7.2. Non-singularity of varieties. We generalise our discussion from last time and study non-singularity of varieties. Similarly, we first consider the case of affine varieties. for any affine variety X, we know by Corollary 1.14 that $\mathbb{I}(X)$ is finitely generated.

Definition 7.11. Let $X \subseteq \mathbb{A}^{n}$ be a non-empty affine variety. Assume $\mathbb{I}(X)=\left(f_{1}, \cdots, f_{m}\right)$ for some $f_{1}, \cdots, f_{m} \in \mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$. For any point $p=\left(a_{1}, \cdots, a_{n}\right) \in X$, the tangent space of X at p is the affine variety

$$
T_{p} X:=\bigcap_{i=1}^{m} \mathbb{V}\left(\sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}}(p) \cdot\left(x_{j}-a_{j}\right)\right) \subseteq \mathbb{A}^{n}
$$

Remark 7.12. We can view the tangent space $T_{p} X$ as a shift of the linear subspace

$$
\bigcap_{i=1}^{m} \mathbb{V}\left(\sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}}(p) \cdot x_{j}\right) \subseteq \mathbb{A}^{n}
$$

which is the null space of the matrix

$$
M_{p}:=\left(\frac{\partial f_{i}}{\partial x_{j}}(p)\right)_{1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n}
$$

By the rank-nullity theorem, the dimension of $T_{p} X$ is given by

$$
\operatorname{dim} T_{p} X=n-\operatorname{rank} M_{p}
$$

Definition 7.13. Let $X \subseteq \mathbb{A}^{n}$ be a non-empty affine variety. The dimension of X is

$$
\operatorname{dim} X=\min \left\{\operatorname{dim} T_{p} X \mid p \in X\right\}
$$

For any point $p \in X$, we say X is singular at p if $\operatorname{dim} T_{p} X>\operatorname{dim} X$; we say X is nonsingular at p if $\operatorname{dim} T_{p} X=\operatorname{dim} X$. If X is non-singular at every point $p \in X$, then we say X is non-singular; otherwise we say X is singular.

Remark 7.14. By Remark 7.7, we find that Definition 7.1 for hypersurfaces is consistent with the more general Definition 7.11. We also point out: although our definition of tangent spaces and dimension involve a choice of generators in $\mathbb{I}(X)$, they are in fact independent of the choice. In other words, different choices of generators in $\mathbb{I}(X)$ always give the same tangent spaces and dimension.

Example 7.15. As a simple example, let $X=\mathbb{A}^{n}$, then $\mathbb{I}(X)=\{0\}$. For any point $p \in X$, it is clear that M_{p} is a zero matrix and $T_{p} X=\mathbb{A}^{n}$. Therefore $\operatorname{dim} T_{p} X=n-\operatorname{rank} M_{p}=n$. It follows that $\operatorname{dim} X=n$, and X is non-singular.

Example 7.16. Remark 7.7 together with Theorem 7.4 shows that $\operatorname{dim} X=n-1$ for any irreducible hypersurface $X \subseteq \mathbb{A}^{n}$.

Example 7.17. As another simple example, let $X=\{p\} \subseteq \mathbb{A}^{n}$ be a single point set, where $p=\left(a_{1}, \cdots, a_{n}\right)$. By Exercise 2.3 we know $\mathbb{I}(X)=\left(x_{1}-a_{1}, \cdots, x_{n}-a_{n}\right)$. Then we have $M_{p}=I_{n}$ is the identity matrix, and that $T_{p} X=\cap_{i=1}^{n} \mathbb{V}\left(x_{i}-a_{i}\right)=\{p\}$. It follows that $\operatorname{dim} X=0$ and X is non-singular.

Now we consider projective varieties. Similar to the hypersurface case, the non-singularity and dimension of a projective variety can be reduced to its standard affine pieces.

