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1. Affine Algebraic Sets

We introduce affine spaces and define an affine algebraic set as the common zeroes of a set of polyno-
mials. We study some basic properties of algebraic sets, and use the Hilbert basis theorem to show
that every algebraic set is the intersection of finitely many hypersurfaces.

1.1. Affine spaces and affine algebraic sets. In the entire course, a ring always means a commu-
tative ring with a multiplicative identity 1, and a field always means an algebraically closed field of
characteristic 0, unless otherwise specified. Here a field k is algebraically closed if every non-constant
polynomial f(x) ∈ k[x] has a root in k. For example, C is an algebraically closed field of characteristic
0, but R is not algebraically closed. Although many theorems can be generalised to other fields, their
statements are often simpler with these extra assumptions on the underlying field.

Definition 1.1. Let k be a field, n ∈ Z+. An n-dimensional affine space over k is the set

{(a1, · · · , an) | a1, · · · , an ∈ k}.
denoted by Ank (or simply An if the field is understood in the context).

This notion is actually quite familiar. It is simply the set kn of n-tuples of elements in k. However, we
do not use the notation kn in algebraic geometry because we are not just interested in its structure
as a vector space. Indeed, the geometric objects that we will study are some subsets of affine spaces.
More precisely,

Definition 1.2. A subset X ⊆ Ank is called an affine algebraic set (or simply algebraic set) if there is
a set S of polynomials in k[x1, · · · , xn], such that

X = {(a1, · · · , an) ∈ Ank | f(a1, · · · , an) = 0 for all f ∈ S}.
In such a case we say X is the algebraic set defined by S and write X = V(S).

In this definition S could have finitely many or infinitely many elements. If S contains only finitely
many polynomials, say, S = {f1, f2, · · · , fr}, we usually write X = V(f1, f2, · · · , fr) instead of X =
V({f1, f2, · · · , fr}) for simplicity. In particular we have

Definition 1.3. An algebraic set X ⊆ Ank is called a hypersurface if X = V(f) for some non-constant
polynomial f ∈ k[x1, · · · , xn].

Example 1.4. Consider subsets of A1. The set X1 = {5} is an algebraic set because X1 = V(x− 5).
One can also say X1 = V((x − 5)2), or even X1 = V(x(x − 5), (x − 1)(x − 5)). We see that different
choices of S in Definition 1.2 could possibly define the same algebraic set X. The set X2 = {5, 7} is
an algebraic set because X2 = V((x − 5)(x − 7)). Many other subsets of A1 are also algebraic sets.
You will find all of them in an exercise.

Example 1.5. Consider subsets of A2. Examples of algebraic sets are V(y− x2) which is a parabola,
and V(xy) which is the union of two coordinate axes. They are both hypersurfaces in A2. The algebraic
set V(x − 5, y − 7) contains only one point. It is not a hypersurface because we cannot define it by
one non-constant polynomial (but we do not prove this fact).
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Example 1.6. Let k = Q (it is not algebraically closed but I just want to mention this piece of
history) and n = 2. For every m > 3, the set X = V(xm + ym − 1) ∈ A2

Q is a historically important

algebraic set. Obviously X contains points (1, 0) and (0, 1) for all m, and (−1, 0) and (0,−1) for even
m. The fact that these are the only points in X is one of the deepest results in mathematics. An
equivalent formulation of this result is the so-called Fermat’s Last Theorem, which was conjectured in
1637, and proved in 1995.

Here are some simple and useful properties of algebraic sets.

Proposition 1.7. We consider subsets in An.

(1) Let S1 and S2 be two sets of polynomials in k[x1, · · · , xn]. If S1 ⊇ S2, then V(S1) ⊆ V(S2).
In other words, the correspondence V is inclusion-reversing.

(2) ∅ and An are both algebraic sets.

(3) The intersection of any collection of algebraic sets in An is an algebraic set.

(4) The union of finitely many algebraic sets in An is an algebraic set.

Proof. We leave the proof as an exercise. �

We introduce some algebraic language that we need to use later.

Definition 1.8. Let R be a ring (a commutative ring with 1).

(1) For any subset S ⊆ R, the ideal

I = {r1f1 + · · ·+ rkfk | k ∈ Z+; r1, · · · , rk ∈ R; f1, · · · , fk ∈ S}
is called the ideal generated by S. We say S is a set of generators of I.

(2) An ideal I is said to be finitely generated if it is generated by a finite set S = {f1, · · · , fm} ⊆ R.
We write I = (f1, · · · , fm).

(3) An ideal I is principal if it is generated by one element f ∈ R. We write I = (f).

Notice that the notation in Definition 1.8 is slightly different from, indeed, simpler than what we used
in Algebra 2B (which was I = Rf1 + · · ·+Rfm if I is finitely generated, or I = Rf if I is principal).
The notation here is more often used in algebraic geometry.

Example 1.9. Let I ⊆ Z be the ideal of all even integers. Then one can say I = (2), or I = (−2),
or I = (2, 4) (4 is obviously redundant), or I = (4, 6) (do you see why?). We can even take S to be
everything in I, then the ideal generated by S is still I. Upshot: there are usually many choices for
the generators of a given ideal.

Lemma 1.10. For any subset S ⊆ k[x1, · · · , xn], let I ⊆ k[x1, · · · , xn] be the ideal generated by S.
Then V(S) = V(I).

Proof. We need to show mutual inclusions between V(S) and V(I). The inclusion in one direction
V(S) ⊇ V(I) follows from the fact that S ⊆ I and Proposition 1.7 (1).

We prove V(S) ⊆ V(I). For every point p = (a1, · · · , an) ∈ V(S), we need to show that p ∈ V(I).
Since I is generated by S, every element g ∈ I can be written in the form g = r1f1+ · · ·+rkfk for some
k ∈ Z+, r1, · · · , rk ∈ k[x1, · · · , xn] and f1, · · · , fk ∈ S. By assumption f1(p) = · · · = fk(p) = 0, which
implies g(p) = r1(p)f1(p) + · · ·+ rk(p)fk(p) = 0. Therefore p ∈ V(I). It follows that V(S) ⊆ V(I). �

This lemma shows that every algebraic set X ⊆ An can be defined by an ideal I ⊆ k[x1, · · · , xn].
Notice that different ideals could still define the same algebraic set.

Example 1.11. Consider X = {0} ⊆ A1. Consider two principal ideals I1 = (x) and I2 = (x2) in
k[x]. Then X = V(I1) = V(I2).
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Among the many ideals that define the same algebraic set, we will see next week which one is “the
best”. Stay tuned!

1.2. Noetherian rings and Hilbert basis theorem. We start with some algebra. But eventually
we will see its geometric applications.

Recall that a ring R is a principal ideal domain (or PID) if every ideal of R is generated by one element.
PIDs have many good properties. But unfortunately many interesting rings in algebraic geometry, for
example, k[x1, · · · , xn] when n > 2, are not PIDs. It will be helpful to generalise the notion of PID to
include examples like these.

Definition 1.12. A ring R is Noetherian if every ideal of R is finitely generated.

It is immediately clear from the definition that every PID is Noetherian. We want to see more
examples. A powerful tool to produce such examples is the following

Theorem 1.13 (Hilbert Basis Theorem). If a ring R is Noetherian, then R[x] is also Noetherian.

Proof. Non-examinable. Interested reader can find the proof in [Section 3.3, Reid, Undergraduate
Algebraic Geometry] or [Section 1.4, Fulton, Algebraic Curves]. �

Corollary 1.14. For any field k and n ∈ Z+, the ring k[x1, · · · , xn] is Noetherian.

Proof. We prove by induction on n. When n = 1, we know k[x1] is a PID, hence is Noetherian.
Assume Rn = k[x1, · · · , xn] is a Noetherian ring. We need to show that Rn+1 = k[x1, · · · , xn, xn+1] is
also Noetherian. Notice that by collecting terms with respect to the variable xn+1, every polynomial
in Rn+1 can be written as a polynomial in xn+1 with coefficients in Rn. In other words, we have
Rn+1 = Rn[xn+1]. By Hilbert Basis Theorem 1.13 and the induction assumption, we conclude that
Rn+1 is Noetherian. �

There is yet another powerful tool very useful for producing examples of Noetherian rings. Before
stating it we need to give an equivalent description of a Noetherian ring.

Proposition 1.15. A ring R is Noetherian if and only if the following ascending chain condition (or
ACC) holds: for every ascending chain of ideals in R

I1 ⊆ I2 ⊆ I3 ⊆ · · · ,
there exists a positive integer N such that In = IN for all n > N .

Proof. (This proof is non-examinable and not covered in lectures.)

We first prove that the Noetherian condition implies ACC. Take any ascending chain of ideals in R,
say, I1 ⊆ I2 ⊆ I3 ⊆ · · · . Set I = ∪∞n=1In. We claim that I is an ideal in R. Indeed, for any r ∈ R
and a, b ∈ I, assume a ∈ Ii and b ∈ Ij . Then a, b ∈ Imax{i,j}. It follows that a + b ∈ Imax{i,j}, hence
a+ b ∈ I. Moreover, ra ∈ Ii hence ra ∈ I. This concludes that I is an ideal.

Since R is Noetherian, I is finitely generated, say, I = (f1, · · · , fm). Then each fi is an element in
Ini for some ni. Take N = max{n1, · · · , nm}. We claim that IN = I. On one hand fi ∈ Ini ⊆ IN for
every i, hence r1f1 + · · · + rmfm ∈ IN for any r1, · · · , rm ∈ R, which implies I ⊆ IN . On the other
hand we have IN ⊆ I by the construction of I. It follows that IN = I. For every n > N , we have
IN ⊆ In ⊆ I = IN , hence In = IN .

We then prove that ACC implies the Noetherian condition. We use contradiction. Assume R has an
ideal J which is not finitely generated. We pick an element g1 ∈ J and define I1 = (g1). Since J is not
finitely generated we have I1 ( J , hence we can pick an element g2 ∈ J\I1 and define I2 = (g1, g2).
Similarly we can pick g3 ∈ J\I2 and define I3 = (g1, g2, g3). Repeat this process indefinitely, we get a
chain of ideals I1 ( I2 ( I3 ( · · · where each Ii = (g1, · · · , gi). Every inclusion in the chain is strict,
hence the chain never stabilises, which is a contradiction to ACC. �

3



Now we are ready to state our second tool for producing examples of Noetherian rings.

Proposition 1.16. Let R be a Noetherian ring and I is an ideal in R. Then the quotient ring R/I
is also Noetherian.

Proof. We leave the proof as an exercise. �

Corollary 1.17. For any ideal I in k[x1, · · · , xn], k[x1, · · · , xn]/I is a Noetherian ring.

Proof. This is a consequence of Corollary 1.14 and Proposition 1.16. �

Why are we so interested in Noetherian rings? Can we understand more geometry from the fact that
k[x1, · · · , xn] is Noetherian? The following is the answer.

Theorem 1.18. Let X ⊆ An be an algebraic set, such that ∅ 6= X 6= An. Then X is the intersection
of finitely many hypersurfaces.

Proof. By Lemma 1.10, we can write X = V(I) for some ideal I in k[x1, · · · , xn]. By Corollary 1.14,
I is finitely generated, say, I = (f1, · · · , fm). By Lemma 1.10 again we can write X = V(I) =
V(f1, · · · , fm). Without loss of generality, we can assume every fi is non-constant. Indeed, if a certain
fi is zero, then we can simply remove it from the set of generators; if a certain fi is a non-zero constant,
then X = ∅ which is excluded by the assumption. Notice that

X = V(f1, · · · , fm)

= {p ∈ An | f1(p) = · · · = fm(p) = 0}
= {p ∈ An | f1(p) = 0} ∩ · · · ∩ {p ∈ An | fm(p) = 0}
= V(f1) ∩ · · · ∩ V(fm).

Since each V(fi) is a hypersurface in An, we conclude that X is the intersection of finitely many
hypersurfaces. �

Equivalently, we can say that every algebraic set in An can be defined by finitely many polynomials
(this even includes the algebraic sets ∅ and An, as they are defined by {1} and {0} respectively).
Notice that a geometric result like Theorem 1.18 cannot be obtained without the algebraic theory of
Noetherian rings. In fact, thoroughout this course, we will always strive to build up a bridge, or a
dictionary, between geometry and algebra. How to translate a geometric question into algebra, and
how to interpret an algebraic result in the geometric language, will always be our main themes in this
course.

Exercise Sheet 1

This sheet will be discussed in the exercise class on 9 October. You are welcome to submit your
solutions at the end of the exercise class or anytime earlier.

Exercise 1.1. Examples of algebraic sets. For each of the following X ⊆ A2, find a set of polynomials
S ⊆ k[x, y] such that X = V(S). You don’t need to justify your answer.

(1) X = {(0, 0), (0, 1), (1, 0), (1, 1)}.
(2) X = {(0, 0), (1, 1)}.
(3) X is the union of the x-axis and a single point (0, 1).

(4) For fun: describe the algebraic set V(xy, yz, zx) ⊆ A3 geometrically.

Exercise 1.2. Prove Proposition 1.7. Consider algebraic sets in An.

(1) Suppose S1 ⊇ S2. Prove that V(S1) ⊆ V(S2).
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(2) Prove that ∅ and An are algebraic sets in An.

(3) Prove that ∩α(V(Sα)) = V(∪αSα).

(4) Suppose S = {fg | f ∈ S1, g ∈ S2}. Prove that V(S1) ∪ V(S2) = V(S). Use induction to
conclude that the union of finitely many algebraic sets is still algebraic.

Exercise 1.3. Examples of algebraic sets. Prove that algebraic sets in A1 are just the finite subsets
in A1 (including ∅) together with A1 itself. You can follow these steps:

(1) Verify that they are indeed algebraic sets.

(2) Prove that if an algebraic set in A1 is not A1 itself, then it contains at most finitely many
points. (Hint: you can use the following lemma in algebra: a non-zero polynomial f(x) ∈ k[x]
of degree d has at most d roots.)

(3) As an application of this exercise, give an example of infinitely many algebraic sets, whose
union is not an algebraic set.

Exercise 1.4. Prove Proposition 1.16. Prove that if R is a Noetherian ring, then R/I is also Noe-
therian for any ideal I in R. You can follow these steps:

(1) We write the quotient ring homomorphism q : R → R/I (sending each r ∈ R to the coset
r + I). For any ideal J in R/I, prove that q−1(J) is an ideal in R.

(2) For two ideals J1 ⊆ J2 in R/I, prove that q−1(J1) ⊆ q−1(J2).
(3) Suppose J1 ⊆ J2 ⊆ J3 ⊆ · · · is an ascending chain of ideals in R/I. Use (1), (2) and the fact

that R is Noetherian to show that this chain stabilises.

(4) Use Proposition 1.15 to conclude that R/I is Noetherian.

Solutions to Exercise Sheet 1

Solution 1.1. Examples of algebraic sets. There are many possible answers.

(1) One possible answer is X = V(x(x− 1), y(y − 1)).

(2) One possible answer is X = V(x(y − 1), y(x− 1)).

(3) One possible answer is X = V(xy, y(y − 1)).

(4) This algebraic set is the union of the three coordinate axes. In other words, it is the set of
points (x, y, z) ∈ A3 with at least two zero coordinates.

Solution 1.2. Prove Proposition 1.7.

(1) Given any p ∈ V(S1), we have f(p) = 0 for every f ∈ S1. Since every g ∈ S2 is also an element
in S1, we have g(p) = 0. Hence p ∈ V(S2).

(2) We have that ∅ = V(1) and An = V(0).

(3) We first prove ∩α(V(Sα)) ⊆ V(∪αSα). Given any point p ∈ ∩α(V(Sα)), we have p ∈ V(Sα) for
every α. Then for every f ∈ ∪αSα, there exists some α0 such that f ∈ Sα0 , therefore f(p) = 0
since p ∈ V(Sα0). This shows that p ∈ V(∪αSα).

We then prove ∩α(V(Sα)) ⊇ V(∪αSα). Given any point q ∈ V(∪αSα), we have g(p) = 0 for
every g ∈ ∪αSα. In particular, for every α, we have p ∈ V(Sα). Therefore p ∈ ∩α(V(Sα)).

(4) We first prove
(
V(S1) ∪ V(S2)

)
⊆ V(S). Given any p ∈ V(S1), we have f(p) = 0 for every

f ∈ S1. Therefore for every fg ∈ S with f ∈ S1 and g ∈ S2, (fg)(p) = f(p)g(p) = 0.
Hence p ∈ V(S). This proves V(S1) ⊆ V(S). Similarly we have V(S2) ⊆ V(S). Therefore(
V(S1) ∪ V(S2)

)
⊆ V(S).

