
10. Algebraic Surfaces

We look at a few aspects of hypersurfaces in P3 of low degrees.

10.1. Planes and quadric surfaces. From now on we focus on hypersurfaces in P3.

Definition 10.1. A hypersurface S = V(f) ⊆ P3 defined by some non-constant homo-

geneous polynomial f ∈ k[z0, z1, z2, z3] without repeated factors is called a surface. The

degree of S is defined to be deg f . Surfaces of degree 1, 2, 3 and 4 are called planes,

quadrics, cubics and quartics respectively.

Example 10.2. Let [z0 : z1 : z2 : z3] be the homogeneous coordinates in P3. Every

plane is defined by a polynomial f(z0, z1, z2, z3) = a0z0 + a1z1 + a2z2 + a3z3 for some

a0, a1, a2, a3 ∈ k which are not simultaneously zero. A plane is always irreducible.

Example 10.3. Every quadric surface is defined by a non-zero homogeneous polyno-

mial g ∈ k[z0, z1, z2, z3] of degree 2. Similar to the case of conics, it is sometimes more

convenient to write it in the matrix form

g(z0, z1, z2, z3) = (z0, z1, z2, z3) ·M · (z0, z1, z2, z3)T

where M is a 4× 4 symmetric matrix. The classification of quadric surfaces is controlled

by the rank of M .

There is a notion of linear change of homogeneous coordinates in P3, which is literally

almost the same as Definition 8.4, with all vectors having 4 components and A being a

4× 4 invertible matrix.

Lemma 10.4. Every plane in P3 can be written as V(z0) after a suitable linear change

of homogeneous coordinates. A non-zero homogeneous polynomial of degree 2

g(z0, z1, z2, z3) = (z0, z1, z2, z3) ·M · (z0, z1, z2, z3)T

defines a non-singular irreducible quadric surface if and only if M has rank 4; g defines a

singular irreducible quadric surface if and only if M has rank 3; g defines a union of two

planes if and only if M has rank 2; g defines a double plane if and only if M has rank 1.

Every non-singular quadric surface can be written as V(z0z3− z1z2) after a suitable linear

change of homogeneous coordinates.

Proof. Non-examinable. Application of Gram-Schmidt orthogonalisation again. �

Remark 10.5. A union of two planes can be thought as a singular algebraic set. A double

plane is not a quadric surface. So a “non-singular quadric surface” always means a “non-

singular irreducible quadric surface”.
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Now we turn to the rationality problem. Recall from Proposition 8.7 that a line or a non-

singular conic is always isomorphic to P1 hence is rational. Something similar happens to

surfaces.

Proposition 10.6. A plane is isomorphic to P2, hence is rational. A non-singular quadric

surface is birational to P2, hence is rational.

Proof. By Lemma 10.4, we can assume the plane is V(z0) and the non-singular quadric is

V(z0z3 − z1z2) without loss of generality. It is easy to show that V(z0) is isomorphic to

P2; we leave the details to the reader. We have proved in Exercise 5.2 that V(z0z3− z1z2)
is birational to P2. �

This result suggests that a non-singular quadric surface is not isomorphic to P2. Indeed, it

follows from the fact that two curves in P2 always intersect while two curves in a quadric

surface could be disjoint. The details are left as an exercise. We would like to know

what precisely a quadric surface looks like. For that purpose we need the theory of multi-

projective spaces. We will not discuss the theory systematically. Instead, we will only

focus on this particular example and mention a few ingredients of the theory along the

way. Some details in the proof are left to the reader.

Proposition 10.7. A non-singular quadric surface is isomorphic to P1 × P1.

Proof. We assume the quadric surface is S = V(z0z3 − z1z2). We need to find morphisms

ϕ : P1 × P1 → S and ψ : S → P1 × P1, such that both compositions are identities.

The product P1×P1 is the simplest example of a bi-projective space. A point in it is given

by a pair of points (p, q) in P1. If p = [x0 : x1] and q = [y0 : y1], then the bi-homogeneous

coordinates of (p, q) are given by ([x0 : x1], [y0 : y1]). Notice that for any λ, µ ∈ k\{0}, we

have ([λx0 : λx1], [µy0 : µy1]) = ([x0 : x1], [y0 : y1]). We construct two morphisms:

ϕ : P1 × P1 −→ S; ([x0 : x1], [y0 : y1]) −→ [x0y0 : x1y0 : x0y1 : x1y1];

ψ : S −→ P1 × P1; [z0 : z1 : z2 : z3] 7−→


([z0 : z1], [z0 : z2]) if z0 6= 0;

([z0 : z1], [z1 : z3]) if z1 6= 0;

([z2 : z3], [z0 : z2]) if z2 6= 0;

([z2 : z3], [z1 : z3]) if z3 6= 0.

We need to check they are morphisms. We have not defined the notion of a morphism

in this setting, but it is very similar to a morphism between two projective varieties. All

components of ϕ are homogeneous of the same degree with respect to the coordinates x0
and x1 of p, and the coordinates y0 and y1 of q (aka bi-homogeneous). All components

of ψ are also homogeneous of the same degree. We observe that ϕ and ψ are both well-

defined at every point in their domains (we leave the details to the reader). Moreover,
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the image of ϕ satisfies the defining equation of S. Hence ϕ is a morphism. To show ψ

is a morphism, we need to verify that the image of any point in S is independent of the

choice of any valid expression. More precisely, we need to verify [z0 : z1] = [z2 : z3] and

[z0 : z2] = [z1 : z3], both of which follow from the defining equation z0z3 = z1z2 of S.

We check the composition ψ ◦ϕ is identity. Given any point ([x0 : x1], [y0 : y1]) ∈ P1×P1,

using the first expression of ψ, we have

(ψ ◦ ϕ)([x0 : x1], [y0 : y1]) = ψ([x0y0 : x1y0 : x0y1 : x1y1])

= ([x0y0 : x1y0], [x0y0 : x0y1])

= ([x0 : x1], [y0 : y1]).

Similarly we can check that ψ ◦ ϕ is identity in all the other three cases.

We check the composition ϕ ◦ ψ is identity. Given any point [z0 : z1 : z2 : z3] ∈ S, using

the first expression of ψ, we have

(ϕ ◦ ψ)([z0 : z1 : z2 : z3]) = ϕ([z0 : z1], [z0 : z2])

= [z20 : z0z1 : z0z2 : z1z2]

= [z20 : z0z1 : z0z2 : z0z3]

= [z0 : z1 : z2 : z3].

Similarly we can check ϕ ◦ ψ is identity in all the other three cases.

To summarise, ϕ and ψ are mutually inverse isomorphisms. Therefore a quadric surface

is isomorphic to P1 × P1. �

Quadric surfaces are very useful in civil engineering. According to the literature, the

Shukhov water tower (in Polibino, Russia, 1896, designed by Shukhov) is the first structure

of this shape ever built in the world. Similar design can also be found at a few places

inside and outside Sagrada Famı́lia (in Barcelona, Spain, designed by Gaudi). Nowaways

numerous cooling towers in power plants are built in this shape.
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