7. NON-SINGULARITY

The non-singularity is an algebraic version of smoothness in analysis. We will find out
how to determine the non-singularity of a variety from its defining equations, and study
the related notions of tangent spaces and dimensions.

7.1. Non-singularity of irreducible hypersurfaces. In this lecture we consider the
case of irreducible hypersurfaces. We start with the affine case. Let f € klxy, -+, xz,] be
a non-constant irreducible polynomial. By Lemma 5.4, we know that V(f) C A" is an
affine irreducible hypersurface.

Definition 7.1. Let X = V(f) C A" be an affine irreducible hypersurface defined by a
non-constant irreducible polynomial f € k[xq,--- ,x,]. For any point p € X, we say X is
singular at p if g—i(p) = 0 for every i, 1 < i < n; otherwise we say X is non-singular at
p. If X is non-singular at every point p € X, then we say X is non-singular; otherwise
we say X is singular.

Remark 7.2. From Definition 7.1 we see that the singular points in X = V(f) form an
affine algebraic set Xgns = V(f, g—:fl, e ,%) C X. To find all singular points, we just

need to solve the system of equations given by f and all its partial derivatives.

Example 7.3. Consider the affine variety X = V(f) C A? where f = 2® + y* — 32y. To
find all singular points, we need to solve the system of equations given by f = 23 + 33 —
3zy = 0 and the partial derivatives 2L = 322 — 3y = 0 and Z_Z = 3y? — 3x = 0. From the
two partial derivatives we get x = y? = z*, therefore z(23 — 1) = 0, which implies 2 = 0
or 3 = 1. When z = 0, we have y = 0. It is clear that (z,y) = (0,0) is a solution to the
system of equations. When 2® = 1, we have 23 + y3 — 3zy = 2% + 25 — 32° = —1 # 0.

Contradition. Therefore the only point at which X is singular is (0, 0).

The following result shows that X = V(f) cannot be singular everywhere. Recall that we
always assume the underlying field k is an algebraically closed field of charasteristic 0.

Theorem 7.4. Let X = V(f) C A™ be an affine hypersurface defined by a non-constant
irreducible polynomial f € klxy, -+ ,x,]. Then the set of non-singular points in X is
non-empty.

Proof. The set of singular points in X is given by
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Suppose on the contrary that Xg,, = X, then % € [(X) for every i.
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Since f is an irreducible polynomial, (f) is a prime ideal by Lemma 5.4. It follows by
Proposition 2.9 that I(X) = (f). Therefore for every i, we have

of
axz - f : gl
for some g; € k[xq, -+ ,x,]. Assume f has degree d; in z;. If d; > 0, then L has degree

d; — 1 in x;, while f - g; has degree at least d; in x;. Contradiction. Therefore d; =0. In
other words, z; does not occur in f. Since this holds for every ¢, f must be a constant
polynomial. Contradiction. This finishes the proof of existence of non-singular points in
X =V(f). O

Definition 7.5. Let X = V(f) C A" be an affine irreducible hypersurface defined by a
non-constant irreducible polynomial f € k[zy,--- ,2,]. For any point p = (a1, -+ ,a,) €

X, the tangent space of X at p is the affine variety

af of )
8x1() (x1—ag)+--- 3xn() (mn—an))gA.

Example 7.6. Following Example 7.3, we compute the tangent spaces of X at two points
p = (3,2) and ps = (0,0). Recall that (8—!2,%) = (3:62 3y,3y* — 3z). It is easy to
compute that (833 (p1), %(pl))

1,X = V(

(L2 —8) and (% (p,), &L o L(py)) = (0,0). Therefore

(9 (- 1) 23 (- 2)) v a0,
T,,X=V(0:-(x—0)+0-(y—0))=A?

are the tangent spaces of X at p; and py respectively.

Remark 7.7. In Definition 7.5, when p is singular point of X, the defining equation of
T,X is a zero polynomial hence 7,X = A", which has dimension n as a vector space over
k; when X is non-singular at p, the tangent space 7, X is a shift of the vector subspace

A\ (gxfl (p) a1+ + %(p) . xn>, which has dimension n — 1. Therefore we can say, the
irreducible hypersurface X C A" is non-singular at p if and only if dim7,X = n — 1;
X is singular at p if and only if dim7,X > n — 1. We will generalise this conclusion to

arbitrary affine varieties in next lecture.

Finally we briefly mention the case of projective irreducible hypersurfaces. Let f €
k[zo, -+ , z,] be a non-constant homogeneous irreducible polynomial. By Lemma 5.4, we
know that V(f) C P" is a projective irreducible hypersurface.

Definition 7.8. Let X = V(f) C P™ be a projective irreducible hypersurface defined
by a non-constant homogeneous irreducible polynomial f € klzo,--- , 2,]. For any point
p € X, we say X is singular at p if the affine hypersurface X; = X N U; is singular at
p for any standard affine piece X; containing p; otherwise we say X is non-singular at

p. The tangent space T,X of X at p is the projective closure of T, X; for any standard
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affine piece X; containing p. If X is non-singular at every point p € X, then we say X is
non-singular; otherwise we say X is singular.

Remark 7.9. A point p € X could be contained in several standard affine pieces of X. To
check whether X is singular at p, and compute the tangent space of X at p, it suffices to
choose one standard affine piece of X containing p. The result does not depend on the
choice of the standard affine piece.

Example 7.10. Consider the projective variety ¥ = Vp(f) C P? where f = 23 +y°—3zyz.

The standard affine piece Y NU, is the affine variety in Examples 7.3 and 7.6. The results
in the two examples imply that Y is non-singular at p; =[5 : 2 : 1] = [4: 2 : 3] and

singular at po = [0 : 0 : 1]. Moreover, the tangent spaces of Y at p; and ps are given by
T, Y =V,(5x — 4y — 4z2) and T,,,Y = P2
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