We then prove
(
V(S1) ∪ V(S2)

)
⊇ V(S). For every p ∈ V(S), we need to show that

p ∈ V(S1)∪V(S2). If not, then p /∈ V(S1) and p /∈ V(S2). This means there exists some f0 ∈ S1
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and g0 ∈ S2, such that f0(p) 6= 0 and g0(p) 6= 0. It follows that (f0g0)(p) = f0(p)g0(p) 6= 0.
Since f0g0 ∈ S, this implies p /∈ V(S). Contradiction. This proves

(
V(S1) ∪ V(S2)

)
⊇ V(S).

We then use induction to prove that V(S1) ∪ V(S2) ∪ · · · ∪ V(Sn) is an algebraic set for
every positive integer n. When n = 1, V(S1) is by definition an algebraic set. Assume the
statement holds for n = k, then V(S1) ∪ V(S2) ∪ · · · ∪ V(Sk) is an algebraic set, say, V(S′).
When n = k + 1, we can write

V(S1) ∪ V(S2) ∪ · · · ∪ V(Sk) ∪ V(Sk+1)

=
(
V(S1) ∪ V(S2) ∪ · · · ∪ V(Sk)

)
∪ V(Sk+1)

= V(S′) ∪ V(Sk+1)

which is still an algebraic set by the statement we just proved.

Solution 1.3. Examples of algebraic sets.

(1) We know that A1 and ∅ are algebraic sets by Proposition 1.7 (2). For any non-empty finite
subset of A1, say, X = {c1, c2, · · · , ck}, we have X = V((x− c1)(x− c2) · · · (x− ck)), hence is
an algebraic set.

(2) Say X = V(S) is an algebraic set in A1. If S does not contain any non-zero polynomial, then
X = A1. Otherwise, there is some f(x) ∈ S which is a non-zero polynomial. Every point in
X must be a root of f(x), hence X is a subset of the all roots of f(x). Since f(x) has only
finitely many roots, X has at most finitely many elements.

(3) There are many possible counterexamples and here is one of them: for every positive integer
n, let Xn = {n} be a single-point set. Then Xn is an algebraic set. But their union ∪nXn is
the set of all positive integers, which is an infinite set, hence is not an algebraic set by part
(2).

Solution 1.4. Prove Proposition 1.16.

(1) We check that q−1(J) = {r ∈ R | r + I ∈ J} is an ideal in R. For any a1, a2 ∈ q−1(J),
we have a1 + I, a2 + I ∈ J hence (a1 + a2) + I = (a1 + I) + (a2 + I) ∈ J , which implies
a1 + a2 ∈ q−1(J). On the other hand, for any r ∈ R and a ∈ q−1(J), we have a+ I ∈ J hence
ra+ I = (r + I)(a+ I) ∈ J hence ra ∈ q−1(J). Therefore q−1(J) is an ideal in R.

(2) For every a ∈ q−1(J1), we have a + I ∈ J1. Since J1 ⊆ J2, we have a + I ∈ J2. Hence
a ∈ q−1(J2). This verifies that q−1(J1) ⊆ q−1(J2).

(3) Suppose J1 ⊆ J2 ⊆ J3 ⊆ · · · is an ascending chain of ideals in R/I. Then by parts (1) and
(2) we have q−1(J1) ⊆ q−1(J2) ⊆ q−1(J3) ⊆ · · · is an ascending chain of ideals in R. Since R
is a Noetherian ring, this chain stablises by Proposition 1.15. That means, there exists some
positive integer N , such that q−1(Ji) = q−1(JN ) for every i > N . In other words, q−1(Ji) and
q−1(JN ) contain precisely the same cosets of I in R. Therefore Ji = JN for every i > N .

(4) We showed in part (3) that every ascending chain of ideals in R/I stabilises. Therefore R/I
is a Noetherian ring by Proposition 1.15.

2. Nullstellensatz

We will introduct radical ideals, and use Nullstellensatz to establish the V− I correspondence between
radical ideals and algebraic sets. We will also see the geometric meaning of prime ideals and maximal
ideals.

2.1. Nullstellensatz and V− I correspondence. Recall the V map in Definition 1.2. By Lemma
1.10, it defines a surjective map

V : {ideals in k[x1, · · · , xn]} −→ {algebraic sets in An}. (2.1)
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However the map is not injective as different ideals could possibly define the same algebraic set.
Among all ideals that define the same algebraic set, we want to choose a “good” one, so that we can
establish a one-to-one correspondence between “good” ideals in k[x1, · · · , xn] and algebraic sets in An.
We start with some algebra.

Definition 2.1. Let I be an ideal in a ring R. The radical of I is
√
I = {f ∈ R | fn ∈ I for some n ∈ Z+}.

An ideal I is said to be a radical ideal if I =
√
I.

Lemma 2.2. Let I be an ideal in a ring R. Then
√
I is an ideal in R containing I.

Proof. We leave it as an exercise. �

This definition does not look very intuitive at a first glance. But it will be clear why we define it this
way after we relate it to some geometry. We give a quick example.

Example 2.3. Consider the ideals I1 = (x) and I2 = (x2) in k[x]. It is not difficult to find out that√
I1 =

√
I2 = (x). Therefore I1 is a radical ideal in k[x] while I2 is not. We leave the details in an

exercise.

Definition 2.4. For any subset X ⊆ An,

I(X) := {f ∈ k[x1, · · · , xn] | f(p) = 0 for all p ∈ X}
is called the ideal of X.

In other words, I(X) consists of all polynomials that vanish on X. Notice that this definition makes
sense for any subset X ⊆ An which is not necessarily algebraic.

Example 2.5. For the subset X = {0} ⊆ A1, I(X) is the set of all f(x) ∈ k[x] such that f(0) = 0.
Therefore I(X) = (x) ⊆ k[x].

Lemma 2.6. The map I has the following properties:

(1) Let X1 and X2 be two subsets of An. If X1 ⊇ X2, then I(X1) ⊆ I(X2).

(2) For any subset X ⊆ An, I(X) is a radical ideal in k[x1, · · · , xn].

Proof. (1) For any f ∈ I(X1), we have that f(p) = 0 for every p ∈ X1. In particular, since X1 ⊇ X2,
f(p) = 0 for every p ∈ X2. Hence f ∈ I(X2). It follows that I(X1) ⊆ I(X2).

(2) We first show I(X) is an ideal. For any f, g ∈ I(X) and r ∈ k[x1, · · · , xn], we have (f + g)(p) =
f(p) + g(p) = 0 and (rf)(p) = r(p)f(p) = 0 for all p ∈ X. Therefore f + g, rf ∈ I(X), hence I(X) is

an ideal. Then we need to show that
√

I(X) = I(X). We have that

f ∈
√
I(X) ⇐⇒ ∃ m ∈ Z+ such that fm ∈ I(X)

⇐⇒ ∃ m ∈ Z+ such that f(p)m = 0 for any p ∈ X
⇐⇒ f(p) = 0 for any p ∈ X
⇐⇒ f ∈ I(X).

It follows that
√
I(X) = I(X), hence the ideal I(X) is radical. �

We return to the question at the beginning of the section. The V-map (2.1) hits all algebraic sets in
An, but each algebraic set can be hit by many different ideals. However, the I-map in Definition 2.4
assigns to each algebraic set in An a radical ideal in k[x1, · · · , xn]. Therefore if we only consider the
radical ideals, there is hope that the two maps

{radical ideals I ⊆ k[x1, · · · , xn]}
V

// {algebraic sets X ⊆ An}
I

oo (2.2)
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are inverse to each other, hence establish a one-to-one correspondence between radical ideals in
k[x1, · · · , xn] and algebraic sets in An. This holds as long as k is algebraically closed. The proof
relies on the so-called Nullstellensatz, which is a difficult theorem.

Definition 2.7. An ideal I in a ring R is proper if I 6= R.

Theorem 2.8 (Hilbert’s Nullstellensatz). For any algebraically closed field k,

(1) Let I be any proper ideal in k[x1, · · · , xn]. Then V(I) 6= ∅.

(2) Let I be any ideal in k[x1, · · · , xn]. Then I(V(I)) =
√
I.

Proof. Non-examinable. Interested reader can find the proof in [Section 3.10, Reid, Undergraduate
Algebraic Geometry] or [Section 1.7, Fulton, Algebraic Curves]. �

Proposition 2.9. For any algebraically closed field k,

(1) Assume I is a radical ideal in k[x1, · · · , xn] and X is an algebraic set in An. Then X = V(I)
if and only if I = I(X).

(2) Assume I1 are I2 radical ideals in k[x1, · · · , xn], X1 = V(I1) and X2 = V(I2). Then I1 ⊆ I2
(resp. I1 ( I2) if and only if X1 ⊇ X2 (resp. X1 ) X2).

Proof. (1) We prove “=⇒”. By Nullstellensatz 2.8 we have I(X) = I(V(I)) =
√
I = I since I is a

radical ideal.

We prove “⇐=”. The algebraic set X can be written as X = V(J) for some ideal J ⊆ k[x1, · · · , xn].

By Nullstellensatz 2.8, V(I) = V(I(X)) = V(I(V(J))) = V(
√
J). Since

√
J ⊇ J by Lemma 2.2, we

have V(I) = V(
√
J) ⊆ V(J) = X by Proposition 1.7 (1). It remains to show that X ⊆ V(I). For

every point p ∈ X, by the definition of V, we need to show that f(p) = 0 for every f ∈ I. This is clear
since I = I(X).

(2) The equivalence “I1 ⊆ I2 ⇐⇒ X1 ⊇ X2” follows from Proposition 1.7 (1) and Lemma 2.6 (1). By
(1), we see that if one of the inclusions is an equality, then so is the other. Therefore if one of them
is a strict inclusion, then so is the other. �

In other words, Proposition 2.9 shows that V and I induce mutually inverse bijections between radical
ideals in k[x1, · · · , xn] and algebraic sets in An. Moreover, the bijection is inclusion-reversing. Next
time we will see how this correspondence relates algebra and geometry.

2.2. Prime ideals and maximal ideals. We have established a one-to-one corrspondence (2.2)
between radical ideals in k[x1, · · · , xn] and algebraic sets in An. A major benefit: we can read off
some geometric properties of algebraic sets from algebraic properties of the corresponding radical
ideals. We will see two such examples in this lecture.

Definition 2.10. Let I be an ideal in a ring R.

(1) The ideal I is prime if it is proper, and fg ∈ I implies f ∈ I or g ∈ I.

(2) The ideal I is maximal if it is proper, and for any ideal J satisfying I ⊆ J ⊆ R, we have either
J = I or J = R.

Example 2.11. We look at some ideals in k[x].

(1) Consider I1 = (x2 − x). I1 is not prime because x(x− 1) ∈ I1, while x /∈ I1 and x− 1 /∈ I1. I1
is not maximal because (x2 − x) ( (x) ( k[x].

(2) Consider I2 = (x). We claim (x) is prime. Assume fg ∈ (x), then fg = xh for some h ∈ k[x].
By unique factorisation, since x is irreducible, it must be a factor of f or g. Hence f ∈ (x)
or g ∈ (x). We claim (x) is maximal. Assume (x) ⊆ I ⊆ k[x]. If I 6= (x), then there exists
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f ∈ I\(x). Write f = a0 + a1x+ · · ·+ anx
n, then a0 6= 0, since otherwise f ∈ (x). We observe

f − a0 = a1x+ · · ·+ anx
n ∈ (x) ⊆ I. It follows that a0 ∈ I, hence I = k[x] since a0 is a unit

in k[x].

(3) Consider I3 = (0). I3 is prime because fg = 0 implies that either f = 0 or g = 0 as k[x] is an
integral domain. I3 is not maximal because (0) ( (x) ( k[x, y].

Proposition 2.12. Let I be an ideal in the ring R.

(1) I is a prime ideal if and only if R/I is an integral domain. I is a maximal ideal if and only if
R/I is a field.

(2) Every maximal ideal is prime. Every prime ideal is radical.

Proof. (1) is non-examinable. (2) is an exercise. �

Under the corrspondence (2.2), we will find out what prime and maximal ideals correspond to. Now
we switch to geometry.

Definition 2.13. An algebraic set X ⊆ An is irreducible if there does not exist a decomposition of
X as a union of two stricly smaller algebraic sets. An irreducible (affine) algebraic set is also called
an affine variety. An algebraic set X ⊆ An is reducible if it is not irreducible.

Example 2.14. We look at some algebraic sets in A2.

(1) The algebraic set V(xy) ⊆ A2 is the union of two coordinate axes. In other words, V(xy) =
V(x) ∪ V(y). Since each coordinate axis is an algebraic set stricly smaller than V(xy), we
conclude that V(xy) is reducible.

(2) The algebraic set V(x, y) ⊆ A2 consists of just one point, hence there is no way to decompose
it as the union of two strictly smaller algebraic sets. It follows that V(x, y) is irreducible.
Similarly, a point is always irreducible.

Next we show that prime ideals correspond to irreducible algebraic sets.

Proposition 2.15. Let I be a radical ideal in k[x1, · · · , xn] and X = V(I) the algebraic set in An
defined by I. Then I is prime if and only if X is irreducible.

Proof. In fact we prove the contrapositive: X is reducible ⇐⇒ I is not prime.

We first prove “=⇒”. Suppose X = X1 ∪X2 with algebraic sets X1, X2 ( X. Then X1 ( X implies
that I(X1) ) I(X) by Proposition 2.9 (2). Hence there exists f1 ∈ I(X1)\I(X). Similarly X2 ( X
implies that there exists f2 ∈ I(X2)\I(X). The product f1f2 vanishes at all points of X, hence
f1f2 ∈ I(X). Therefore I = I(X) is not prime.

We then prove “⇐=”. Since I is not prime, there exist f1, f2 /∈ I such that f1f2 ∈ I. Consider the set
S1 = I ∪ {f1}. Then X1 = V(S1) is an algebraic set. Since S1 ⊇ I, we have X1 ⊆ X by Proposition
1.7. Moreover, since f1 /∈ I, there is some point p ∈ X such that f1(p) 6= 0, therefore p /∈ X1. It
follows that X1 ( X. Similarly we can consider S2 = I ∪ {f2}, then X2 = V(S2) ( X.

It remains to show that X1 ∪ X2 = X. Since X1 and X2 are subsets of X, we have X1 ∪ X2 ⊆ X.
Conversely, for any p ∈ X, f(p) = 0 for every f ∈ I. Moreover f1(p)f2(p) = 0, which implies f1(p) = 0
or f2(p) = 0. Therefore p ∈ V(S1) = X1 or p ∈ V(S2) = X2. This implies X ⊆ X1 ∪X2. �

Finally we show that maximal ideals correspond to points.

Proposition 2.16. Let I be a radical ideal in k[x1, · · · , xn] and X = V(I) the algebraic set in An
defined by I. Then I is maximal if and only if X is a point.
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Proof. (This proof is non-examinable and not covered in lectures.)

In fact we prove the contrapositive: X is not a point ⇐⇒ I is not maximal.

We first prove “=⇒”. If X is not a point, then either X = ∅ or X contains more than one point. If
X = ∅, then by Proposition 2.9 (1), I = I(X) = k[x1, · · · , xn] is not a proper ideal hence not maximal.
If X contains more than one point, then we can pick a subset Y of X containing only one point. Hence
we have ∅ ( Y ( X. By Proposition 2.9 (2), we have k[x1, · · · , xn] = I(∅) ) I(Y ) ) I(X). Hence
I = I(X) is not maximal.

We then prove “⇐=”. If I is not maximal, then either I is not a proper ideal, or there exists an ideal
J such that I ( J ( k[x1, · · · , xn]. If I is not proper then I = k[x1, · · · , xn], hence X = V(I) = ∅
which is not a point. If I ( J ( k[x1, · · · , xn] for some ideal J , then we claim that we actually have

I (
√
J ( k[x1, · · · , xn]. Indeed, by Lemma 2.2, we have I ( J ⊆

√
J . Moreover, by Nullstellensatz

2.8 (1), we have V(J) 6= ∅, hence
√
J = I(V(J)) ( k[x1, · · · , xn]. Armed with this claim we apply

Proposition 2.9 (2) to get V(I) ) V(
√
J) ) ∅. It follows that V(

√
J) contains at least one point,

hence X = V(I) contains more than one point. �

In summary, the V− I correspondences induce bijections in each row of the diagram:

{radical ideals in k[x1, · · · , xn]}
V

// {algebraic sets in An}
I

oo

{prime ideals in k[x1, · · · , xn]}
V

//
?�

OO

{irreducible algebraic sets in An}
I

oo

?�

OO

{maximal ideals in k[x1, · · · , xn]}
V

//
?�

OO

{points in An}
I

oo

?�

OO

Exercise Sheet 2

This sheet will be discussed in the exercise class on 16 October. You are welcome to submit your
solutions at the end of the exercise class or anytime earlier.

