
8. Algebraic Curves

We study plane curves of degree up to 3.

8.1. Lines and conics. From now on we focus on plane curves.

Definition 8.1. A plane curve is a hypersurface C = V(f) ⊆ P2 for some non-constant

homogeneous polynomial f ∈ k[x, y, z] without repeated factors. The degree of C is

defined to be deg f . Plane curves of degrees 1, 2, 3 and 4 are called lines, conics, cubics

and quartics respectively.

Example 8.2. Let [x : y : z] be the homogeneous coordinates in P2. Every line is defined

by a polynomial f(x, y, z) = ax+ by+ cz for some a, b, c ∈ k which are not simultaneously

zero. A line is always irreducible.

Example 8.3. Every conic is defined by a non-zero polynomial of the form g(x, y, z) =

ax2 + 2bxy + cy2 + 2dxz + 2eyz + fz2. It is sometimes more convenient to write it in the

matrix form

g(x, y, z) =
(
x y z

)a b d

b c e

d e f


xy
z

 .

We consider the factorisation of g into irreducibles. By Exercise 4.2 (1), each irreducible

factor of g is also homogeneous. There are three cases:

(1) If g is an irreducible polynomial, then V(g) is an irreducible conic;

(2) If g = g1g2 for coprime irreducible homogeneous polynomials g1 and g2 of degree

1, then V(g) = V(g1) ∪ V(g2) is the union of two distinct lines;

(3) If g = g20 for an irreducible homogeneous polynomial g0 of degree 1. Since g has

repeated factors, V(g) is not a conic. Instead, V(g) = V(g0) is a line. However,

sometimes it is convenient to say that g defines a “double line”, just to indicate

that the factor g0 is repeated.

Definition 8.4. Let [x : y : z] be the homogeneous coordinates of any point in P2. For a

fixed 3×3 invertible matrix A, define a new set of coordinates [x′ : y′ : z′] by the equationx′y′
z′

 = A

xy
z

 .

This is called the linear change of homogeneous coordinates defined by A.

Remark 8.5. Why it makes sense: Multiplication of [x : y : z] by any scalar λ ∈ k\{0}
results in the multiplication of [x′ : y′ : z′] by the same scalar λ, and x′, y′, z′ cannot be

all 0 unless x, y, z are all zero since A is nonsingular. So [x′ : y′ : z′] are a new system of
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homogeneous coordinates for points in the projective plane. Why we care: We can often

reduce the defining equation of a curve to a very simple form by choosing a new system

of coordinates.

Lemma 8.6. Every line in P2 can be written as V(x) after a suitable linear change of

homogeneous coordinates. A non-zero homogeneous polynomial g(x, y, z) = ax2 + 2bxy +

cy2 + 2dxz + 2eyz + fz2 defines an irreducible conic if and only if the matrix

G =

a b d

b c e

d e f


has rank 3; g defines a union of two lines if and only if G has rank 2; g defines a double

line if and only if G has rank 1. Every irreducible conic in P2 can be written as V(xz−y2)
after a suitable linear change of homogeneous coordinates.

Proof. Non-examinable. The proof follows from the Gram-Schmidt orthogonalisation in

linear algebra. �

Proposition 8.7. A line (or an irreducible conic) is isomorphic to P1, hence is rational.

Proof. By Lemma 8.6, we can assume the line is V(x) and the conic is V(xz−y2) without

loss of generality. The case of a line is easy; we leave the details to the reader. The case

of a conic was proved in Example 5.23. �

The following results are special cases of a famous theorem.

Theorem 8.8. Let L be a line and D a plane curve of degree d. If L is not a component

of D, then L∩D has at most d distinct points. When counting with multiplicities, L and

D meet in precisely d points.

Proof. Assume L = V(ax+by+cz) where a, b and c are not simultaneously zero. Without

loss of generality, we can assume c 6= 0. Then a point p ∈ L can be written as p = [x :

y : −a
c
x− b

c
y]. Assume D = V(f) where f(x, y, z) is a non-zero homogeneous polynomial

of degree d. Then p ∈ D if and only if f
(
x, y,−a

c
x− b

c
y
)

= 0. The left-hand side is a

homogeneous polynomial of degree d in x and y. By Exercise 4.4 (2), it can be factored

into a product of d homogeneous factors of degree 1 as

f

(
x, y,−a

c
x− b

c
y

)
= (r1x+ s1y) · · · (rdx+ sdy) = 0.

Each factor rix+siy determines a solution [x : y] = [−si : ri] which gives point pi = [−si :

ri : a
c
si − b

c
ri] ∈ L ∩ D. Some of these points may be the same, so L and D meet in at

most d points. When counting with the number of times each distinct point occurs as a

solution, we have precisely d points. �
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Remark 8.9. If p ∈ L ∩ D occurs m times as a solution, then we say L and D meet at

p with multiplicity m. The current proof provides a systematic method to compute all

intersection points of a line and a curve with multiplicities.

Remark 8.10. We briefly explain what it means by saying L is not a component of D. For

example, if D is a conic, it could be the union of two lines. If L happens to be one of them,

then L and D meet in more than d points, indeed, infinitely many points. The theorem

indicates that if L and D meet in more than d points, then L must be a component of D.

Proposition 8.11. Let D be an irreducible non-singular plane curve of degree d > 2. For

any point p ∈ D, the tangent line TpD and D meet at p with multiplicity at least 2.

Proof. Non-examinable. But we will see some examples in exercises. �

Theorem 8.12. Let C be a conic and D a plane curve of degree d. If C and D have

no common component, then C ∩D has at most 2d distinct points. When counting with

multiplicities, C and D meet in precisely 2d points.

Proof. Similar to the proof of Theorem 8.8. We leave it as an exercise. �

The more general version of the theorem is the following

Theorem 8.13 (Bézout’s Theorem). Let D1 and D2 be plane curves of degree d1 and d2
respectively. Assume D1 and D2 have no common component, then D1 and D2 meet in

at most d1d2 distinct points. When these points are counted with multiplicities, D1 and

D2 meet in precisely d1d2 points.

Proof. Non-examinable. Interested reader can find the proof in [Section 5.3, Fulton, Al-

gebraic Curves]. �

Remark 8.14. This theorem shows that the number of intersection points of two plane

curves can be read off easily from their defining equations without solving them, which

is a big advantage for projective spaces. A special case of this theorem is Exercise 4.3

(2), when both plane curves have degree 1. In the other direction, this theorem can be

generalised in many different ways, thus has become the starting point of a major branch

of algebraic geometry, called intersection theory.
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