume the underlying field k is an algebraically closed field of charasteristic 0.

Theorem 7.4. Let X = V(f) ⊆ An be an affine hypersurface defined by a non-constant

irreducible polynomial f ∈ k[x1, · · · , xn]. Then the set of non-singular points in X is

non-empty.

Proof. The set of singular points in X is given by

Xsing = V
(
f,
∂f

∂x1
, · · · , ∂f

∂xn

)
⊆ X.

Suppose on the contrary that Xsing = X, then ∂f
∂xi
∈ I(X) for every i.
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Since f is an irreducible polynomial, (f) is a prime ideal by Lemma 5.4. It follows by

Proposition 2.9 that I(X) = (f). Therefore for every i, we have

∂f

∂xi
= f · gi

for some gi ∈ k[x1, · · · , xn]. Assume f has degree di in xi. If di > 0, then ∂f
∂xi

has degree

di − 1 in xi, while f · gi has degree at least di in xi. Contradiction. Therefore di = 0. In

other words, xi does not occur in f . Since this holds for every i, f must be a constant

polynomial. Contradiction. This finishes the proof of existence of non-singular points in

X = V(f). �

Definition 7.5. Let X = V(f) ⊆ An be an affine irreducible hypersurface defined by a

non-constant irreducible polynomial f ∈ k[x1, · · · , xn]. For any point p = (a1, · · · , an) ∈
X, the tangent space of X at p is the affine variety

TpX := V
(
∂f

∂x1
(p) · (x1 − a1) + · · ·+ ∂f

∂xn
(p) · (xn − an)

)
⊆ An.

Example 7.6. Following Example 7.3, we compute the tangent spaces of X at two points

p1 = (4
3
, 2
3
) and p2 = (0, 0). Recall that (∂f

∂x
, ∂f
∂y

) = (3x2 − 3y, 3y2 − 3x). It is easy to

compute that (∂f
∂x

(p1),
∂f
∂y

(p1)) = (10
3
,−8

3
) and (∂f

∂x
(p2),

∂f
∂y

(p2)) = (0, 0). Therefore

Tp1X = V
(

10

3

(
x− 4

3

)
− 8

3

(
y − 2

3

))
= V(5x− 4y − 4),

Tp2X = V (0 · (x− 0) + 0 · (y − 0)) = A2

are the tangent spaces of X at p1 and p2 respectively.

Remark 7.7. In Definition 7.5, when p is singular point of X, the defining equation of

TpX is a zero polynomial hence TpX = An, which has dimension n as a vector space over

k; when X is non-singular at p, the tangent space TpX is a shift of the vector subspace

V
(
∂f
∂x1

(p) · x1 + · · ·+ ∂f
∂xn

(p) · xn
)

, which has dimension n− 1. Therefore we can say, the

irreducible hypersurface X ⊆ An is non-singular at p if and only if dimTpX = n − 1;

X is singular at p if and only if dimTpX > n − 1. We will generalise this conclusion to

arbitrary affine varieties in next lecture.

Finally we briefly mention the case of projective irreducible hypersurfaces. Let f ∈
k[z0, · · · , zn] be a non-constant homogeneous irreducible polynomial. By Lemma 5.4, we

know that V(f) ⊆ Pn is a projective irreducible hypersurface.

Definition 7.8. Let X = V(f) ⊆ Pn be a projective irreducible hypersurface defined

by a non-constant homogeneous irreducible polynomial f ∈ k[z0, · · · , zn]. For any point

p ∈ X, we say X is singular at p if the affine hypersurface Xi = X ∩ Ui is singular at

p for any standard affine piece Xi containing p; otherwise we say X is non-singular at

p. The tangent space TpX of X at p is the projective closure of TpXi for any standard
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affine piece Xi containing p. If X is non-singular at every point p ∈ X, then we say X is

non-singular ; otherwise we say X is singular.

Remark 7.9. A point p ∈ X could be contained in several standard affine pieces of X. To

check whether X is singular at p, and compute the tangent space of X at p, it suffices to

choose one standard affine piece of X containing p. The result does not depend on the

choice of the standard affine piece.

Example 7.10. Consider the projective variety Y = Vp(f) ⊆ P2 where f = x3+y3−3xyz.

The standard affine piece Y ∩U2 is the affine variety in Examples 7.3 and 7.6. The results

in the two examples imply that Y is non-singular at p1 = [4
3

: 2
3

: 1] = [4 : 2 : 3] and

singular at p2 = [0 : 0 : 1]. Moreover, the tangent spaces of Y at p1 and p2 are given by

Tp1Y = Vp(5x− 4y − 4z) and Tp2Y = P2.
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