Exercise 2.1. Some proofs in lectures. We prove Lemma 2.2 and Proposition 2.12 (2).

(1) Let I be an ideal in a ring R. If am ∈ I and bn ∈ I for some a, b ∈ R and m,n ∈ Z+, show
that (a+ b)m+n ∈ I. (Hint: use the binomial expansion.)

(2) Let I be an ideal in a ring R. Prove that
√
I is an ideal and I ⊆

√
I.

(3) Show that every maximal ideal is prime, and every prime ideal is radical.

Exercise 2.2. Examples of radical and prime ideals. Suppose a non-zero polynomial f ∈ k[x1, · · · , xn]

is factored as f = ufk11 · · · f
kt
t for some 0 6= u ∈ k, k1, · · · , kt ∈ Z+, and irreducible polynomials

f1, · · · , ft which are pairwisely coprime.

(1) Show that (f) is a prime ideal if and only if f is an irreducible polynomial.

(2) Let f = f1 · · · ft. Show that
√

(f) = (f). (Remark: this justifies Example 2.3.)

(3) Conclude that (f) is a radical ideal if and only if f has no repeated factors.

Exercise 2.3. Examples of maximal ideals. Find all maximal ideals in k[x1, · · · , xn]. You can follow
these steps:

(1) For any fixed point p = (a1, · · · , an) ∈ An, consider the ring homomorphism ϕp : k[x1, · · · , xn]→
k; f(x1, · · · , xn) 7→ f(a1, · · · , an). Show that mp := ker(ϕp) = (x1 − a1, · · · , xn − an). Use
Proposition 2.12 to show that mp is a maximal ideal.
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(2) What is V(mp)? Use Proposition 2.16 to show that every maximal ideal in k[x1, · · · , xn] is of
the form mp for some p ∈ An. (Remark: historically, this was proved before Nullstellensatz
was established.)

Exercise 2.4. A famous example: the twisted cubic. Prove that the subset in A3 given by X =
{(t, t2, t3) ∈ A3 | t ∈ k} is an affine variety. You can follow these steps:

(1) Show that X is the algebraic set V(I) for the ideal I = (y − x2, z − x3) ⊆ k[x, y, z].

(2) Show that k[x, y, z]/I ∼= k[t].

(3) Use Proposition 2.12 to conclude that I is a prime ideal, hence a radical ideal. Use Proposition
2.9 to conclude that I = I(X). Use Proposition 2.15 to conclude that X is an affine variety.
(Remark: X is called the affine twisted cubic.)

(Remark: Exercise 3.4 will be a continuation of this one.)

Solutions to Exercise Sheet 2

Solution 2.1. Some proofs in lectures.

(1) Using the binomial expansion, we have that (a + b)m+n =
∑m+n

i=0

(
m+n
i

)
am+n−ibi. For every

term
(
m+n
i

)
am+n−ibi, if i 6 n, then this term has a factor am, hence this term is in I; if i > n,

then this term has a factor bn, hence this term is also in I. Since every such term is in I, it
follows that their sum (a+ b)m+n ∈ I.

(2) Let a, b ∈
√
I and r ∈ R. By Definition 2.1 there exist some m,n ∈ Z+ such that am, bn ∈ I.

By part (1) we know that (a+ b)m+n ∈ I, hence a+ b ∈
√
I. We also have (ra)m = rmam ∈ I,

hence ra ∈
√
I. It follows that

√
I is an ideal. To show that I ⊆

√
I, we just need to realise

that for every a ∈ I, am ∈ I for m = 1. Hence a ∈
√
I.

(3) Assume I is a maximal ideal in R, then R/I is a field by Proposition 2.12 (1). Since every field
is an integral domain, R/I is an integral domain. By Proposition 2.12 (1) again we conclude
that I is a prime ideal in I.

Assume J is a prime ideal. For any a ∈
√
J , there exists some n ∈ Z+, such that an ∈ J .

We claim that a ∈ J . This can be shown by induction on n. When n = 1, a ∈ J is automatic.
Assume an ∈ J implies a ∈ J . If we have an+1 = a · an ∈ J , then either a ∈ J or an ∈ J . In
either case we have a ∈ J . This shows that

√
J ⊆ J . By part (2) we also have J ⊆

√
J . It

follows that J =
√
J , hence J is a radical ideal.

Solution 2.2. Examples of radical and prime ideals.

(1) Assume (f) is a prime ideal. Since (f) 6= k[x1, · · · , xn], f is not a constant polynomial. If f
is not an irreducible polynomial, then assume f = f1f2 for some non-constant polynomials f1
and f2. Since f1f2 = f ∈ (f), it follows that either f1 ∈ (f) or f2 ∈ (f). If f1 ∈ (f), then
f1 = f · g1 for some non-zero polynomial g1. Then f = f1f2 = fg1f2 which implies g1f2 = 1.
Hence f2 must be a constant, which is a contradiction. If f2 ∈ (f), the same argument implies
f1 is a constant, which is also a contradiction. This proves that f is irreducible.

Now assume f is an irreducible polynomial. We need to show (f) is a prime ideal. By
definition an irreducible polynomial is not a constant, hence 1 /∈ (f) which means (f) 6=
k[x1, · · · , xn]. Let f1f2 ∈ (f) for polynomials f1 and f2. Then we can write f1f2 = fg for
some polynomial g. If g = 0, then either f1 = 0 ∈ (f) or f2 = 0 ∈ (f). If g 6= 0, then f is an
irreducible factor in the factorisation of f1f2, hence f is an irreducible factor of either f1 or
f2. Therefore we still have f1 ∈ (f) or f2 ∈ (f). This proves that (f) is a prime ideal.

(2) We first show that (f) ⊆
√

(f). For any g ∈ (f), there exists some polynomial h such that g =

fh = f1 · · · fth. Let m = max{k1, · · · , kt}. Then gm = fm1 · · · fmt hm = f ·fm−k11 · · · fm−ktt hm ∈
(f), hence g ∈

√
(f).
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We prove the other inclusion
√

(f) ⊆ (f). For any g ∈
√

(f), there exists some m ∈ Z+ such

that gm ∈ (f), that is, gm = fh = fk11 · · · f
kt
t h for some polynomial h. For every irreducible

polynomial fi, since fi divides the right-hand side, it must divide the left-hand side as well,
i.e., fi divides gm. Therefore fi divides g for every i. It follows that each fi appears in the
factorisation of g, hence g = f1 · · · fkg′ = fg′ ∈ (f).

(3) (f) is a radical ideal ⇐⇒
√

(f) = (f) ⇐⇒ (f) = (f) ⇐⇒ f and f differ by a unit in
k[x1, · · · , xn] (which is a non-zero constant). This holds if and only if k1 = · · · = kt = 1; i.e.
f has no repeated factors.

Solution 2.3. Examples of maximal ideals.

(1) We claim that every polynomial f(x1, · · · , xn) ∈ k[x1, · · · , xn] can be written in the form

f = (x1 − a1)g1 + · · ·+ (xn − an)gn + c

for some polynomials g1, · · · , gn ∈ k[x1, · · · , xn] and a constant c ∈ k. There are two ways to
explain it (you can choose the one you like). The first approach: we think of f as a polynomial
in x1 and consider the Euclidean division of f by x1 − a1. We get f = (x1 − a1)g1 + r1 where
r1 has degree 0 in x1, namely, r1 ∈ k[x2, · · · , xn]. Then we think of r1 as a polynomial in x2,
and consider the Euclidean division of r1 by x2 − a2, we get r1 = (x2 − a2)g2 + r2 for some
r2 ∈ k[x3, · · · , xn]. Repeat this process to get

f = (x1 − a1)g1 + r1

= (x1 − a1)g1 + (x2 − a2)g2 + r2

= · · ·
= (x1 − a1)g1 + · · ·+ (xn − an)gn + rn

where rn is a constant. This justifies the claim. The second approach: we substitute [(xi−ai)+
ai] into each occurence of xi in f and expand the square brackets leaving the round brackets
untouched. In the expansion every non-constant term has a factor of the form (xi− ai). Then
we can collect terms and write

f = (x1 − a1)g1 + · · ·+ (xn − an)gn + c

where c is a constant. This justifies the claim.
Now we look at the image of f under ϕp. We have ϕp(f) = f(a1, · · · , an) = c. Therefore

f ∈ kerϕp ⇐⇒ c = 0⇐⇒ f = (x1 − a1)g1 + · · ·+ (xn − an)gn ⇐⇒ f ∈ (x1 − a1, · · · , xn − an).
This proves that mp = kerϕp = (x1 − a1, · · · , xn − an).

Moreover, ϕp is surjective, because every c ∈ k is the image of the constant polynomial
f = c. By the fundamental isomorphism theorem, we have

k = imϕp = k[x1, · · · , xn]/ kerϕp = k[x1, · · · , xn]/mp.

Since k is a field, we know that mp is a maximal ideal by Proposition 2.12 (1).

(2) V(mp) = {p} is a single point set. By Proposition 2.16, there is a one-to-one correspondence
between maximal ideals in k[x1, · · · , xn] and points in An. Since the ideals of the form mp

have exhausted all points in An, they must be all maximal ideals in k[x1, · · · , xn].

Solution 2.4. A famous example: the twisted cubic.

(1) We first show X ⊆ V(I). For every point (t, t2, t3) ∈ X, we have y − x2 = t2 − t2 = 0 and
z − x3 = t3 − t3 = 0. We then show V(I) ⊆ X. For every (x, y, z) ∈ V(I), we have y − x2 = 0
and z − x3 = 0, hence y = x2 and z = x3. It follows that (x, y, z) = (x, x2, x3) ∈ X.

(2) Consider the ring homomorphism

ϕ : k[x, y, z] −→ k[t]; f(x, y, z) 7−→ f(t, t2, t3).

By the fundamental isomorphism theorem, we have

imϕ ∼= k[x, y, z]/ kerϕ.
12



We need to find out imϕ and kerϕ.
We claim that ϕ is surjective, because for every p(t) ∈ k[t], it is the image of p(x) ∈ k[x, y, z].

Therefore imϕ = k[t].
To find out kerϕ, we first claim that every f(x, y, z) ∈ k[x, y, z] can be written in the form

f = (y − x2)g1 + (z − x3)g2 + h

where g1, g2 ∈ k[x, y, z] and h ∈ k[x]. To see this, there are still two methods. The first method:
think of f as a polynomial in y, and consider the Euclidean division of f by y − x2. There is
a quotient g1 ∈ k[x, y, z] and a remainder r1 ∈ k[x, z]. Then think of r1 as a polynomial in z,
and consider the Euclidean division of r1 by z−x3. There is a quotient g2 ∈ k[x, y, z] (in fact,
in k[x, z]) and a remainder h ∈ k[x]. In formulas,

f = (y − x2)g1 + r1 = (y − x2)g1 + (z − x3)g2 + h.

The second method: we substitute [(y− x2) + x2] into each occurence of y in f and substitute
[(z − x3) + x3] into each occurence of z in f . We then expand the square brackets leaving the
round brackets untouched. In the expansion we collect terms with a factor (y−x2) or (z−x3),
and write

f = (y − x2)g1 + (z − x3)g2 + h

where h ∈ k[x] does not involve y or z.
Armed with this claim, we find that the image of f under ϕ is given by

ϕ(f) = (t2 − t2)ϕ(g1) + (t3 − t3)ϕ(g2) + h(t) = h(t).

Therefore ϕ(f) = 0⇐⇒ h = 0⇐⇒ f = (y− x2)g1 + (z− x3)g2 ⇐⇒ f ∈ (y− x2, z− x3). This
means kerϕ = (y − x2, z − x3) = I.

Therefore the fundamental isomorphism theorem yields that k[t] ∼= k[x, y, z]/I.

(3) Since k[t] is an integral domain, by Proposition 2.12, we conclude that I is a prime ideal, hence
a radical ideal. By part (1) and Proposition 2.9, X = V(I) implies that I = I(X). Since I is
a prime ideal, Proposition 2.15 shows that X is an irreducible algebraic set, hence an affine
variety.

3. Coordinate Rings

We define polynomial functions and coordinate rings for algebraic sets. We will also study polynomial
maps between algebraic sets. Finally we will see how coordinate rings help us understand polynomial
maps.

3.1. Coordinate rings and polynomial maps. We look at functions on affine algebraic sets.
Roughly speaking, a function on an algebraic set X assigns to each point a value in k. In algebraic
geometry we are mostly interested in those functions defined by polynomials.

Definition 3.1. Let X ⊆ An be an algebraic set. A function ϕ : X → k is a polynomial function if
there exists f ∈ k[x1, · · · , xn] such that ϕ(p) = f(p) for every p ∈ X.

Remark 3.2. Two polynomials f, g ∈ k[x1, · · · , xn] define the same function on X if and only if for
every point p ∈ X, f(p) = g(p), or equivalently, f(p)−g(p) = 0. This holds if and only if f −g ∈ I(X)
by the definition of I. In other words, f and g define the same polynomial function on X if and only
if they are in the same coset of I(X) in k[x1, · · · , xn]. Therefore a polynomial function can be viewed
as a coset of I(X), which is an element in the quotient ring k[x1, · · · , xn]/I(X). This leads to the
following definition.

Definition 3.3. Let X ⊆ An be an algebraic set. The quotient ring

k[X] := k[x1, · · · , xn]/I(X)

is called the coordinate ring of X.
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Example 3.4. For any algebraic set X ⊆ An, the i-th coordinate defines a polynomial function
xi : X → k, which is called the i-th coordinate function. Since every polynomial function is a
polynomial in the coordinate functions, we can view the coordinate functions as the generators of
k[X]. This is where the name “coordinate ring” comes from.

Example 3.5. For the algebraic set X1 = V(x) ⊆ A2, I(X1) = (x) since (x) is a prime ideal hence
is radical. Therefore the coordinate ring of X1 is k[X1] = k[x, y]/(x). We show that it is isomorphic
k[t]. Consider the ring homomorphism

ϕ : k[x, y]→ k[t]; x 7→ 0, y 7→ t.

It is surjective because each p(t) ∈ k[t] is the image of p(y) ∈ k[x, y]. For any f(x, y) ∈ k[x, y], by
collecting all terms involving x, we can write it as f(x, y) = xg(x, y)+h(y). Its image ϕ(f(x, y)) = h(t).
Hence f ∈ ker(ϕ) is equivalent to h(y) = 0, which is further equivalent to f(x, y) ∈ (x). This shows
ker(ϕ) = (x). By the fundamental isomorphism theorem, we get k[X1] = k[x, y]/(x) ∼= k[t].

Example 3.6. For the algebraic sets X2 = V(y) and X3 = V(y− x2) in A2, we can similarly find out
that k[X2] = k[x, y]/(y) ∼= k[t] and k[X3] = k[x, y]/(y−x2) ∼= k[t]. It is not a coincidence that X1, X2

and X3 have isomorphic coordinate rings. We will explain this later.

Now we study maps between algebraic sets.

Definition 3.7. Let X ⊆ An and Y ⊆ Am be algebraic sets. A map ϕ : X → Y is a polynomial map
if there exist polynomial functions f1, · · · , fm ∈ k[X], such that ϕ(p) = (f1(p), · · · , fm(p)) ∈ Y for
every point p ∈ X.

Notice that a polynomial function on X is the same as a polynomial map from X to A1.

Example 3.8. Let X ⊆ An be any algebraic set. The identity map idX : X → X; (x1, · · · , xn) 7→
(x1, · · · , xn) is a polynomial map.

Example 3.9. Let W ⊆ A2 be any algebraic set and X = A1. Then ϕ0 : W → X; (x, y) 7→ xy is a
polynomial map.

Example 3.10. Let X = A1. Let Y1 = V(y − x2), Y2 = V(y2 − x3 − x2) and Y3 = V(y2 − x3) be
algebraic sets in A2. Then ϕ1 : X → Y1; t 7→ (t, t2) is a polynomial map from X to Y1, since the point
(t, t2) satisfies the defining equation of Y1. Similarly, we can check that ϕ2 : X → Y2; t 7→ (t2−1, t3−t)
and ϕ3 : X → Y3; t 7→ (t2, t3) are both polynomial maps.

Remark 3.11. Let X ⊆ An, Y ⊆ Am, Z ⊆ Al be algebraic sets. Consider polynomial maps

ϕ = (f1(x1, · · · , xn), · · · , fm(x1, · · · , xn)) : X → Y,

ψ = (g1(y1, · · · , ym), · · · , gl(y1, · · · , ym)) : Y → Z.

