7. NON-SINGULARITY

The non-singularity is an algebraic version of smoothness in analysis. We will find out how to determine the non-singularity of a variety from its defining equations, and study the related notions of tangent spaces and dimensions.
7.1. Non-singularity of irreducible hypersurfaces. In this lecture we consider the case of irreducible hypersurfaces. We start with the affine case. Let $f \in \mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$ be a non-constant irreducible polynomial. By Lemma 5.4, we know that $\mathbb{V}(f) \subseteq \mathbb{A}^{n}$ is an affine irreducible hypersurface.

Definition 7.1. Let $X=\mathbb{V}(f) \subseteq \mathbb{A}^{n}$ be an affine irreducible hypersurface defined by a non-constant irreducible polynomial $f \in \mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$. For any point $p \in X$, we say X is singular at p if $\frac{\partial f}{\partial x_{i}}(p)=0$ for every $i, 1 \leqslant i \leqslant n$; otherwise we say X is non-singular at p. If X is non-singular at every point $p \in X$, then we say X is non-singular; otherwise we say X is singular.

Remark 7.2. From Definition 7.1 we see that the singular points in $X=\mathbb{V}(f)$ form an affine algebraic set $X_{\text {sing }}=\mathbb{V}\left(f, \frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{n}}\right) \subseteq X$. To find all singular points, we just need to solve the system of equations given by f and all its partial derivatives.

Example 7.3. Consider the affine variety $X=\mathbb{V}(f) \subseteq \mathbb{A}^{2}$ where $f=x^{3}+y^{3}-3 x y$. To find all singular points, we need to solve the system of equations given by $f=x^{3}+y^{3}-$ $3 x y=0$ and the partial derivatives $\frac{\partial f}{\partial x}=3 x^{2}-3 y=0$ and $\frac{\partial f}{\partial y}=3 y^{2}-3 x=0$. From the two partial derivatives we get $x=y^{2}=x^{4}$, therefore $x\left(x^{3}-1\right)=0$, which implies $x=0$ or $x^{3}=1$. When $x=0$, we have $y=0$. It is clear that $(x, y)=(0,0)$ is a solution to the system of equations. When $x^{3}=1$, we have $x^{3}+y^{3}-3 x y=x^{3}+x^{6}-3 x^{3}=-1 \neq 0$. Contradition. Therefore the only point at which X is singular is $(0,0)$.

The following result shows that $X=\mathbb{V}(f)$ cannot be singular everywhere. Recall that we always assume the underlying field \mathbb{k} is an algebraically closed field of charasteristic 0 .

Theorem 7.4. Let $X=\mathbb{V}(f) \subseteq \mathbb{A}^{n}$ be an affine hypersurface defined by a non-constant irreducible polynomial $f \in \mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$. Then the set of non-singular points in X is non-empty.

Proof. The set of singular points in X is given by

$$
X_{\text {sing }}=\mathbb{V}\left(f, \frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{n}}\right) \subseteq X
$$

Suppose on the contrary that $X_{\text {sing }}=X$, then $\frac{\partial f}{\partial x_{i}} \in \mathbb{I}(X)$ for every i.

Since f is an irreducible polynomial, (f) is a prime ideal by Lemma 5.4. It follows by Proposition 2.9 that $\mathbb{I}(X)=(f)$. Therefore for every i, we have

$$
\frac{\partial f}{\partial x_{i}}=f \cdot g_{i}
$$

for some $g_{i} \in \mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$. Assume f has degree d_{i} in x_{i}. If $d_{i}>0$, then $\frac{\partial f}{\partial x_{i}}$ has degree $d_{i}-1$ in x_{i}, while $f \cdot g_{i}$ has degree at least d_{i} in x_{i}. Contradiction. Therefore $d_{i}=0$. In other words, x_{i} does not occur in f. Since this holds for every i, f must be a constant polynomial. Contradiction. This finishes the proof of existence of non-singular points in $X=\mathbb{V}(f)$.

