
7.2. Non-singularity of varieties. We generalise our discussion from last time and

study non-singularity of varieties. Similarly, we first consider the case of affine varieties.

for any affine variety X, we know by Corollary 1.14 that I(X) is finitely generated.

Definition 7.11. Let X ⊆ An be a non-empty affine variety. Assume I(X) = (f1, · · · , fm)

for some f1, · · · , fm ∈ k[x1, · · · , xn]. For any point p = (a1, · · · , an) ∈ X, the tangent

space of X at p is the affine variety

TpX :=
m⋂
i=1

V

(
n∑
j=1

∂fi
∂xj

(p) · (xj − aj)

)
⊆ An.

Remark 7.12. We can view the tangent space TpX as a shift of the linear subspace

m⋂
i=1

V

(
n∑
j=1

∂fi
∂xj

(p) · xj

)
⊆ An

which is the null space of the matrix

Mp :=

(
∂fi
∂xj

(p)

)
16i6m,16j6n

.

By the rank-nullity theorem, the dimension of TpX is given by

dimTpX = n− rankMp.

Definition 7.13. Let X ⊆ An be a non-empty affine variety. The dimension of X is

dimX = min{dimTpX | p ∈ X}.

For any point p ∈ X, we say X is singular at p if dimTpX > dimX; we say X is non-

singular at p if dimTpX = dimX. If X is non-singular at every point p ∈ X, then we

say X is non-singular ; otherwise we say X is singular.

Remark 7.14. By Remark 7.7, we find that Definition 7.1 for hypersurfaces is consistent

with the more general Definition 7.11. We also point out: although our definition of

tangent spaces and dimension involve a choice of generators in I(X), they are in fact

independent of the choice. In other words, different choices of generators in I(X) always

give the same tangent spaces and dimension.

Example 7.15. As a simple example, let X = An, then I(X) = {0}. For any point p ∈ X,

it is clear that Mp is a zero matrix and TpX = An. Therefore dimTpX = n−rankMp = n.

It follows that dimX = n, and X is non-singular.

Example 7.16. Remark 7.7 together with Theorem 7.4 shows that dimX = n − 1 for

any irreducible hypersurface X ⊆ An.

Example 7.17. As another simple example, let X = {p} ⊆ An be a single point set,

where p = (a1, · · · , an). By Exercise 2.3 we know I(X) = (x1 − a1, · · · , xn − an). Then

we have Mp = In is the identity matrix, and that TpX = ∩ni=1V(xi− ai) = {p}. It follows

that dimX = 0 and X is non-singular.
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Now we consider projective varieties. Similar to the hypersurface case, the non-singularity

and dimension of a projective variety can be reduced to its standard affine pieces.

Definition 7.18. Let X ⊆ Pn be a non-empty projective variety. The dimension of X

is defined to be dimXi for any non-empty standard affine piece Xi = X ∩ Ui, denoted

dimX. For any point p ∈ X, we say X is singular at p if Xi is singular at p for any

standard affine piece Xi = X ∩ Ui containing p; otherwise we say X is non-singular at p.

If X is non-singular at every point p ∈ X, then we say X is non-singular; otherwise we

say X is singular.

Remark 7.19. The dimension of a projective variety can be computed on any of its non-

empty standard affine piece. Similarly whether X is singular at p can be computed on

any of its standard affine piece containing p. Different standard affine pieces always give

the same answer. However, in order to find all singular points in a projective variety X,

we need to work with more than one standard affine piece to avoid missing any point.

A very surprising property of the dimension is its intrinsic nature.

Theorem 7.20. Let X and Y be (affine or projective) varieties. If k(X) ∼= k(Y ), then

dimX = dimY .

Proof. Non-examinable. Interested reader can find the proof in [Sections 6.7 and 6.8,

Reid, Undergraduate Algebraic Geometry] or [Section 6.5, Fulton, Algebraic Curves]. �

Remark 7.21. Theorem 7.20 shows that the dimension of a variety X only depends on its

function field k(X). In particular, by Proposition 6.21, if two projective varieties X and

Y are birational, then dimX = dimY .

Definition 7.22. An affine (resp. projective) algebraic curve C ⊆ An (resp. C ⊆ Pn) is

a finite union of affine (resp. projective) varieties of dimension 1.

Finally we look at a comprehensive example.

Example 7.23. Consider the projective variety X = Vp(w+x+y+z, w2+x2+y2+z2) ⊆
P3. We will show that X is a non-singular curve. By Definition 7.18, we need to show

every standard affine piece of X is non-singular of dimension 1.

We look at the standard affine piece X0 = X ∩ U0 = {p = [w : x : y : z] ∈ X | w 6= 0}.
Then X0 = Va(1 + x + y + z, 1 + x2 + y2 + z2) ⊆ A3. To use Definition 7.11, we need to

know that Ia(X0) = (1 + x+ y+ z, 1 + x2 + y2 + z2). This can be verified by showing the

ideal (1 + x+ y + z, 1 + x2 + y2 + z2) is prime and applying Proposition 2.9 (1). We skip

the proof of this step and simply assume it is true.
72



For any point p ∈ X0, we have

Mp =

(
1 1 1

2x 2y 2z

)
.

Since there are two rows inMp and the first row is non-zero, we know that 1 6 rankMp 6 2

for every point p ∈ X0. We claim that rankMp = 2 for every p ∈ X0. Otherwise, assume

rankMp = 1 for some p ∈ X0, then the two rows must be proportional hence x = y = z.

However p ∈ X0 implies that 1 + x + y + z = 0 and 1 + x2 + y2 + z2 = 0, which become

1 + 3x = 0 and 1 + 3x2 = 0. It is easy to see that they do not have common solutions.

Hence such a point p does not exist. It follows that dimTpX0 = 3− rankMp = 1 for every

p ∈ X0. That means X0 is non-singular, and dimX = dimX0 = 1.

Since the defining equations of X are completely symmetric with respect to all variables,

the same computation would show that all other standard affine pieces of X are non-

singular. Therefore X is a non-singular curve.
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