We can compose them to get a new polynomial map

ψ ◦ ϕ = (g1(f1, · · · , fm), · · · , gl(f1, · · · , fm)) : X → Z.

Example 3.12. To compose ϕ0 : W → X in Example 3.9 and ϕ1 : X → Y1 in Example 3.10, for any
point p = (x, y) ∈ W , we have (ϕ1 ◦ ϕ0)(x, y) = ϕ1(xy) = (xy, x2y2). Hence we get the polynomial
map ϕ1 ◦ ϕ0 : W → Y1; (x, y) 7→ (xy, x2y2).

We can now describe when two algebraic sets “look the same”.

Definition 3.13. A polynomial map ϕ : X → Y between algebraic sets is an isomorphism if there
exists a polynomial map ψ : Y → X such that ψ ◦ ϕ = idX and ϕ ◦ ψ = idY . Two algebraic sets X
and Y are isomorphic if there exists an isomorphism between them.

Example 3.14. We show that ϕ1 : X → Y1 in Example 3.10 is an isomorphism. Let ψ1 : Y1 → X;
(x, y) 7→ x. Then the composition ψ1 ◦ ϕ1 : X → X is given by t 7→ (t, t2) 7→ t. Hence ψ1 ◦ ϕ1 = idX .
The other composition ϕ1 ◦ψ1 : Y1 → Y1 is given by (x, y) 7→ x 7→ (x, x2). For every point (x, y) ∈ Y1,
we have y − x2 = 0, hence (x, y) = (x, x2). This shows ϕ1 ◦ ψ1 = idY1 . We conclude that ϕ1 : X → Y1
(and ψ1 : Y1 → X) is an isomorphism; in other words, X and Y1 are isomorphic.
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Remark 3.15. If a polynomial map ϕ : X → Y is an isomorphism, then it induces a bijection between
the points in X and Y . However, it is important to note that the converse is not true. We will see a
counter example next time.

We will see next time that the coordinate ring captures a lot of geometry of the algebraic set. In
particular, whether two algebraic sets are isomorphic can be easily seen from their coordinate rings.

3.2. Homomophisms of coordinate rings. We introduce a terminology which will be very conve-
nient in our discussion.

Definition 3.16. A finitely generated k-algebra is a ring that is isomorphic to a quotient of a poly-
nomial ring k[x1, · · · , xn]/I. A k-algebra homomorphism ϕ : k[y1, · · · , ym]/J → k[x1, · · · , xn]/I is a
ring homomorphism such that ϕ(c+ J) = c+ I for every constant polynomial c ∈ k.

Recall that a polynomial function can be viewed as a polynomial map to A1.

Definition 3.17. Let X ⊆ An and Y ⊆ Am be algebraic sets. Let ϕ : X → Y be a polynomial map
and g ∈ k[Y ] a polynomial function. The pullback of g along ϕ is the polynomial function g◦ϕ ∈ k[X],
denoted ϕ∗(g).

The pullback map along ϕ sends a polynomial function on Y to a polynomial function on X. We show
that it preserves the ring structure and constants.

Lemma 3.18. For any polynomial map ϕ : X → Y , the pullback map

ϕ∗ : k[Y ]→ k[X]; g 7→ g ◦ ϕ
is a k-algebra homomorphism.

Proof. We need to verify ϕ∗ preserves addition, multiplication and constants. For any g1, g2 ∈ k[Y ],
we need to show (g1 + g2) ◦ ϕ = g1 ◦ ϕ + g2 ◦ ϕ. Indeed, for any point p ∈ X, ((g1 + g2) ◦ ϕ)(p) =
(g1 + g2)(ϕ(p)) = g1(ϕ(p)) + g2(ϕ(p)) = (g1 ◦ ϕ)(p) + (g2 ◦ ϕ)(p). Hence ϕ∗ preserves addition.
Replacing additions by multiplications shows that ϕ∗ preserves multiplication. Now assume g is a
constant function on Y , say, there exists some c ∈ k such that g(q) = c for every q ∈ Y . Then
(g ◦ ϕ)(p) = g(ϕ(p)) = c for every p ∈ X. Therefore ϕ∗(g) is the constant function on X which takes
the same value as g. �

Example 3.19. The polynomial map ϕ : A1 → Y = V(y − x2)(⊆ A2); t 7→ (t, t2) induces a k-algebra
homomorphism ϕ∗ : k[Y ] → k[A1], or more precisely, ϕ : k[x, y]/(y − x2) → k[t]. For any polynomial
function f(x, y) on Y , ϕ∗(f) = f(t, t2) ∈ k[t]. In particular, for the coordinate functions x and y on
Y , we have ϕ∗(x) = t and ϕ∗(y) = t2. For more examples, the pullback of the polynomial function
x+ y is t+ t2; the pullback of x2y is t4, and the pullback of 3x3 + 5y + 1 is 3t3 + 5t2 + 1.

We have seen that every polynomial map ϕ : X → Y induces a k-algebra homomorphism ϕ∗ : k[Y ]→
k[X]. Next we show this is a one-to-one correspondence. This is the key property of the “pullback”
construction.

Theorem 3.20. Let X ⊆ An and Y ⊆ Am be algebraic sets. For every k-algebra homomorphism
Φ : k[Y ]→ k[X], there exists a unique polynomial map ϕ : X → Y , such that Φ = ϕ∗.

Proof. (This proof is non-examinable and not covered in lectures.)

We show the existence. For every coordinate function yi ∈ k[Y ], by assumption fi = Φ(yi) ∈ k[X]
is a polynomial function on X. Since Φ is a k-algebra homomorphis, for any polynomial function
g(y1, · · · , ym) ∈ k[Y ], the image Φ(g) = g(f1, · · · , fm) ∈ k[X].

We consider the polynomial map ϕ = (f1, · · · , fm) : X → Am. To show it is a polynomial map
to Y , it must be checked that (f1(p), · · · , fm(p)) ∈ Y for every p ∈ X; that is, it must be checked
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that h(f1(p), · · · , fm(p)) = 0 for every polynomial h ∈ I(Y ). Since h represents the zero function
in k[Y ], Φ(h) is also the zero function in k[X], hence Φ(h)(p) = 0 for every p ∈ X. It follows that
h(f1(p), · · · , fm(p)) = Φ(h)(p) = 0, as desired.

To show Φ = ϕ∗, it remains to show that Φ(g) = ϕ∗(g) for every g ∈ k[Y ]. Indeed, for any p ∈ X,
Φ(g)(p) = g(f1(p), · · · , fm(p)) = g(ϕ(p)) = (g ◦ ϕ)(p) = ϕ∗(g)(p). Hence Φ(g) = ϕ∗(g), as required.
This finishes the existence.

For uniqueness, assume there is another polynomial map ϕ′ = (f ′1, · · · , f ′m) : X → Y such that
Φ = (f ′)∗. Then for each i, f ′i = (ϕ′)∗(yi) = Φ(yi) = ϕ∗(yi) = fi. Hence ϕ′ = ϕ. This finishes the
uniqueness. �

Remark 3.21. This theorem gives a one-to-one correspondence{
polynomial maps
ϕ : X −→ Y

}
←→

{
k-algebra homomorphisms

ϕ∗ : k[Y ] −→ k[X]

}
.

An application of this result is the following criterion for isomorphisms.

Proposition 3.22. A polynomial map ϕ : X → Y is an isomorphism if and only if ϕ∗ : k[Y ]→ k[X]
is a ring isomorphism.

Proof. (This proof is non-examinable and not covered in lectures.)

Assume ϕ : X → Y is an isomorphism, then there exists ψ : Y → X such that ψ ◦ ϕ = idX and
ϕ ◦ ψ = idY . By applying the pullback construction on both sides, we have ϕ∗ ◦ ψ∗ = (ψ ◦ ϕ)∗ =
(idX)∗ = idk[X]. Similarly we have ψ∗ ◦ ϕ∗ = idk[Y ]. Therefore ϕ∗ and ψ∗ are mutually inverse ring
homomorphisms. Hence ϕ∗ : k[Y ]→ k[X] is an isomorphism.

Assume ϕ∗ : k[Y ] → k[X] is a ring isomorphism, then there exists Ψ : k[X] → k[Y ] such that
ϕ∗ ◦Ψ = idk[X] and Ψ ◦ ϕ∗ = idk[Y ]. By the existence in Theorem 3.20 we can write Ψ = ψ∗ for some
polynomial map ψ : Y → X. Therefore we have (ψ ◦ϕ)∗ = ϕ∗ ◦ψ∗ = ϕ∗ ◦Ψ = idk[X] = (idX)∗. By the
uniqueness in Theorem 3.20, we get ψ ◦ϕ = idX . Similarly we can get ϕ ◦ψ = idY . Hence ϕ : X → Y
is an isomorphism. �

This is a very powerful result as it allows us to show a certain polynomial map is an isomorphism
without writing down another one going backwards. It can also be used to show a certain polynomial
map is not an isomorphism, especially in some tricky situation where the map is actually bijective on
points, as shown in the following example:

Example 3.23. We consider the polynomial map ϕ : A1 → X = V(y2 − x3) ⊆ A2; t 7→ (t2, t3); see
Example 3.10. One can show that it is bijective on points in A1 and X. However, one can also show
that ϕ∗ : k[X] → k[A1] is not an isomorphism of rings, hence ϕ is not an isomorphism of algebraic
sets. We leave the details as an exercise.

Exercise Sheet 3

This sheet will be discussed in the exercise class on 23 October. You are welcome to submit your
solutions at the end of the exercise class or anytime earlier.

Exercise 3.1. Example: the graph of a polynomial function.

(1) Show that the projection map π : An → Ar, n > r, defined by π(a1, · · · , an) = (a1, · · · , ar) is
a polynomial map.

(2) Let X ⊆ An be an algebraic set and f ∈ k[X]. Define the subset G(f) ⊆ An+1 by G(f) =
{(a1, · · · , an, an+1) ∈ An+1 | (a1, · · · , an) ∈ X and an+1 = f(a1, · · · , an)}. Show that G(f) is
an algebraic set. (Remark: G(f) is called the graph of f .)
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(3) Show that the map ϕ : X → G(f); (a1, · · · , an) 7→ (a1, · · · , an, f(a1, · · · , an)) is a polynomial
map.

(4) Show that ϕ is an isomorphism of algebraic sets by writing down the inverse polynomial map
ψ : G(f)→ X, and checking both compositions are identities.

(5) Briefly explain why Example 3.14 is a special case of this.

Exercise 3.2. Example: a nodal cubic. Consider X = V(y2 − x3 − x2) ⊆ A2.

(1) Show that ϕ : A1 → X; t 7→ (t2 − 1, t3 − t) is a polynomial map.

(2) Show that ϕ is surjective but not injective on points, hence not an isomorphism.

(3) Show that y2 − x3 − x2 is an irreducible polynomial. Use Exercise 2.2 to conclude that
I = (y2 − x3 − x2) is a prime ideal, hence radical. Use Propositions 2.15 and 2.9 to conclude
that X is an affine variety and I(X) = I.

Exercise 3.3. Example: a cuspidal cubic. Consider X = V(y2 − x3) ⊆ A2.

(1) Show that ϕ : A1 → X; t 7→ (t2, t3) is a polynomial map.

(2) Show that ϕ is injective and surjective on points.

(3) Show that y2 − x3 is an irreducible polynomial. Conclude that I = (y2 − x3) is a prime ideal,
hence radical. Conclude that X is an affine variety and I(X) = I.

(4) Show that the k-algebra homomorphism ϕ∗ : k[X] → k[A1] is not surjective. Conclude by
Proposition 3.22 that ϕ is not an isomorphism.

Exercise 3.4. Example: the twisted cubic, revisited. This is a continuation of Exercise 2.4. We
consider the polynomial map ϕ : A1 → X; t 7→ (t, t2, t3).

(1) Show that ϕ is an isomorphism by writing down the inverse ψ : X → A1 and computing the
two compositions.

(2) Show that ϕ is an isomorphism by proving that ϕ∗ is an isomorphism.

Solutions to Exercise Sheet 3

Solution 3.1. Example: the graph of a polynomial function.

(1) Every component of π is given by a polynomial, and the image of any point in An is clearly in
Ar, so π is a polynomial map.

(2) Since X is an algebraic set, we can write X = V(S) where S is a set of polynomials in
x1, · · · , xn. Each polynomial in S can also be thought as a polynomial in x1, · · · , xn, xn+1.
Assume the polynoial function f is represented by a polynomial F ∈ k[x1, · · · , xn]. Then
consider the set of polynomials T = S ∪ {xn+1 − F} ⊆ k[x1, · · · , xn, xn+1]. We claim G(f) =
V(T ).

To prove the claim, we need to show mutual inclusions. Given any point p = (a1, · · · , an, an+1) ∈
G(f), we have (a1, · · · , an) ∈ X and an+1 = f(a1, · · · , an). The former implies that p is a
solution to all polynomials in S, and the latter implies that p is a solution to the polynomial
xn+1 − F . It follows that p ∈ V(T ).

Given any point q = (a1, · · · , an, an+1) ∈ V(T ), since xn+1 does not occur in any polynomial
in S, we know that (a1, · · · , an) ∈ V(S). Moreover an+1 − F (a1, · · · , an) = 0 implies that
an+1 = F (a1, · · · , an) = f(a1, · · · , an). Hence q ∈ G(f). This finishes the proof of the claim
G(f) = V(T ), which implies G(f) is an algebraic set.

(3) The first n components of ϕ are obviously polynomials in a1, · · · , an. Since f is a polynomial
map, it can also be represented by a polynomial F ∈ k[x1, · · · , xn]. It remains to check the
image of ϕ is always in G(f), which is clear from the definition of G(f).
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(4) We define ψ : G(f)→ X as the projection map to the first n components. Namely, ψ(x1, · · · , xn+1) =
(x1, · · · , xn). It is clearly a polynomial map. We compute both compositions. Given any
p = (a1, · · · , an) ∈ X, we have

(ψ ◦ ϕ)(p) = ψ(a1, · · · , an, f(a1, · · · , an)) = (a1, · · · , an) = p.

Given any q = (a1, · · · , an, an+1) ∈ G(f), we have

(ϕ ◦ ψ)(q) = ϕ(a1, · · · , an) = (a1, · · · , an, f(a1, · · · , an)) = (a1, · · · , an, an+1) = q.

Therefore ϕ (hence also ψ) is an isomorphism.

(5) Let X = A1, and f(x) = x2 ∈ k[x], then part (4) recovers Example 3.14.

Solution 3.2. Example: a nodal cubic.

(1) Both components in ϕ are polynomials in t. Since

y2 − x3 − x2 = (t3 − t)2 − (t2 − 1)3 − (t2 − 1)2

= t6 − 2t4 + t2 − t6 + 3t4 − 3t2 + 1− t4 + 2t2 − 1 = 0,

we conclude ϕ(t) ∈ X for every t ∈ A1. Hence ϕ is a polynomial map.

(2) To show ϕ is surjective but not injective on points, take any point q = (x, y) ∈ X. There are
two cases. If x = 0, then by the defining equation of X we also have y = 0. It is easy to see
that the point q = (0, 0) is the image of the point t = 1 or t = −1. Hence ϕ is not injective on
points. If x 6= 0, then consider t = y

x . To find its image, notice that

t2 − 1 =
y2

x2
− 1 =

y2 − x2

x2
=
x3

x2
= x;

t3 − t = t · (t2 − 1) =
y

x
· x = y.

Therefore ϕ(t) = (x, y), which means the point q = (x, y) is in the image of ϕ. The two cases
together show that ϕ is surjective on points. Since we have proved ϕ is not injective on points,
it cannot be an isomorphism by Remark 3.15.

(3) Use contradiction. Assume y2 − x3 − x2 = f(x, y)g(x, y) for non-constant polynomials f, g ∈
k[x, y]. Since the left-hand side has degree 2 in y, the degrees of f and g in y must be either
2 and 0, or 1 and 1. In the first case we can write

y2 − x3 − x2 = (y2f2(x) + yf1(x) + f0(x)) · g(x).

Comparing coefficients of y2 we find f2(x)g(x) = 1, hence g(x) must be a constant. Contra-
diction. In the second case we can write

y2 − x3 − x2 = (yf1(x) + f0(x)) · (yg1(x) + g0(x)).

Comparing coefficients of y2 we find f1(x)g1(x) = 1. Without loss of generality we can assume
f1(x) = g1(x) = 1. Comparing coefficients of y we find f0(x) + g0(x) = 0. Comparing constant
terms we find −x3 − x2 = f0(x)g0(x) = −f0(x)2, hence f0(x)2 = x3 + x2, which is also a
contradiction since x3 + x2 = x2(x + 1) is not a square. So we conclude that y2 − x3 − x2 is
irreducible. By Exercise 2.2 (1) we know I = (y2 − x3 − x2) is a prime ideal. By Proposition
2.12 (2) we know I is a radical ideal. By Proposition 2.9 (1) we know I(X) = I. By Proposition
2.15 we know X is an irreducible algebraic set, i.e. an affine variety.