Definition 7.18. Let $X \subseteq \mathbb{P}^{n}$ be a non-empty projective variety. The dimension of X is defined to be $\operatorname{dim} X_{i}$ for any non-empty standard affine piece $X_{i}=X \cap U_{i}$, denoted $\operatorname{dim} X$. For any point $p \in X$, we say X is singular at p if X_{i} is singular at p for any standard affine piece $X_{i}=X \cap U_{i}$ containing p; otherwise we say X is non-singular at p. If X is non-singular at every point $p \in X$, then we say X is non-singular; otherwise we say X is singular.

Remark 7.19. The dimension of a projective variety can be computed on any of its nonempty standard affine piece. Similarly whether X is singular at p can be computed on any of its standard affine piece containing p. Different standard affine pieces always give the same answer. However, in order to find all singular points in a projective variety X, we need to work with more than one standard affine piece to avoid missing any point.

A very surprising property of the dimension is its intrinsic nature.
Theorem 7.20. Let X and Y be (affine or projective) varieties. If $\mathbb{k}(X) \cong \mathbb{k}(Y)$, then $\operatorname{dim} X=\operatorname{dim} Y$.

Proof. Non-examinable. Interested reader can find the proof in [Sections 6.7 and 6.8, Reid, Undergraduate Algebraic Geometry] or [Section 6.5, Fulton, Algebraic Curves].

Remark 7.21. Theorem 7.20 shows that the dimension of a variety X only depends on its function field $\mathbb{k}(X)$. In particular, by Proposition 6.21, if two projective varieties X and Y are birational, then $\operatorname{dim} X=\operatorname{dim} Y$.

Definition 7.22. An affine (resp. projective) algebraic curve $C \subseteq \mathbb{A}^{n}$ (resp. $C \subseteq \mathbb{P}^{n}$) is a finite union of affine (resp. projective) varieties of dimension 1.

Finally we look at a comprehensive example.
Example 7.23. Consider the projective variety $X=\mathbb{V}_{p}\left(w+x+y+z, w^{2}+x^{2}+y^{2}+z^{2}\right) \subseteq$ \mathbb{P}^{3}. We will show that X is a non-singular curve. By Definition 7.18 , we need to show every standard affine piece of X is non-singular of dimension 1 .

We look at the standard affine piece $X_{0}=X \cap U_{0}=\{p=[w: x: y: z] \in X \mid w \neq 0\}$. Then $X_{0}=\mathbb{V}_{a}\left(1+x+y+z, 1+x^{2}+y^{2}+z^{2}\right) \subseteq \mathbb{A}^{3}$. To use Definition 7.11, we need to know that $\mathbb{I}_{a}\left(X_{0}\right)=\left(1+x+y+z, 1+x^{2}+y^{2}+z^{2}\right)$. This can be verified by showing the ideal $\left(1+x+y+z, 1+x^{2}+y^{2}+z^{2}\right)$ is prime and applying Proposition 2.9 (1). We skip the proof of this step and simply assume it is true.

For any point $p \in X_{0}$, we have

$$
M_{p}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 x & 2 y & 2 z
\end{array}\right) .
$$

Since there are two rows in M_{p} and the first row is non-zero, we know that $1 \leqslant \operatorname{rank} M_{p} \leqslant 2$ for every point $p \in X_{0}$. We claim that rank $M_{p}=2$ for every $p \in X_{0}$. Otherwise, assume rank $M_{p}=1$ for some $p \in X_{0}$, then the two rows must be proportional hence $x=y=z$. However $p \in X_{0}$ implies that $1+x+y+z=0$ and $1+x^{2}+y^{2}+z^{2}=0$, which become $1+3 x=0$ and $1+3 x^{2}=0$. It is easy to see that they do not have common solutions. Hence such a point p does not exist. It follows that $\operatorname{dim} T_{p} X_{0}=3-\operatorname{rank} M_{p}=1$ for every $p \in X_{0}$. That means X_{0} is non-singular, and $\operatorname{dim} X=\operatorname{dim} X_{0}=1$.

Since the defining equations of X are completely symmetric with respect to all variables, the same computation would show that all other standard affine pieces of X are nonsingular. Therefore X is a non-singular curve.