Definition 7.5. Let $X=\mathbb{V}(f) \subseteq \mathbb{A}^{n}$ be an affine irreducible hypersurface defined by a non-constant irreducible polynomial $f \in \mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$. For any point $p=\left(a_{1}, \cdots, a_{n}\right) \in$ X, the tangent space of X at p is the affine variety

$$
T_{p} X:=\mathbb{V}\left(\frac{\partial f}{\partial x_{1}}(p) \cdot\left(x_{1}-a_{1}\right)+\cdots+\frac{\partial f}{\partial x_{n}}(p) \cdot\left(x_{n}-a_{n}\right)\right) \subseteq \mathbb{A}^{n}
$$

Example 7.6. Following Example 7.3, we compute the tangent spaces of X at two points $p_{1}=\left(\frac{4}{3}, \frac{2}{3}\right)$ and $p_{2}=(0,0)$. Recall that $\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)=\left(3 x^{2}-3 y, 3 y^{2}-3 x\right)$. It is easy to compute that $\left(\frac{\partial f}{\partial x}\left(p_{1}\right), \frac{\partial f}{\partial y}\left(p_{1}\right)\right)=\left(\frac{10}{3},-\frac{8}{3}\right)$ and $\left(\frac{\partial f}{\partial x}\left(p_{2}\right), \frac{\partial f}{\partial y}\left(p_{2}\right)\right)=(0,0)$. Therefore

$$
\begin{aligned}
& T_{p_{1}} X=\mathbb{V}\left(\frac{10}{3}\left(x-\frac{4}{3}\right)-\frac{8}{3}\left(y-\frac{2}{3}\right)\right)=\mathbb{V}(5 x-4 y-4), \\
& T_{p_{2}} X=\mathbb{V}(0 \cdot(x-0)+0 \cdot(y-0))=\mathbb{A}^{2}
\end{aligned}
$$

are the tangent spaces of X at p_{1} and p_{2} respectively.
Remark 7.7. In Definition 7.5, when p is singular point of X, the defining equation of $T_{p} X$ is a zero polynomial hence $T_{p} X=\mathbb{A}^{n}$, which has dimension n as a vector space over \mathbb{k}; when X is non-singular at p, the tangent space $T_{p} X$ is a shift of the vector subspace $\mathbb{V}\left(\frac{\partial f}{\partial x_{1}}(p) \cdot x_{1}+\cdots+\frac{\partial f}{\partial x_{n}}(p) \cdot x_{n}\right)$, which has dimension $n-1$. Therefore we can say, the irreducible hypersurface $X \subseteq \mathbb{A}^{n}$ is non-singular at p if and only if $\operatorname{dim} T_{p} X=n-1$; X is singular at p if and only if $\operatorname{dim} T_{p} X>n-1$. We will generalise this conclusion to arbitrary affine varieties in next lecture.

Finally we briefly mention the case of projective irreducible hypersurfaces. Let $f \in$ $\mathbb{k}\left[z_{0}, \cdots, z_{n}\right]$ be a non-constant homogeneous irreducible polynomial. By Lemma 5.4, we know that $\mathbb{V}(f) \subseteq \mathbb{P}^{n}$ is a projective irreducible hypersurface.

Definition 7.8. Let $X=\mathbb{V}(f) \subseteq \mathbb{P}^{n}$ be a projective irreducible hypersurface defined by a non-constant homogeneous irreducible polynomial $f \in \mathbb{k}\left[z_{0}, \cdots, z_{n}\right]$. For any point $p \in X$, we say X is singular at p if the affine hypersurface $X_{i}=X \cap U_{i}$ is singular at p for any standard affine piece X_{i} containing p; otherwise we say X is non-singular at p. The tangent space $T_{p} X$ of X at p is the projective closure of $T_{p} X_{i}$ for any standard
affine piece X_{i} containing p. If X is non-singular at every point $p \in X$, then we say X is non-singular; otherwise we say X is singular.

Remark 7.9. A point $p \in X$ could be contained in several standard affine pieces of X. To check whether X is singular at p, and compute the tangent space of X at p, it suffices to choose one standard affine piece of X containing p. The result does not depend on the choice of the standard affine piece.

Example 7.10. Consider the projective variety $Y=\mathbb{V}_{p}(\bar{f}) \subseteq \mathbb{P}^{2}$ where $\bar{f}=x^{3}+y^{3}-3 x y z$. The standard affine piece $Y \cap U_{2}$ is the affine variety in Examples 7.3 and 7.6. The results in the two examples imply that Y is non-singular at $p_{1}=\left[\frac{4}{3}: \frac{2}{3}: 1\right]=[4: 2: 3]$ and singular at $p_{2}=[0: 0: 1]$. Moreover, the tangent spaces of Y at p_{1} and p_{2} are given by $T_{p_{1}} Y=\mathbb{V}_{p}(5 x-4 y-4 z)$ and $T_{p_{2}} Y=\mathbb{P}^{2}$.