Solution 3.3. Example: a cuspidal cubic.

(1) Both components in ϕ are polynomials in t. Since

y2 − x3 = (t3)2 − (t2)3 = 0,

we conclude ϕ(t) ∈ X for every t ∈ A1. Hence ϕ is a polynomial map.
18



(2) To show ϕ is injective and surjective on points, take any point q = (x, y) ∈ X. There are two
cases. If x = 0, then by the defining equation of X we also have y = 0. Assume ϕ(t) = (0, 0),
then there is a unique point t = 0 whose image is (0, 0). If x 6= 0, assume ϕ(t) = (x, y), then
we must have t = y

x , so there is at most one point whose image is (x, y). To check that its
image is indeed (x, y), notice that

t2 =
y2

x2
=
x3

x2
x;

t3 = t · t2 =
y

x
· x = y.

Therefore ϕ(t) = (x, y), which means there is a unique point t ∈ A1 whose image is the point
q = (x, y). The two cases together show that ϕ is injective and surjective on points.

(3) Use contradiction. Assume y2−x3 = f(x, y)g(x, y) for non-constant polynomials f, g ∈ k[x, y].
Since the left-hand side has degree 2 in y, the degrees of f and g in y must be either 2 and 0,
or 1 and 1. In the first case we can write

y2 − x3 = (y2f2(x) + yf1(x) + f0(x)) · g(x).

Comparing coefficients of y2 we find f2(x)g(x) = 1, hence g(x) must be a constant. Contra-
diction. In the second case we can write

y2 − x3 = (yf1(x) + f0(x)) · (yg1(x) + g0(x)).

Comparing coefficients of y2 we find f1(x)g1(x) = 1. Without loss of generality we can assume
f1(x) = g1(x) = 1. Comparing coefficients of y we find f0(x) + g0(x) = 0. Comparing constant
terms we find −x3 = f0(x)g0(x) = −f0(x)2, hence f0(x)2 = x3, which is also a contradiction
since x3 is not a square. So we conclude that y2 − x3 is irreducible. By Exercise 2.2 (1) we
know I = (y2 − x3) is a prime ideal. By Proposition 2.12 (2) we know I is a radical ideal.
By Proposition 2.9 (1) we know I(X) = I. By Proposition 2.15 we know X is an irreducible
algebraic set, i.e. an affine variety.

(4) By part (3) we have k[X] = k[x, y]/(y2 − x3). To write down the pullback map explicitly, we
notice that ϕ∗(x) = t2 and ϕ∗(y) = t3. Therefore for any polynomial map on X represented
by a polynomial f(x, y) ∈ k[x, y], its image ϕ∗(f) = f(t2, t3); that means, we simply replace
every occurence of x by t2 and y by t3. It is clear that ϕ∗(f) is a polynomial in t. We claim
that it has no term of degree 1 in t. Indeed, the image of the constant term of f is still the
same constant, and the image of any other monomial of f is a monomial in t of degree at least
2. This claim implies that ϕ∗ is not surjective, because any polynomial in t with a non-zero
degree 1 term is not in the image of ϕ∗. In particular, t ∈ k[t] = k[A1] is not in the image of
ϕ∗. Hence ϕ∗ is not an isomorphism. By Proposition 3.22, ϕ is not an isomorphism.

Solution 3.4. Example: the twisted cubic, revisited.

(1) We define the polynomial map ψ : X → A1 by ψ(x, y, z) = x. It is clearly a polynomial map
as its only component is a polynomial. For any t ∈ A1, we have (ψ ◦ ϕ)(t) = ψ(t, t2, t3) = t.
For any (x, y, z) ∈ X, we have (ϕ ◦ψ)(x, y, z) = ϕ(x) = (x, x2, x3) = (x, y, z). This shows that
ϕ is an isomorphism.

(2) We first write down the pullback map ϕ∗ explicitly. By Exercise 2.4 (3), we have k[X] =
k[x, y, z]/I(X) = k[x, y, z]/(y − x2, z − x3). We also have k[A1] = k[t]. The pullback of the
coordinate functions are given by ϕ∗(x) = t, ϕ∗(y) = t2 and ϕ∗(z) = t3. Therefore ϕ∗ is given
by

ϕ∗ : k[x, y, z]/(y − x2, z − x3) −→ k[t]; f(x, y, z) 7−→ f(t, t2, t3).

We actually have proved in Exercise 2.4 (2) that ϕ∗ is an isomorphism. Indeed, ϕ∗ is surjective
because every p(t) ∈ k[t] is the image of p(x) ∈ k[x, y, z] (or rather, the coset p(x) + I(X) in
the quotient ring). Moreover, ϕ∗ is injective because if the image of f(x, y, z) is the zero
polynomial in k[t], it must be in I(X), which means that the only element in the kernel of ϕ∗
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is the coset 0 + I(X), which is the zero element in the quotient ring. Therefore by Proposition
3.22, we conclude that ϕ is an isomorphism.

4. Projective Algebraic Sets

Instead of affine spaces, it is more natural to study algebraic geometry in projective spaces. We
first introduce projective spaces, then study projective algebraic sets. There is a similar projective
Nullstellensatz and V− I correspondence.

4.1. Projective spaces. We will study algebraic geometry in projective spaces. We prefer projective
spaces because results in projective spaces are usually nicer. One such example is that: two curves
in A2 may or may not intersect each other. When they intersect, the number of intersection is not
known until one solves the system of equations. However, in projective spaces P2, two curves always
intersect, and the number of intersection points can be easily read off from their equations. In this
lecture we will understand the projective space Pn from the following three different points of views:

• Pn is the set of 1-dimensional subspaces in An+1 (definition);

• Pn is covered by n+ 1 subsets which are all An (aka from projective to affine);

• Pn is obtained by adding to An a “boundary at infinity”, whose points correspond to “asymp-
totic directions” in An (aka from affine to projective).

Definition 4.1. For every integer n > 0, the projective space Pnk (or Pn if k is understood) of dimension

n over a field k is the set of 1-dimensional vector subspaces in An+1
k .

Remark 4.2. Each point a = (a0, a1, · · · , an) 6= (0, 0, · · · , 0) in An+1 determines a 1-dimensional
subspace. Two such points a = (a0, a1, · · · , an) and b = (b0, b1, · · · , bn) define the same subspace if
and only if there is some λ 6= 0 such that bi = λai for each 0 6 i 6 n. We say two such points are
equivalent, and write a ∼ b. Then points in Pn can be identified with such equivalence classes. More
precisely,

Pn =
(
An+1\{(0, · · · , 0)}

)
/ ∼ .

Definition 4.3. If a point p ∈ Pn is determined by (a0, a1, · · · , an) ∈ An+1\{(0, · · · , 0)}, we say that
a0, a1, · · · , an are homogeneous coordinates of p, denoted p = [a0 : a1 : · · · : an].

Remark 4.4. The homoeneous coordinates of p ∈ Pn are only determined up to a non-zero scalar
multiplication, so the i-th coordinate ai is not a well-defined number. However, it is a well-defined
notion to say whether ai is zero or non-zero; and if ai 6= 0, the ratios aj/ai are also well-defined (since
they remain unchanged under equivalence).

We want to relate projective spaces to our familiar affine spaces, so that we can “visualise” them
easily. There are two typical ways to do this.

Construction 4.5 (From projective to affine). We will see how to find subsets in Pn which are affine
spaces. For each 0 6 i 6 n, consider the subset

Ui = {[a0 : a1 : · · · : an] ∈ Pn | ai 6= 0}.
Each point p ∈ Ui can be written as

p =

[
a0
ai

: · · · : ai−1
ai

: 1 :
ai+1

ai
: · · · : an

ai

]
.

Since we insist that the i-th coordinate is 1, the other n coordinates are uniquely determined, which
can be used to identify Ui with An. Moreover, since every point in Pn has at least one non-zero
homogeneous coordinate, it lies in at least one of the Ui’s. This implies

Pn = ∪ni=0Ui. (4.1)

So Pn is covered by n+ 1 subsets, each of which looks just like An.
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Definition 4.6. Each subset Ui = {[a0 : a1 : · · · : an] ∈ Pn | ai 6= 0} of Pn is called a standard affine

chart of Pn. For every point p = [a0 : a1 : · · · : an] ∈ Ui, the n-tuple
(
a0
ai
, · · · , ai−1

ai
, ai+1

ai
, · · · , anai

)
are

called the non-homogeneous coordinates of p with respect to Ui. The cover Pn = ∪ni=0Ui is called a
standard affine cover of Pn.

Example 4.7. P1 has two standard affine charts. The point [2 : 3] ∈ P1 has non-homogeneous
coordinate 3

2 with respect to U0, and 2
3 with respect to U1. P2 has three standard affine charts. The

point [2 : 3 : 0] ∈ P2 has non-homogeneous coordinates (32 , 0) with respect to U0, and (23 , 0) with
respect to U1. This point is not in U2 because the corresponding coordinate is 0.

Construction 4.8 (From affine to projective). We will see how to get Pn by adding “points at infinity”
to the affine space An. We work with U0 but each Ui works in the same way. The complement of U0

in Pn is

H0 = Pn\U0 = {[0 : a1 : · · · : an] ∈ Pn},
which can be identified with Pn−1 as each point in H0 is given by n homogeneous coordinates which
are not simultaneously zero. Hence Pn can be decomposed into an affine space U0

∼= An and a set of
“points at infinity” H0

∼= Pn−1:
Pn = U0 ∪H0

∼= An ∪ Pn−1. (4.2)

Now we explain why we can view points in H0 as “asymptotic directions” of lines in U0 = An. This
is best illustrated for n = 2, but works for any positive integer n.

Example 4.9. Consider two lines V(x2 − x1 + 1) and V(x2 − x1 − 1) in A2 ∼= U0. They are parallel
since they have the same slope. We can regard x1 and x2 as the non-homogeneous coordinates with
respect to U0, and substitute xi by ai

a0
. Then the defining equations of the two lines become

a2
a0
− a1
a0
± 1 = 0.

We clear the denominators to get

a2 − a1 ± a0 = 0.

Notice that after clearing the denominator, we no longer require a0 to be non-zero. Therefore we
could possibly get extra solutions corresponding to points in H0. To see which points in H0 satisfy
the equation, we set a0 = 0. Then the equation becomes

a2 − a1 = 0.

Up to a non-zero scalar multiplication we get one extra solution [a0 : a1 : a2] = [0 : 1 : 1]. So we
can say both lines pass through (and intersect at) the point [0 : 1 : 1] at infinity. Since parallel lines
always acquire the same point at infinity, we get an idea that points in H0 correspond to “asymptotic
directions”.

This example shows us how to understand points at infinity. We use the line V(x2 − x1 + 1) to
preview some notions that will come up later. After clearing the denominators, we get a polynomial
a2−a1 +a0 in which every monomial has the same degree. We say such a polynomial is homogeneous.
Its solutions in P2 is called a projective algebraic set. Since it is obtained by adding the appropriate
“points at infinity” to the affine algebraic set V(x2 − x1 + 1), we say this projective algebraic set is
the projective closure of the affine algebraic set V(x2 − x1 + 1). In fact, every affine algebraic set in
An (not necessarily a line) has a projective closure in Pn obtained by adding the appropiate “points
at infinity”, which can be computed using a similar calculation. We will see more examples later.

4.2. Projective algebraic sets and projective Nullstellensatz. We develop the theory of pro-
jective algebraic sets. Most of the results and proofs are similar to those in the affine case. We will
be brief on the similar part, but careful on a few special features.

Definition 4.10. A non-zero polynomial f ∈ k[z0, z1, · · · , zn] is homogeneous of degree d if each term
of f has the same total degree d.
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As easy examples, z2 − z21 is not homogeneous while z0z2 − z21 is homogeneous of degree 2. The
importance of this notion is the following. If f is homogeneous of degree d, then

f(λa0, λa1, · · · , λan) = λdf(a0, a1, · · · , an). (4.3)

In particular this means f(λa0, λa1, · · · , λan) = 0 if and only if f(a0, a1, · · · , an) = 0 for any λ 6= 0.
Therefore for any point p = [a0 : a1 : · · · : an] ∈ Pn, the condition f(p) = 0 is independent of the
choice of its homogeneous coordinates. Hence the zero locus of f

{[a0 : a1 : · · · : an] ∈ Pn | f(a0, a1, · · · , an) = 0}

is also well-defined.

Remark 4.11. Since the zero polynomial satisfies (4.3) for every non-negative integer d, as a convention,
the zero polynomial is considered to be a homogeneous polynomial of any degree. By doing so, we can
avoid many unnecessary exceptions. For instance, the sum of two homogeneous polynomial of degree
d is again a homogeneous polynomial of degree d when we include the zero polynomial.

Definition 4.12. For any non-zero polynomial f ∈ k[z0, z1, · · · , zn] of degree m, we say f = f0 +f1 +
· · ·+ fm is the homogeneous decomposition of f , if for each i, 0 6 i 6 m, fi is homogeneous of degree
i. Each fi is called a homogeneous component of f .

Definition 4.13. An ideal I ⊆ k[z0, z1, · · · , zn] is homogeneous if for every non-zero polynomial f ∈ I,
each of its homogeneous components fi ∈ I.

In practice, this condition for an ideal being homogeneous is not very easy to check. The following
criterion is usually more convenient.

Proposition 4.14. An ideal I ⊆ k[z0, z1, · · · , zn] is homogeneous if and only if it can be generated by
a finite set of homogeneous polynomials.

Proof. We leave the proof as an exercise. �

Example 4.15. The ideals (x) and (x, y2) in k[x, y] are both homogeneous, while the ideal (x+ y2)
in k[x, y] is not homogeneous, because the degree 1 part of x+ y2 is x, which is not in this ideal.

Notice that an ideal could have many different sets of generators. The statement only requires one set
of generators consists of only homogeneous polynomials. It is still possible that some other generating
set is not given by homogeneous polynomials. Next we can define the correspondences V and I.

Definition 4.16. For any homogeneous ideal I ⊆ k[z0, z1, · · · , zn], the set

V(I) = {p ∈ Pn | f(p) = 0 for every homogeneous polynomial f ∈ I}

is called the projective algebraic set defined by I.

Similar to the affine case, the following result is usually convenient in practice.

Lemma 4.17. Suppose a homogeneous ideal I ⊆ k[z0, z1, · · · , zn] is generated by a finite set of homo-
geneous polynomials S = {f1, · · · , fm}. Let

V(S) = {p ∈ Pn | f1(p) = · · · fm(p) = 0}.

Then V(S) = V(I).

Proof. Similar to the proof of Lemma 1.10. We leave it as an exercise. �

Corollary 4.18. Every projective algebraic set X ⊆ Pn can be written as V(S) for a finite set S of
homogeneneous polynomials in k[z0, · · · , zn].

Proof. It follows immediately from Propositions 4.14 and 4.17. �
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Example 4.19. In P1, the projective algebraic set V(3z0 − 2z1) is the single-point set {[2 : 3]}. In
P2, the projective algebraic set V(z2 − z1 + z0) is one of the affine lines in Example 4.9 together with
the corresponding point at infinity.

Definition 4.20. A projective algebraic set X ⊆ Pn is called a hypersurface if X = V(f) for some
non-constant homogeneous polynomial f ∈ k[z0, z1, · · · , zn].

Definition 4.21. For any subset X ⊆ Pn, the set

I(X) =

{
f ∈ k[z0, z1, · · · , zn]

∣∣∣∣ f(p) = 0 for every choice of homogeneous
coordinates of every point p ∈ X

}
is called the ideal of X.

Lemma 4.22. For any subset X ⊆ Pn, I(X) is a homogeneous radical ideal.

Proof. The proof of Lemma 2.6 (2) works literally here to show I(X) is a radical ideal. To show it is
homogeneous, let f ∈ I(X) and write f = f0 + f1 + · · · + fm for the homogeneous decomposition of
f where m is the degree of f . For each p = [a0 : a1 : · · · : an] ∈ X and λ ∈ k\{0}, we can also write
p = [λa0 : λa1 : · · · : λan], hence we have

0 = f(p) = f(λa0, λa1, · · · , λan)

=

m∑
i=0

fi(λa0, λa1, · · · , λan)

=

m∑
i=0

λifi(a0, a1, · · · , an) =

m∑
i=0

λifi(p).

