
8.2. Cubics. Now we consider cubic curves. We first give a classification.

Example 8.15. Every cubic curve is defined by a non-zero homogeneous polynomial f ∈
k[x, y, z] of degree 3. By Exercise 4.2 (1), each irreducible factor of f is also homogeneous.

There are a few cases:

(1) If f is an irreducible polynomial, then V(f) is an irreducible cubic;

(2) If f is the product of two irreducible factors of degree 1 and 2 respectively, then

the cubic V(f) = L∪C is the union of a line L and a conic C (in this case we still

say V(f) is singular, although we have not discussed the singularity of reducible

algebraic sets);

(3) If f is the product of three irreducible factors of degree 1, then V(f) could be the

union of three distinct lines, or the union of a single line and a double line, or a

triple line. The union of three distinct lines is a cubic. The other two are not.

We have seen that there is only one line and one irreducible conic up to linear changes of

homogeneous coordinates. The situation is different for irreducible cubics.

Lemma 8.16. Up to a linear change of homogeneous coordinates, every irreducible cubic

curve C can be written in one of the following three forms

(1) C0 = Vp (y2z − x(x− z)(x− λz)) for some λ ∈ k\{0, 1};

(2) C1 = Vp (y2z − x2(x− z));

(3) C2 = Vp (y2z − x3).

Proof. Non-examinable. �

Remark 8.17. The defining equations in Lemma 8.16 are called the normal forms of

irreducible cubics. By Exercise 6.2, we see that these formulas do give irreducible cubics.

Moreover, by Exercise 7.3, C0 is always non-singular; C1 is singular at the point [0 : 0 : 1],

where C1 intersects with itself; C2 is singular at the point [0 : 0 : 1], where C2 has a corner.

They are known respectively as an non-singular cubic, the nodal cubic and the cuspidal

cubic. Each of them can be understood as the projective closure of the corresponding

affine variety Va(y
2−x(x− 1)(x−λ)) or Va(y

2−x2(x− 1)) or Va(y
2−x3), with the only

point at infinity [0 : 1 : 0].

Proposition 8.18. A nodal cubic curve (or a cuspidal cubic curve) is rational.

Proof. To show a nodal cubic is rational, by Lemma 8.16, we can assume the nodal cubic

is C1 = V (y2z − x2(x− z)) without loss of generality. Consider the rational maps

ϕ1 : P1 99K C1; [u : v] 7−→ [u(u2 + v2) : v(u2 + v2) : u3]

ψ1 : C1 99K P1; [x : y : z] 7−→ [x : y].

83



We will verify they are rational maps and they are inverse to each other. They are

both given by homogeneous polynomials of the same degree. Moreover, ϕ1 is defined, for

example, at the point [1 : 0]; ψ1 is defined, for example, at the point [0 : 1 : 0]. The image

of ψ1 is always in P1. To verify the image of ϕ1 is in C, one just needs to compute

[v(u2 + v2)]2[u3]− [u(u2 + v2)]2[u(u2 + v2)− u3] = v2(u2 + v2)2u3 − u2(u2 + v2)2uv2 = 0.

Finally we show they are inverse to each other. For any point [x : y : z] ∈ C1, we have

(ϕ1 ◦ ψ1)([x : y : z]) = ϕ1([x : y]) = [x(x2 + y2) : y(x2 + y2) : x3].

By the equation of C1 we know y2z − x2(x − z) = 0, which implies x3 = (x2 + y2)z.

Therefore

[x(x2 + y2) : y(x2 + y2) : x3] = [x(x2 + y2) : y(x2 + y2) : z(x2 + y2)] = [x : y : z].

Moreover, for any point [u : v] ∈ P1, we have

(ϕ1 ◦ ψ1)([u : v]) = ϕ1([u(u2 + v2) : v(u2 + v2) : u3]) = [u(u2 + v2) : v(u2 + v2)] = [u : v].

This shows that C1 is birational to P1, hence C1 is rational.

To show a cuspidal cubic is rational, by Lemma 8.16, we can assume the cuspidal cubic

is C2 = V (y2z − x3) without loss of generality. Consider the rational maps

ϕ2 : P1 99K C2; [u : v] 7−→ [uv2 : v3 : u3];

ψ2 : C2 99K P1; [x : y : z] 7−→ [x : y].

A similar proof shows C2 is rational. We leave the details as an exercise. �

Proposition 8.19. A non-singular cubic curve is not rational.

Proof. Non-examinable. The idea is to show that the function field of a non-singular

cubic is not isomorphic to that of P1. Interested reader can find the proof in [Section 2.2,

Reid, Undergraduate Algebraic Geometry]. This is a fun proof. The method in the proof

is called “infinite descent”. There are a few famous applications of this method in the

history of mathematics. It was used to prove that
√

2 is not a rational number, which

unfortunately caused the first crisis in the foundations of mathematics. This crisis led

to the discovery of irrational numbers, which was a big step forward in the development

of mathematics. Another famous application of the descent method was in the proof

of Fermat’s last theorem. Fermat conjectured that the equation xm + ym = zm has no

solutions in positive integers for any positive integer m > 3. The proof of the theorem

in m = 3 and m = 4 cases was given by the descent method shortly after that. But it

took mathematicians more than 300 years to completely solve the problem. The Andrew

Wiles Building in University of Oxford was named after the British mathematician who

finally proved this conjecture. �

Finally we look at some special points on a non-singular cubic.
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Definition 8.20. Given a non-singular cubic curve C, a point p ∈ C is said to be an

inflection point of C if the tangent line TpC meets C at p with multiplicity 3.

Remark 8.21. Recall from Proposition 8.11 that TpC meets C at p with multiplicity at

least 2. By Theorem 8.8, if p is an inflection point, then p is the only intersection point

of TpC and C; if p is not an inflection point, then TpC and C meet at another point with

multiplicity 1.

Example 8.22. We show that the point p = [0 : 1 : 0] is an inflection point on the

non-singular cubic C = Vp(f) where f = y2z − x3 + xz2. First of all we need to find out

the tangent line TpC, which can be computed on the standard affine piece C1 = C ∩U1 =

Va(f1) where f1 = z−x3+xz2. The non-homogeneous coordinates of p in U1 is p = (0, 0).

Since ∂f1
∂x

= −3x2+z2 and ∂f1
∂z

= 1+2xz, the tangent line TpC1 = Va(0(x−0)+1(z−0)) =

Va(z). Its projective closure is TpC = Vp(z). To find the intersection points of C and

TpC, we follow the method in the proof of Theorem 8.8. A point on TpC is given by

[x : y : 0]. It lies in C if and only if f(x, y, 0) = 0, where f(x, y, 0) = −x3 which has

one solution [x : y] = [0 : 1] with multiplicity 3. Therefore TpC and C meet at the point

[0 : 1 : 0] with multiplicity 3, which proves p = [0 : 1 : 0] is an inflection point on C.
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