
9.2. Linear systems and associativity. We are aiming to prove that Construction 9.1

does define an abelian group law. The difficulty here is the associativity. We clear up the

easy bits first.

Proposition 9.8. In Construction 9.1 of the group law on a non-singular cubic curve C:

the addition is commutative; O is the identity element; and every point has an inverse.

Proof. For two points A,B ∈ C, there is no difference between the line AB and the line

BA, hence A+B = B + A is obvious. This justifies the commutativity.

To find A+O, the first step gives the third intersection point R of the line AO and C; the

second step gives the third intersection point of the line OR and C, which is A. Hence

A+O = A is also obvious. This justifies that O is the identity element in the group law.

Given any A ∈ C, we claim its inverse can be given like this: assume the tangent line

TOC meets C at a third point O, and the line AO meets C at a third point B, then B

is the inverse of A. We need to verify A + B = O. To compute A + B, the first step

gives the third intersection point of the line AB and C, which is O; the second step gives

the third intersection point of the line OO and C, which is O by Proposition 8.11. This

justifies A+B = O, hence the inverse of A is well-defined. �

Remark 9.9. Here is a special case that is worth mentioning: if O is an inflection point,

then TOC meet C at O three times hence O = O. In such a case the inverse of A is simply

the third intersection point of the line AO and the curve C.

It remains to check the associativity in the group law. This requires some preparation,

which is very interesting in their own stand.

Notation 9.10. Given finitely many points P1, · · · , Pk ∈ P2. For every d > 0, we write

Sd(P1, · · · , Pk) :=

{
f ∈ k[x, y, z]

∣∣∣∣∣ f is homogeneous of degree d

f(P1) = · · · = f(Pk) = 0

}
.

It is easy to see that Sd(P1, · · · , Pk) is a vector space over k, as it is closed under addition

and scalar multiplication. This vector space is sometimes called a linear system, but we do

not need this terminology. In the following results we will need to look at S3(P1, · · · , P8).

Lemma 9.11. Let C1 and C2 be two cubic curves whose intersection consists of precisely

9 distinct points P1, · · · , P9. Then dimk S3(P1, · · · , P8) = 2.

Proof. Non-examinable. We do not prove it but we explain what the proof is really

about. It is easy to find out that a homogeneous polynomial f ∈ k[x, y, z] of degree 3

is determined by 10 coefficients. For each given point Pi, the requirement f(Pi) = 0

imposes one linear condition on the coefficients of f . If all the 8 linear conditions on the
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coeffcients are independent, then the remaining freedom in the coefficient is 2, which is

precisely what we need. Therefore the whole point is to show that these linear conditions

are guaranteed to be independent given the assumptions. The key ingredient in the proof

is Bézout’s Theorem 8.13. Interested reader can find the proof in [Proposition 2.6, Reid,

Undergraduate Algebraic Geometry]. �

Lemma 9.12. Let C1 = V(F1) and C2 = V(F2) be two cubic curves whose intersection

consists of precisely 9 distinct points P1, · · · , P9. Then any cubic curve D = V(G) through

P1, · · · , P8 also passes through P9.

Proof. By Lemma 9.11, we have dimk S3(P1, · · · , P8) = 2. It is clear that F1, F2 ∈
S3(P1, · · · , P8). Moreover F1 and F2 are linearly independent, as otherwise they would

define the same cubic. Therefore F1 and F2 form a basis of S3(P1, · · · , P8). Since

G ∈ S3(P1, · · · , P8), we can write G = λ1F1 + λ2F2 for some λ1, λ2 ∈ k. Now G(P9) =

λ1F1(P9) + λ2F2(P9) = 0, hence D passes through P9. �

Now we are ready to prove the associativity. To avoid excessive technicality while still

keeping a grasp of the main idea in the proof, we will prove it under an extra mild

assumption, which will be stated in the proof. Some extra work will be required if this

assumption is not met, which we do not discuss.

Proposition 9.13. In Construction 9.1 of the group law on a non-singular cubic curve

C, the addition is associative.

Proof. Let A,B,E ∈ C. The construction of (A+B) + E = S uses 4 lines:

L1 : ABR; L2 : ROR; L3 : ERS; L4 : SOS.

The construction of A+ (B + E) = T uses 4 lines:

M1 : BEQ; M2 : QOQ; M3 : AQT ; M4 : TOT .

We need to show S = T , for which it suffices to show S = T . We consider two cubics

D1 = L1 ∪M2 ∪ L3 and D2 = M1 ∪ L2 ∪M3.

Then by construction we have

C ∩D1 = {A,B,E,O,R,R,Q,Q, S};

C ∩D2 = {A,B,E,O,R,R,Q,Q, T}.

Now we need a mild assumption that the 9 points in C ∩ D1 are distinct. Then the

two cubics C and D1 satisfy the conditions of Lemma 9.12. Since the cubic D2 passes

through 8 of the 9 points, it must pass through S as well, which means S ∈ C ∩ D2.

Therefore S = T since S cannot be any of the other points by the mild assumption that

we imposed. This finishes the proof under this assumption. Extra work has to be done

when this assumption is not met. �
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Remark 9.14. This is a very beautiful piece of argument in projective algebraic geometry.

Bézout’s theorem plays a key role in the course of the proof, mostly in the proof of Lemma

9.11. A similar argument can be used to prove many other results, including the famous

Pascal’s theorem (aka the mystic hexagon), which we will see in the exercise.
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