This means that every λ ∈ k\{0} is a root of the polynomial
∑m

i=0 fi(p)x
i ∈ k[x]. This must be a zero

polynomial, because the number of roots of any non-zero polynomial is at most equal to its degree m.
It follows that fi(p) = 0 for every 0 6 i 6 m, so fi ∈ I(X). �

Remark 4.23. We have used the same notation V and I in both affine and projective cases. In practice
it is usually clear which is meant; but if there is any danger of confusion, we will write Vp and Ip for
the projective operations, Va and Ia for the affine ones.

Now we state the projective Nullstellensatz. It is similar to the affine version, but there is one point
where care is needed. Clearly the trivial ideal (1) = k[z0, z1, · · · , zn] defines the empty set in An+1,
hence the empty set in Pn, as it should be. However, the ideal (z0, z1, · · · , zn) defines a single-point set
{(0, · · · , 0)} in An+1, which also corresponds to the empty set in Pn. This ideal (z0, z1, · · · , zn) is an
awkward exception to several statements in the theory, and is traditionally known as the “irrelevant
ideal”. Keeping that in mind, we state the projective version of Nullstellensatz.

Theorem 4.24 (Projective Nullstellensatz). Let k be an algebraically closed field. For any homoge-
neous ideal I ⊆ k[z0, z1, · · · , zn],

(1) V(I) = ∅ if and only if
√
I ⊇ (z0, z1, · · · , zn).

(2) If V(I) 6= ∅, then I(V(I)) =
√
I.

Proof. This is an easy consequence of the affine Nullstellensatz. Non-examinable. Interested reader
can find the proof in [Section 5.3, Reid, Undergraduate Algebraic Geometry] or [Section 4.2, Fulton,
Algebraic Curves]. �

Exercise Sheet 4

This sheet will be discussed in the exercise class on 30 October. You are welcome to submit your
solutions at the end of the exercise class or anytime earlier.
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Exercise 4.1. Get familiar with projective spaces. Answer the following quick questions.

(1) What is P0? Why does P1 have only one more point than A1? When k = C, can you picture
P1
C as a bubble (or a ball, something like that)? Which points in Pn belong to only one of the
Ui’s in the standard affine cover of Pn?

(2) Follow Example 4.9 to find the points at infinity for the affine algebraic set Va(x22−x21−1) ⊆ A2.
Do the same for Va(x22 − x21) and Va(x22 − x31) in A2.

Exercise 4.2. Properties of homogeneous polynomials and ideals.

(1) Let f ∈ k[z0, · · · , zn] be a non-zero homogeneous polynomial. Assume f = gh for some
g, h ∈ k[z0, · · · , zn]. Show that g and h are also homogeneous polynomials.

(2) Show that an ideal I ⊆ k[z0, z1, · · · , zn] is homogeneous if and only if it can be generated by
a finite set of homogeneous polynomials.

(3) Suppose a homogeneous ideal I ⊆ k[z0, z1, · · · , zn] is generated by a finite set of homogeneous
polynomials S = {f1, · · · , fm}. Show that Vp(I) = Vp(S).

Exercise 4.3. Projective spaces are better than affine spaces! A line in P2 is a projective algebraic
set Vp(f) defined by a homogeneous linear polynomial f = a0z0 + a1z1 + a2z2 ∈ k[z0, z1, z2] for some
a0, a1, a2 ∈ k not simultaneously zero.

(1) Show that two distinct points in P2 determine a unique line.

(2) Show that two distinct lines in P2 intersect at a unique point.

(Hint: How to compute the dimension of the null space of a matrix? Rank-nullity!)

Exercise 4.4. Example of projective algebraic sets. Recall that we always assume k is algebraically
closed. Prove that projective algebraic sets in P1 are just the finite subsets in P1 (including ∅) together
with P1 itself. You can follow these steps:

(1) Verify that they are indeed projective algebraic sets.

(2) Show that every non-constant homogeneous polynomial f(z0, z1) ∈ k[z0, z1] can be factored
into a product of homogeneous polynomials of degree 1. (Hint: you can use the following
lemma in algebra: a non-constant polynomial g(x) ∈ k[x] can be factored into a product of
polynomials of degree 1.)

(3) Show that if a projective algebraic set in P1 is not P1 itself, then it contains at most finitely
many points.

Solutions to Exercise Sheet 4

Solution 4.1. Get familiar with projective spaces.

(1) Since there is only one 1-dimensional linear subspace in A1, P0 is a point. P1 = U0 ∪H0 where
U0
∼= A1 is an affine space and H0

∼= P0 is a point. Therefore P1 has just one more point than
A1. When k = C, U0

∼= A1
C = C1 is the complex plane. To view P1 as a bubble, imagine we

remove a point from the surface of a bubble (or a globe), the remaining part can be stretched
into the complex plane.

A point p ∈ Pn belongs to only one of the standard affine chart Ui if and only if p has only
one non-zero homogeneous coordinate. We can assume this non-zero homogeneous coordinate
to be 1, otherwise we can divide all components by it. So the point p can be given by
p = [0 : · · · : 0 : 1 : 0 : · · · : 0] with 1 at a certain position and 0 at all other positions. There
are n+ 1 such points.
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(2) We regard x1 and x2 as non-homogeneous coordinates and substitute x1 = z1
z0

and x2 = z2
z0

.

The equation x22 − x21 − 1 = 0 becomes
z22
z20
− z21

z20
− 1 = 0. We clear the denominators to allow

z0 to be zero, then we get z22 − z21 − z20 = 0. To find the points at infinity, set z0 = 0, then we
have z22−z21 = 0, hence z2 = ±z1. As points in P2 we get two solutions [z0 : z1 : z2] = [0 : 1 : 1]
or [0 : 1 : −1], which are the points at infinity for Va(x22 − x21 − 1). This example tells us that
a hyperbola has two “asymptotic directions”, which is easy to understand since a hyperbola
has two asymptotes.

For Va(x22−x21), we still substitute x1 = z1
z0

and x2 = z2
z0

. The equation x22−x21 = 0 becomes
z22
z20
− z21

z20
= 0. We clear the denominators to allow z0 to be zero, then we get z22 − z21 = 0. To

find the points at infinity, set z0 = 0, then we still have z22−z21 = 0, hence z2 = ±z1. As points
in P2 we get two solutions [z0 : z1 : z2] = [0 : 1 : 1] or [0 : 1 : −1], which are the points at
infinity for Va(x22 − x21). The result is not surprising, because the polynomial x22 − x21 defines
precisely the two asymptotes of the hyperbola in the previous case.

For Va(x22−x31), we still substitute x1 = z1
z0

and x2 = z2
z0

. The equation x22−x31 = 0 becomes
z22
z20
− z31

z30
= 0. We clear the denominators to allow z0 to be zero, then we get z0z

2
2 − z31 = 0. To

find the points at infinity, set z0 = 0, then we get −z31 = 0, hence z1 = 0. As points in P2 we
get one solution [z0 : z1 : z2] = [0 : 0 : 1], which is the point at infinity for Va(x22 − x31).

Solution 4.2. Properties of homogeneous polynomials and ideals.

(1) We write the homogeneous decompositions of g and h as

g = gM + gM−1 + · · ·+ gm+1 + gm,

h = hN + hN−1 + · · ·+ hn+1 + hn,

where M and m are the maximal and minimal degrees of non-zero monomials in g respectively;
similarly N and n are the maximal and minimal degrees of non-zero monomials in h respec-
tively. Then the degree of every monomial in the product f = gh is between m+n and M+N .
Moreover, the sum of all degree M +N monomials in f is given by gMhN , which is non-zero
since both gM and hN are non-zero. Similarly, the sum of all degree m+ n monomials in f is
given by gmhn, which is non-zero since both gm and hn are non-zero. If f is homogeneous, we
must have M +N = m+ n, which is only possible when M = m and N = n. Therefore both
g and h are homogeneous.

(2) Assume I is a homogeneous ideal. Since k[z0, · · · , zn] is a Noetherian ring, I is finitely gen-
erated. So we can write I = (f1, · · · , fm) for some f1, · · · , fm ∈ I which are not neces-
sarily homogeneous polynomials. However, each fi has a homogeneous decomposition, say,
fi = fi,0 + fi,1 + · · ·+ fi,di where di is the degree of fi. We claim that I is generated by all the
fi,j ’s; that is,

I = (f1,0, · · · , f1,d1 , f2,0, · · · , f2,d2 , · · · · · · , fm,0, · · · fm,dm).

On one hand, since I is a homogeneous ideal, each fi,j ∈ I, which proves “⊇”. On the other
hand, we notice that every element h ∈ I can be written as h = f1g1 + · · · + fmgm for some
g1, · · · , gm ∈ k[z0, · · · , zn], which can be expanded as h = f1,0g1 + · · · + f1,d1g1 + · · · · · · +
fm,0gm + · · · + fm,dmgm, which proves “⊆”. The claim shows that I can be generated by
finitely many homogeneous polynomials.

Conversely, assume I = (p1, · · · , pl) for finitely many homogeneous polynomials p1, · · · , pl ∈
k[z0, · · · , zn], with deg pi = ei. Given any polynomial q ∈ I, assume the homogeneous decom-
position of q is q = q0 + · · ·+qk, where k is the degree of q. We need to show that every qj ∈ I.
Since q ∈ I, we can write q = p1r1 + · · · + plrl for some r1, · · · , rl ∈ k[z0, · · · , zn]. For each j
with 0 6 j 6 k, by comparing the degree j terms we get qj = p1r1,j−e1 + · · ·+ plrl,j−el , where
each ri,j−ei is the sum of all degree j− ei monomials in ri. Since I = (p1, · · · , pl), we conclude
that qj ∈ I for every j, which implies I is a homogeneous ideal.
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(3) Given any point p ∈ V(I), we have g(p) = 0 for every homogeneous polynomial g ∈ I. In
particular, fi(p) = 0 for every i. Therefore p ∈ V(S). This proves V(I) ⊆ V(S).

On the other hand, given any point q ∈ V(S), we have fi(q) = 0 for every i. For any
homogeneous polynomial g ∈ I, we can write g = f1g1 + · · · + fmgm for some g1, · · · , gm ∈
k[z0, · · · , zn]. Then g(q) = f1(q)g1(q) + · · · + fm(q)gm(q) = 0. (Rigorously speaking, one
should argue that each gi can be chosen to be a homogeneous polynomial of degree equal to
deg g−deg fi, which can be achieved by replacing each gi with its homogeneous part of degree
equal to deg g − deg fi.) This proves that V(S) ⊆ V(I).

Solution 4.3. Projective spaces are better than affine spaces!

(1) Let the two points be p = [p0 : p1 : p2] and q = [q0 : q1 : q2]. A line V(a0z0+a1z1+a2z2) passes
through these two points if and only if the following system of linear equations in a0, a1, a2
hold

p0a0 + p1a1 + p2a2 = 0,

q0a0 + q1a1 + q2a2 = 0.

Since p and q are distinct points in P2, the two rows in the coefficient matrix(
p0 p1 p2
q0 q1 q2

)
are linearly independent, hence the matrix has rank 2. By the theorem of rank-nullity, the
solution space to the system has dimension 1. Let v = (a0, a1, a2) be a non-zero solution,
then every solution can be written as λv for some λ ∈ k. The solution v defines a line
V(a0z0 + a1z1 + a2z2) through the points p and q. It remains to show the uniqueness. When
λ = 0, we have λv = (0, 0, 0) which does not define a line. For every λ ∈ k\{0}, the line
V(λa0z0 + λa1z1 + λa2z2) is the same as V(a0z0 + a1z1 + a2z2). Therefore the line through p
and q is unique.

(2) Let the two lines by V(a0z0 + a1z1 + a2z2) and V(b0z0 + b1z1 + b2z2). A point [z0 : z1 : z2]
lies on both lines if and only if it is a solution of the following system of linear equations in
z0, z1, z2

a0z0 + a1z1 + a2z2 = 0,

b0z0 + b1z1 + b2z2 = 0.

Since the two lines are distinct, the two rows in the coefficient matrix(
a0 a1 a2
b0 b1 b2

)
are linearly independent, hence the matrix has rank 2. By the theorem of rank-nullity, the
solution space to the system has dimension 1. Let w = (z0, z1, z2) be a non-zero solution, then
every solution can be written as λw for some λ ∈ k. The solution w defines a point [z0 : z1 : z2]
of intersection. It remains to show the uniqueness. When λ = 0, we have λw = (0, 0, 0) which
does not define a point in P2. For every λ ∈ k\{0}, the point [λz0 : λz1 : λz2] is the same as
the point [z0 : z1 : z2]. Therefore the two lines meet at a unique point in P2.

Solution 4.4. Example of projective algebraic sets.

(1) The empty set ∅ = V(1) and the entire P1 = V(0). For any non-empty finite subset of P1,
say {[u1 : v1], [u2 : v2], · · · , [uk : vk]}, it can be written as V(f) for a homogeneous polynomial
f = (v1z0 − u1z1)(v2z0 − u2z1) · · · (vkz0 − ukz1) ∈ k[z0, z1]. Therefore every set stated in the
question is a projective algebraic set in P1.

26



(2) Let f ∈ k[z0, z1] be a homogeneous polynomial of degree d. Assume ze0 be the highest power
of z0 dividing f for some e 6 d. Then we can write

f = c0z
d
0 + c1z

d−1
0 z1 + · · ·+ cd−ez

e
0z
d−e
1

= zd0 ·

(
c0 + c1

z1
z0

+ · · ·+ cd−e
zd−e1

zd−e0

)
.

We consider the polynomial g(x) = c0 + c1x+ · · ·+ cd−ex
d−e. If g is constant, then f = c0z

d
0

is a product of d homogeneous polynomials of degree 1. If g is not a constant, then it can
be factored into a product of polynomials of degree 1 as g(x) = (a1 + b1x) · · · (ad−e + bd−ex).
Then we have

f = zd0 ·
(
a1 + b1 ·

z1
z0

)
· · ·
(
ad−e + bd−e ·

z1
z0

)
= ze0 · (a1z0 + b1z1) · · · (ad−ez0 + bd−ez1)

which is also a product of d homogeneous polynomials of degree 1.

(3) Let X ⊆ P1 be a projective algebraic set. By Corollary 4.18, we assume X = V(S) for a finite
set S of homogeneous polynomials in k[z0, z1]. If S does not have any non-zero polynomial
then X = P1. Otherwise, assume f ∈ S is a non-zero homogeneous polynomial of degree d.
By part (2) we can write f = (a1z0 + b1z1) · · · (adz0 + bdz1) (each factor z0 can be written as
1 · z0 + 0 · z1). For every p = [u : v] ∈ X, we have f(p) = 0, hence a certain factor of f vanishes
at p; more precisely, aiu + biv = 0 for some i. Therefore p = [bi : −ai]. There are at most d
points of this kind, hence X contains only finitely many points.

5. Rational Maps

We have seen projective algebraic sets. Now we study V − I correspondence for projective algebraic
sets and maps between them.

5.1. V− I correspondence and rational maps. We have introduced the projective Nullstellensatz.
The following notion is parallel to the same one in the affine case.

Definition 5.1. A projective algebraic setX ⊆ Pn is irreducible if there does not exist a decomposition
of X as a union of two stricly smaller projective algebraic sets. An irreducible projective algebraic
set is also called an projective variety. A projective algebraic set X ⊆ Pn is reducible if it is not
irreducible.

Not very surprisingly, we also have the projective version of V− I correspondences. Each row in the
following diagram is a bijection:

homogeneous radical ideals
I ⊆ k[z0, z1, · · · , zn]

with I 6⊇ (z0, z1, · · · , zn)

 V
//

{
non-empty projective
algebraic sets X ⊆ Pn

}
I

oo


homogeneous prime ideals

I ⊆ k[z0, z1, · · · , zn]
with I 6⊇ (z0, z1, · · · , zn)

 V
//

?�

OO


non-empty

irreducible projective
algebraic sets X ⊆ Pn

I
oo

?�

OO

We summarise the content in the diagram in words for later reference.

Proposition 5.2. Let X be a non-empty projective algebraic set in Pn and I a homogeneous radical
ideal in k[z0, · · · , zn] such that (z0, · · · , zn) 6⊆ I. Then X = V(I) if and only if I = I(X). In such a
case, X is irreducible if and only if I is prime.
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Proof. Non-examinable. Interested reader can find the proof in [Section 5.3, Reid, Undergraduate
Algebraic Geometry]. �

Remark 5.3. Comparing with the affine V − I correspondence, the bijection between maximal ideals
and points is no longer valid in the projective setting. In fact, the only homogeneous maximal ideal in
k[z0, z1, · · · , zn] is the irrelevant ideal (z0, z1, · · · , zn), which gives the empty set in Pn as we discussed
above.

In practice it is usually not easy to determine whether a projective algebraic set is irreducible. It is
clear that Pn is irreducible since I(Pn) = (0) is a prime ideal. In case of hypersurfaces, the following
result usually helps.

Lemma 5.4. Let I = (f) ⊆ k[z0, z1, · · · , zn]. Then I is a prime ideal if and only if f is an irreducible
polynomial; I is a radical ideal if and only if f has no repeated irreducible factors.

Proof. It was proved in Exercise 2.2. �

Now we turn to maps between projective algebraic sets.

Definition 5.5. For projective algebraic sets X ⊆ Pn and Y ⊆ Pm, a rational map ϕ : X 99K Y is an
equivalence class of expressions [f0 : · · · : fm] satisfying

(1) f0, · · · , fm ∈ k[z0, · · · , zn] are homogeneous of the same degree;

(2) [f0(p) : · · · : fm(p)] 6= [0 : · · · : 0] for some point p ∈ X;

(3) For each point p ∈ X, if [f0(p) : · · · : fm(p)] is defined, then it is a point in Y .

Two such expressions [f0 : · · · : fm] and [g0 : · · · : gm] are equivalent if [f0(p) : · · · : fm(p)] = [g0(p) :
· · · : gm(p)] for every p ∈ X at which both are defined.

Definition 5.6. Let ϕ : X 99K Y be a rational map between projective algebraic sets. We say ϕ is
regular at p ∈ X if [f0(p) : · · · : fm(p)] is well-defined for some expression [f0 : · · · : fm] representing
ϕ.

Definition 5.7. For projective algebraic sets X and Y , a morphism ϕ : X −→ Y is a rational map
which is regular at every point in X.

Remark 5.8. The condition (1) in Definition 5.5 guarantees that the image is independent of the choice
of the homogeneous coordinates of p. More precisely, suppose fi’s are homogeneous of degree d, and
p = [a0 : · · · : an]. For any λ 6= 0, we can also write p = [λa0 : · · · : λan]. Then we have by (4.3) that

[f0(λa0, · · · , λan) : · · · : fm(λa0, · · · , λan)]

= [λdf0(a0, · · · , an) : · · · : λdfm(a0, · · · , an)]

= [f0(a0, · · · , an) : · · · : fm(a0, · · · , an)].

The condition (2) in Definition 5.5 guarantees that the expression [f0 : · · · : fm] is defined on a
non-empty subset of X.

Remark 5.9. We can view a rational function ϕ : X 99K Y as a piecewise and partially defined function.
Each expression [f0 : · · · : fm] representing ϕ is defined on a subset of X. Two such expressions that
agree on the locus where both are defined can be glued together to represent the same function ϕ.
However, there could still be some points in X where none of the expressions is defined.

Example 5.10. We check the following is a morphism

ϕ : P1 −→ P2; [u : v] 7−→ [u2 : uv : v2].

All components of ϕ are homogeneous polynomials of degree 2. For each point p = [u : v] ∈ P1, either
u 6= 0 or v 6= 0, hence either u2 6= 0 or v2 6= 0. Therefore ϕ is regular on the entire P1. Since the
target is P2, ϕ(p) ∈ P2 is automatic for every p ∈ P1.
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Example 5.11. Consider the projective algebraic set C = V(z0z2− z21) ⊆ P2. We check the following
is a morphism

ϕ : P1 −→ C; [u : v] 7−→ [u2 : uv : v2].

We need to check everything that we checked in Example 5.10. In addition we need to check ϕ(p) ∈ C
for every p ∈ P1. To see that we need to show [u2 : uv : v2] satisfies the defining equation of C, which
is clear since (u2)(v2)− (uv)2 = 0.

Example 5.12. For the same C as in Example 5.11, we check the following is a morphism

ψ : C −→ P1; [z0 : z1 : z2] 7−→

{
[z0 : z1] if z0 6= 0;

[z1 : z2] if z2 6= 0.

As we can see ψ is defined by two expressions, whose components are all homogeneous polynomials of
degree 1. They are both defined on a non-empty subset of C; e.g. both are defined at [1 : 1 : 1] ∈ C.
It is clear that the image is always in P1. For any point [z0 : z1 : z2] ∈ C with z0 6= 0 and z2 6= 0, we
have z21 = z0z2 hence z1 6= 0. Set λ = z1

z0
= z2

z1
6= 0, then [z0 : z1] = [λz0 : λz1] = [z1 : z2]. Therefore the

two expressions agree on the locus where they are both defined. To show ψ is regular everywhere on
C, we observe that for any point p = [z0 : z1 : z2] ∈ C, z0 and z2 cannot be both zero, since otherwise
z21 = z0z2 = 0 and p is not a valid point. This concludes that ψ is a morphism.

Example 5.13 (Cremona transformation). We check the following is a rational map

ϕ : P2 99K P2; [x : y : z] 7−→ [yz : zx : xy].

All components of ϕ are homogeneous of degree 2. For every point p ∈ P2 with at least two non-zero
coordinates, ϕ(p) is a well-defined point in P2. Hence ϕ is a rational map.

5.2. Dominant rational maps and birational maps. We have seen rational maps between projec-
tive algebraic sets. We now consider the composition of two rational maps. Suppose f : X 99K Y and
g : Y 99K Z are rational maps. It is not always true that they can be composed to get g ◦ f : X 99K Z,
because the image of f could be disjoint from the locus where g is defined. We will deal with this
problem.

Definition 5.14. Let X ⊂ Pn and Y ⊂ Pm be projective varieties. A rational map ϕ : X 99K Y
is dominant if there does not exist a projective algebraic set W ( Y , such that ϕ(p) ∈ W for every
p ∈ X where ϕ is defined.

Example 5.15. We claim the morphism ϕ : P1 −→ P2 in Example 5.10 is not dominant. To see this,
we consider W = V(z0z2 − z21) ⊂ P2. We see that W ( P2 because [1 : 1 : 0] ∈ P2\W . But for every
p ∈ P1, ϕ(p) ∈W because (u2)(v2)− (uv)2 = 0.

The definition is handy for showing a rational map is not dominant. The following criterion is usually
more convenient for showing a rational map is dominant.

Lemma 5.16. Let ϕ : X 99K Y be a rational map between projective varieties. Suppose there exists a
projective algebraic set Z ( Y , such that every q ∈ Y \Z can be written as q = ϕ(p) for some p ∈ X.
Then ϕ is dominant.

Proof. Suppose on the contrary that there exists some projective algebraic set W ( Y such that
ϕ(p) ∈W for every p ∈ X at which ϕ is defined. It is clear Y ⊇W ∪ Z. For every q ∈ Y , if q = ϕ(p)
for some p ∈ X, then q ∈W ; otherwise q ∈ Z. It follows that Y ⊆W ∪Z. Therefore Y = W ∪Z where
both W and Z are projective algebraic sets strictly smaller than Y . This contradicts the irreducibility
of Y . �

Remark 5.17. In explicit examples there are usually many possible choices for W in Definition 5.14
and Z in Lemma 5.16. You can choose the one that you find easy to use.
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Example 5.18. We consider the morphism ϕ : P2 99K P2 in Example 5.13. We know P2 is a projective
variety. We claim ϕ is dominant. If not, then we can find a projective algebraic set W ( P2, such
that ϕ(p) ∈W for every p ∈ P2 at which ϕ is defined.

We observe that the projective algebraic set Z = V(xyz) consists of all points in P2 with at least one
zero coordinate, so Z ( P2. For every point [a : b : c] ∈ P2\Z, all coordinates are non-zero. It is in
the image of ϕ since

ϕ([bc : ca : ab]) = [a2bc : ab2c : abc2] = [a : b : c].

It follows from Lemma 5.16 that ϕ is dominant.

Now we answer the question asked at the beginning and give a sufficient condition for the existence
of compositions.

Lemma 5.19. Let ϕ : X 99K Y and ψ : Y 99K Z be rational maps between projective varieties. If ϕ
is dominant, then ψ ◦ ϕ : X 99K Z is a rational map.

Proof. Non-examinable. Interested reader can find more details in [Section 4.10, Reid, Undergraduate
Algebraic Geometry]. �

The following is another special class of rational maps.

Definition 5.20. Let ϕ : X 99K Y be a rational map between projective varieties. It is said to be
a birational map if there exists another rational map ψ : Y 99K X, such that ψ ◦ ϕ is a well-defined
rational map equivalent to the identity map on X, and ϕ ◦ψ is a well-defined rational map equivalent
to the identity map on Y . We say a birational map ϕ is an isomorphism if both ϕ and ψ can be chosen
to be morphisms.

Remark 5.21. More precisely, the condition that ψ ◦ ϕ is equivalent to idX means that (ψ ◦ ϕ)(p) = p
for every point p ∈ X at which ψ ◦ ϕ is defined. A similar condition holds for the other composition
ϕ ◦ ψ.

Example 5.22. We claim that the rational map ϕ : P2 99K P2 discussed in Examples 5.13 and 5.18
is a birational map. Let ψ be the same rational map as ϕ, then the composition ψ ◦ ϕ is given by the
expression

(ψ ◦ ϕ)([x : y : z]) = ψ([yz : zx : xy]) = [x2yz : xy2z : xyz2].

For any point [x : y : z] with all coordinates nonzero, we have (ψ ◦ ϕ)([x : y : z]) = [x2yz : xy2z :
xyz2] = [x : y : z]. The same is true for ϕ ◦ ψ. Therefore the claim holds.

Example 5.23. We claim that the morphism ϕ : P1 −→ C in Example 5.11 is an isomorphism, with
an inverse ψ given by the morphism in Example 5.12. For any [u : v] ∈ P1, either u 6= 0 or v 6= 0. If
u 6= 0, then u2 6= 0, hence

(ψ ◦ ϕ)([u : v]) = ψ([u2 : uv : v2]) = [u2 : uv] = [u : v].

If v 6= 0, then v2 6= 0. We can similarly have

(ψ ◦ ϕ)([u : v]) = ψ([u2 : uv : v2]) = [uv : v2] = [u : v].

For the other composition, take any point [z0 : z1 : z2] ∈ C. We showed in Example 5.12 that either
z0 6= 0 or z2 6= 0. If z0 6= 0, then

(ϕ ◦ ψ)([z0 : z1 : z2]) = ϕ([z0 : z1]) = [z20 : z0z1 : z21 ] = [z20 : z0z1 : z0z2] = [z0 : z1 : z2].

If z0 6= 0, we can similarly have

(ϕ ◦ ψ)([z0 : z1 : z2]) = ϕ([z1 : z2]) = [z21 : z1z2 : z22 ] = [z0z2 : z1z2 : z22 ] = [z0 : z1 : z2].

Therefore both compositions are equivalent to identity maps hence ϕ is a rational map. Since ϕ and
ψ are both morphisms, ϕ is in fact an isomorphism.
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Definition 5.24. Two projective varieties X and Y are said to be birational if there exists a birational
map ϕ : X 99K Y . A projective variety X is said to be rational if it is birational to Pn for some non-
negative integer n.

Definition 5.25. Two projective varieties X and Y are said to be isomorphic if there exists an
isomorphism ϕ : X −→ Y .

Remark 5.26. In fact, being birational is an equivalence relation among projective varieties. This is
an extremely important and profound notion in algebraic geometry. Determining which projective
varieties are in the same birational equivalence class, and finding a good representative in each class,
are the fundamental questions in a major branch of algebraic geometry, called birational geometry. As
these questions are in general very difficult, a complete answer is far from being achieved. We will see
some examples later.

Exercise Sheet 5

This sheet will be discussed in the exercise class on 6 November. You are welcome to submit your
solutions at the end of the exercise class or anytime earlier.

Exercise 5.1. Example: linear embedding and linear projection.

(1) Show that ϕ : P1 −→ P3; [z0 : z1] 7−→ [z0 : z1 : 0 : 0] is a morphism. Is it dominant?
(Remark: in general, for any n 6 m, there is a linear embedding from Pn to Pm by identifying
homogeneous coordinates in Pn with a subset of homogeneous coordinates in Pm and setting
the remaining coordinates 0.)

(2) Show that ψ : P3 99K P1; [z0 : z1 : z2 : z3] 7−→ [z2 : z3] is a rational map. Is it dominant?
(Remark: in general, for any m > n, there is a linear projection from Pm to Pn by choosing a
subset of the homogeneous coordinates in Pm.)

(3) Is the composition ψ ◦ ϕ a well-defined rational map? Explain your reason.

Exercise 5.2. Example: the cooling tower. Consider Y = V(y0y3 − y1y2) ⊆ P3.

(1) Show that y0y3 − y1y2 is irreducible. Conclude that Y is a projective variety.

(2) Show that ϕ : P2 99K Y ; [x0 : x1 : x2] 7−→ [x20 : x0x1 : x0x2 : x1x2] is a rational map. Show
that ϕ is dominant. (Hint: first show that each point q = [y0 : y1 : y2 : y3] ∈ Y with y0 6= 0 is
in the image of ϕ, then use Lemma 5.16.)

(3) Show that ψ : Y 99K P2; [y0 : y1 : y2 : y3] 7−→ [y0 : y1 : y2] is a rational map. Show that ψ is
dominant. (Hint: first show that each point p = [x0 : x1 : x2] ∈ P2 with x0 6= 0 is in the image
of ψ, then use Lemma 5.16.)

(4) Show that ϕ and ψ are birational maps. Conclude that Y is rational.

Exercise 5.3. Example: the projective twisted cubic. Consider the projective variety Y = V(y0y2 −
y21, y1y3 − y22, y0y3 − y1y2) ⊆ P3.

(1) Show that ϕ : P1 −→ Y ; [u : v] 7−→ [u3 : u2v : uv2 : v3] is a morphism.

(2) Show that ϕ is an isomophism by finding the inverse morphism ψ : Y −→ P1 and computing
their compositions. Conclude that Y is isomorphic to P1.

Exercise 5.4. A famous example: blow-up at a point. Consider the projective variety Y = V(y0y2 −
y21, y0y4 − y1y3, y1y4 − y2y3) ⊆ P4.

(1) Show ϕ : P2 99K Y ; [x0 : x1 : x2] 7−→ [x20 : x0x1 : x21 : x0x2 : x1x2] is a rational map.

(2) Show that ϕ is a birational map by finding the inverse rational map ψ : Y 99K P2 and computing
their compositions. Conclude that Y is rational.
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(3) Show that ψ can be chosen to be a morphism. Show that ψ is surjective on points. Find all
points q ∈ Y , such that ψ(q) = [0 : 0 : 1].

Solutions to Exercise Sheet 5

Solution 5.1. Example: linear embedding and linear projection.

(1) All components are given by homogeneous polynomials of degree 1. For every point [z0 : z1] ∈
P1, we have either z0 6= 0 or z1 6= 0, hence ϕ([z0 : z1]) = [z0 : z1 : 0 : 0] has at least one non-zero
coordinate, hence is clearly a point in P3. Therefore ϕ is a morphism. It is not dominant,
because for the projective algebraic set W = V(z2, z3) ⊆ P3, we have ϕ([z0 : z1]) ∈W for every
point [z0 : z1] ∈ P1.

(2) All components are given by homogeneous polynomials of degree 1. The map is not defined
at every point in P3, but for every point [z0 : z1 : z2 : z3] ∈ P3 with z2 6= 0 or z3 6= 0, its image
ψ([z0 : z1 : z2 : z3]) = [z2 : z3] has at least one non-zero coordinate, and is clearly a point in
P1. Therefore ψ is a rational map. To see it is dominant, we first claim that ψ is surjective. In
fact, for every point [z2 : z3] ∈ P1, we have that [z2 : z3] = ψ([z0 : z1 : z2 : z3]) for any choice
of z0, z1 ∈ k. Since ψ is surjective, we can apply Lemma 5.16 and choose Z = ∅ to conclude
that ψ is dominant.

(3) The composition is not well-defined because for every [z0 : z1] ∈ P1, we have (ψ ◦ ϕ)([z0 :
z1]) = ψ([z0 : z1 : 0 : 0]) = [0 : 0] which is not a point in P1. This shows that ψ ◦ ϕ is nowhere
well-defined, which violates the second condition in the definition of a rational map.

Solution 5.2. Example: the cooling tower.

(1) Assume we can write y0y3 − y1y2 = fg for some f, g ∈ k[y0, y1, y2, y3]. Since the polynomial
y0y3 − y1y2 has degree 1 in y0, the degrees of f and g in y0 should be 0 and 1 respectively.
Without loss of generality we assume f = y0f1 + f0 and g = g0, where f1, f0, g0 ∈ k[y1, y2, y3].
By comparing the coefficients of terms of degree 1 and 0 in y0, we get f1g0 = y3 and f0g0 =
−y1y2. Therefore g0 is a common factor of y3 and −y1y2, which has to be a constant. This
implies g is a constant, hence y0y3− y1y2 is irreducible. Since it is a homogeneous polynomial,
V(y0y3−y1y2) is a projective algebraic set. By Lemma 5.4, the principal ideal I = (y0y3−y1y2)
in k[y0, y1, y2, y3] is a prime ideal. Hence by Lemma 4.17, V(y0y3 − y1y2) = V(I), which is a
projective variety by Proposition 5.2.

(2) It is clear that all components of ϕ are given by homogeneous polynomials of degree 2. For any
point p = [x0 : x1 : x2] ∈ P2, if x0 is non-zero, or x1 and x2 are simultaneously non-zero, the
image ϕ(p) has at least one non-zero component. Hence ϕ is defined on a non-empty subset of
P2. To show its image is always in Y , we find that y0y3−y1y2 = (x20)(x1x2)−(x0x1)(x0x2) = 0.
Therefore ϕ is a rational map.

To show that ϕ is dominant, we observe that every point q = [y0 : y1 : y2 : y3] ∈ Y with
y0 6= 0 is the image of the point p = [y0 : y1 : y2]. Indeed, ϕ(p) = [y20 : y0y1 : y0y2 : y1y2] =
[y20 : y0y1 : y0y2 : y0y3] = [y0 : y1 : y2 : y3] = q. Set Z = V(y0y3 − y1y2, y0), then Z ⊆ Y , and is
strictly smaller than Y (e.g. [1 : 0 : 0 : 0] ∈ Y \Z). And every point q ∈ Y \Z is in the image
of ϕ. By Lemma 5.16, ϕ is dominant.

(3) We first realise that every component of ψ is a homogeneous polynomial of degree 1. ψ is
well-defined at every point q = [y0 : y1 : y2 : y3] ∈ Y such that y0, y1, y2 are not simultaneously
zero (e.g. [1 : 0 : 0 : 0] is such a point). Hence it is defined on a non-empty subset of Y . The
image ψ(q) is always a point in P2 if it is defined. Therefore ψ is a rational map.

To show ψ is dominant, we first observe that each point p = [x0 : x1 : x2] ∈ P2 with x0 6= 0
is the image of the point q = [x0 : x1 : x2 : x1x2x0

]. Indeed, q is a well-defined point since x0 6= 0,
and q ∈ Y since it satisfies the defining equation of Y . The expression that defines ψ gives
ψ(q) = p. If we set Z = V(x0), then Z ( P2. Since every point in P2\Z is in the image of ψ,
we conclude that ψ is dominant by Lemma 5.16.
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(4) We show that ϕ and ψ are mutually inverse rational maps. For every point p = [x0 : x1 : x2] ∈
P2 at which ψ ◦ ϕ is defined, we have (ψ ◦ ϕ)(p) = ψ([x20 : x0x1 : x0x2 : x1x2]) = [x20 : x0x1 :
x0x2] = [x0 : x1 : x2] = p. For every point q = [y0 : y1 : y2 : y3] ∈ Y at which ϕ ◦ ψ is defined,
we have (ϕ ◦ ψ)(q) = ϕ([y0 : y1 : y2]) = [y20 : y0y1 : y0y2 : y1y2] = [y20 : y0y1 : y0y2 : y0y3] = [y0 :
y1 : y2 : y3] = q. Therefore ϕ and ψ are mutually inverse birational maps. It follows that Y is
birational to P2, hence Y is rational.

Solution 5.3. Example: the projective twisted cubic.

(1) All components of ϕ are homogeneous of the same degree 3. For every point [u : v] ∈ P1, we
have either u 6= 0 or v 6= 0, therefore either u3 6= 0 or v3 6= 0, hence ϕ([u : v]) = [u3 : u2v :
uv2 : v3] is always a well-defined point. To show that ϕ([u : v]) ∈ Y , we need to check all
defining polynomial of Y are satisfied. Indeed, we have

y0y2 − y21 = (u3)(uv2)− (u2v)2 = 0;

y1y3 − y22 = (u2v)(v3)− (uv2)2 = 0;

y0y3 − y1y2 = (u3)(v3)− (u2v)(uv2) = 0.

We conclude that ϕ is a morphism.

(2) We define ψ : Y −→ P1 in the following way: for every point [y0 : y1 : y2 : y3] ∈ Y , let
ψ([y0 : y1 : y2 : y3]) = [y0 : y1] or [y2 : y3]. We first check that ψ is a morphism.

Both expressions used to define ψ are given by homogeneous polynomials of degree 1. For
any point [y0 : y1 : y2 : y3], if either y0 or y1 is non-zero (e.g. [1 : 0 : 0 : 0]), then the first
expression applies; if either y2 or y3 is non-zero (e.g. [0 : 0 : 0 : 1]), then the second expression
applies. This shows that both expressions are defined on non-empty subsets of Y . Moreover,
for any point [y0 : y1 : y2 : y3], at least one of its coordinates is non-zero, hence at least one of
the expressions can be used to compute its image under ψ, hence ψ is defined at every point
in Y . The image ψ(q) for any point q ∈ Y is clearly a point in P1.

To show ψ is a morphism, it remains to show that, if the two expressions are both defined
at a certain point q = [y0 : y1 : y2 : y3] ∈ Y , then they give the same image. For such a point
q, we claim y0 6= 0; otherwise y21 = y0y2 = 0, which implies the first expression is invalid.
Similarly, we claim y3 6= 0; otherwise y22 = y1y3 = 0, which implies the second expression is
invalid. Therefore y1y2 = y0y3 6= 0, which implies y1 6= 0 and y2 6= 0. So all coordinates of q
are non-zero. For such a point q, we have [y0 : y1] = [y0y3 : y1y3] = [y1y2 : y1y3] = [y2 : y3],
hence both expressions give the same image of q.

Finally we check that ϕ and ψ are mutually inverse to each other. Given any point p = [u :
v] ∈ P1, we have

(ψ ◦ ϕ)(p) = ψ([u3 : u2v : uv2 : v3]) =

{
[u3 : u2v] = [u : v];

[uv2 : v3] = [u : v].

For any point q = [y0 : y1 : y2 : y3] ∈ Y , we notice that y0y
2
1 = y0 · y0y2 = y20y2 and

y31 = y1 ·y0y2 = y0 ·y1y2 = y0 ·y0y3 = y20y3. Therefore if we use the first expression that defines
ψ, we have

(ϕ ◦ ψ)(q) = ϕ([y0 : y1])

= [y30 : y20y1 : y0y
2
1 : y31]

= [y30 : y20y1 : y20y2 : y20y3]

= [y0 : y1 : y2 : y3].
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Similarly, noticing that y22y3 = y1y3 · y3 = y1y
2
3 and y32 = y2 · y1y3 = y1y2 · y3 = y0y3 · y3 = y0y

2
3,

we can use the second expression that defines ψ to compute

(ϕ ◦ ψ)(q) = ϕ([y2 : y3])

= [y32 : y22y3 : y2y
2
3 : y33]

= [y0y
2
3 : y1y

2
3 : y2y

2
3 : y33]

= [y0 : y1 : y2 : y3].

The above calculation shows that ϕ and ψ are mutually inverse to each other, hence they are
birational. Since they are both morphisms, they are isomorphisms. We conclude that Y is
isomorphic to P1.

Solution 5.4. A famous example: blow-up at a point.

(1) All components of ϕ are homogeneous of degree 2. Given a point p = [x0 : x1 : x2] ∈ P2, if
x0 6= 0 or x1 6= 0, then x20 6= 0 or x21 6= 0, hence at least one component of ϕ(p) is non-zero,
which implies ϕ(p) is defined. When ϕ(p) is defined, we need to check it is a point in Y . This
can be verified by

y0y2 − y21 = (x20)(x
2
1)− (x0x1)

2 = 0;

y0y4 − y1y3 = (x20)(x1x2)− (x0x1)(x0x2) = 0;

y1y4 − y2y3 = (x0x1)(x1x2)− (x21)(x0x2) = 0.

This proves ϕ is a rational map.

(2) We first write down the formula for ψ, then prove ψ is a morphism, finally show that the two
compositions of ϕ and ψ are identities.

The morphism ψ : Y −→ P2 is defined as follows: for every point q = [y0 : y1 : y2 : y3 : y4],
let ψ(q) = [y0 : y1 : y3] or [y1 : y2 : y4]. It is clear that both expressions in the definition of ψ
are given by homogeneous polynomials of degree 1. When y0, y1 and y3 are not simultaneously
zero (e.g. [1 : 0 : 0 : 0 : 0]), then the first expression applies. When y1, y2 and y4 are not
simultaneously zero (e.g. [0 : 0 : 0 : 0 : 1]), then the second expression applies. Hence both
expressions are defined on non-empty subsets of Y . For every point q ∈ Y , at least one of
its coordinates is non-zero, which means at least one of two expressions is well-defined at q.
And the image of q is clearly a point in P2, no matter which expression we use to compute the
image.

We still need to show that the two expressions define the same image of q when they both
apply. There are a few cases to consider. Case 1: if y0, y1 and y3 are all non-zero, then set
λ = y1

y0
= y2

y1
= y4

y3
. Indeed, the three fractions are equal because of the defining equations of

Y . Then [y0 : y1 : y3] = [λy0 : λy1 : λy3] = [y1 : y2 : y4]. Case 2: if y0 = 0, then y21 = y0y2 = 0
implies y1 = 0. Since we assumed the expression [y0 : y1 : y3] is well-defined at q, we must have
y3 6= 0. Then y2y3 = y1y4 = 0 implies y2 = 0. Since we assumed the expression [y1 : y2 : y4]
is well-defined at q, we must have y4 6= 0. Now [y0 : y1 : y3] = [0 : 0 : y3] = [0 : 0 : y4] = [y1 :
y2 : y4]. Case 3: if y0 6= 0 and y1 = 0, then y0y2 = y21 = 0 implies y2 = 0, and y0y4 = y1y3 = 0
implies y4 = 0, then the expression [y1 : y2 : y4] is not defined at q. Hence this case cannot
happen. Case 4: if y0 6= 0 and y1 6= 0 and y3 = 0, then y0y4 = y1y3 = 0 implies y4 = 0. Set
λ = y1

y0
= y2

y1
. Then [y0 : y1 : y3] = [y0 : y1 : 0] = [λy0 : λy1 : 0] = [y1 : y2 : 0] = [y1 : y2 : y4]. In

summary, we always have [y0 : y1 : y3] = [y1 : y2 : y4]. This finishes the proof of the fact that
ψ is a morphism.

We compute the two compositions of ϕ and ψ. Given any point p = [x0 : x1 : x2] ∈ P2 at
which ψ ◦ ϕ is defined, we have

(ψ ◦ ϕ)(p) = ψ([x20 : x0x1 : x21 : x0x2 : x1x2])

=

{
[x20 : x0x1 : x0x2] = [x0 : x1 : x2];

[x0x1 : x21 : x1x2] = [x0 : x1 : x2].
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Now pick any point q = [y0 : y1 : y2 : y3 : y4] ∈ Y at which ϕ ◦ ψ is defined. If we use the first
expression to compute ψ(q), then we have

(ϕ ◦ ψ)(q) = ϕ([y0 : y1 : y3]) = [y20 : y0y1 : y21 : y0y3 : y1y3]

= [y20 : y0y1 : y0y2 : y0y3 : y0y4] = [y0 : y1 : y2 : y3 : y4].

If we use the second expression to compute ψ(q), then we have

(ϕ ◦ ψ)(q) = ϕ([y1 : y2 : y4]) = [y21 : y1y2 : y22 : y1y4 : y2y4]

= [y0y2 : y1y2 : y22 : y2y3 : y2y4] = [y0 : y1 : y2 : y3 : y4].

The above calculation shows that ϕ and ψ are mutually inverse rational maps. Hence Y and
P2 are birational to each other. It follows that Y is rational.

(3) We have proved that ψ is a morphism. We first find all points q ∈ Y such that ψ(q) = [0 : 0 : 1].
Let q = [y0 : y1 : y2 : y3 : y4] ∈ Y . Then depending on which expression we use to compute
ψ(q), there are two possibilities. If [y0 : y1 : y3] = [0 : 0 : 1], then y0 = y1 = 0 and y3 6= 0. From
y2y3 = y1y4 = 0 we obtain y2 = 0. Hence q = [0 : 0 : 0 : y3 : y4] for any y3 6= 0 and y4 ∈ k.
Similarly, if [y1 : y2 : y4] = [0 : 0 : 1], theny1 = y2 = 0 and y4 6= 0. From y0y4 = y1y3 = 0
we obtain y0 = 0. Hence q = [0 : 0 : 0 : y3 : y4] for any y3 ∈ k and y4 6= 0. Combining
the two cases, all points q ∈ Y satisfying ψ(q) = [0 : 0 : 1] are given by points of the form
q = [0 : 0 : 0 : y3 : y4] where y3 and y4 not simultaneously zero.

Finally we need to show that ψ is surjective. We have seen that [0 : 0 : 1] is in the image
of ψ. For any point p = [x0 : x1 : x2] ∈ P2 such that p 6= [0 : 0 : 1], we claim that p = ψ(q)
for q = [x20 : x0x1 : x21 : x0x2 : x1x2]. Indeed, when p 6= [0 : 0 : 1], we have either x0 6= 0 or
x1 6= 0. In such a case, we have checked in part (1) that q = [x20 : x0x1 : x21 : x0x2 : x1x2] is
a well-defined point in Y . It remains to show ψ(q) = p. If x0 6= 0, then we can use the first
expression of ψ to get ψ(q) = [x20 : x0x1 : x0x2] = [x0 : x1 : x2] = p. If x1 6= 0, then we can use
the second expression of ψ to get ψ(q) = [x0x1 : x21 : x1x2] = [x0 : x1 : x2] = p. In summary, p
is always in the image of ψ. Hence ψ is surjective.

6. Function Fields

We will study rational functions on projective varieties, and pullback of rational functions along
dominant rational maps. Similar to the affine case, we will see that the field of rational functions
determines the birational class of a projective variety.

6.1. Bridge between affine and projective algebraic sets. We have seen affine and projective
algebraic sets as subsets of affine and projective spaces defined by polynomial equations. They are
related in a way that is similar to affine and projective spaces. Recall that Pn is covered by standard
affine charts Ui for i = 0, 1, · · · , n.

Proposition 6.1 (From projective to affine). Let X ⊆ Pn be a projective algebraic set, and Ui a
standard affine chart of Pn. Then Xi := X ∩ Ui is an affine algebraic set in Ui.

Proof. Without loss of generality, we prove the statement for i = 0. Assume X = Vp(f1, · · · , fm) for
some homogeneous polynomials f1, · · · , fm ∈ k[z0, · · · , zn]. Then

p = [a0 : · · · : an] ∈ X ∩ U0 ⇐⇒ fj(a0, a1 · · · , an) = 0 for each j

⇐⇒ fj

(
1,
a1
a0
, · · · , an

a0

)
= 0 for each j

⇐⇒ gj

(
a1
a0
, · · · , an

a0

)
= 0 for each j

where gj = fj(1, z1, · · · , zn). Hence Xi = Va(g1, · · · , gm) is an affine algebraic set. �
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Remark 6.2. As in the proof, given a homogeneous polynomial (i.e. fj), we can set one of its variables
to be 1 to obtain a (not necessarily homogeneous) polynomial (i.e. gj). This process is often called
dehomogenisation.

Definition 6.3. Let X ⊆ Pn be a projective algebraic set, and Ui a standard affine chart of Pn. The
affine algebraic set Xi = X∩Ui is called a standard affine piece of X. The decomposition X = ∪ni=0Xi

is called the standard affine cover of X.

Example 6.4. Consider the projective algebraic sets X = Vp(xy − z2) ⊆ P2. By setting one of the
variables to be 1, we obtain the three standard affine pieces of X, which are X0 = Va(y − z2) ⊆ A2,
X1 = Va(x− z2) ⊆ A2, and X2 = Va(xy − 1) ⊆ A2.

We turn to another relation between affine and projective algebraic sets. Recall that Pn can be
understood as An together with “points at infinity”. We have also seen in Example 4.9 how to find
points at infinity for a line in A2. More generally we have

Definition 6.5 (From affine to projective). For any affine algebraic set X ⊆ An, let I = Ia(X) and I
be the ideal in k[z0, · · · , zn] generated by the set of homogeneous polynomials{

zdeg f0 f

(
z1
z0
, · · · , zn

z0

) ∣∣∣∣ f(x1, · · · , xn) ∈ I
}
.

Then the projective algebraic set X = Vp(I) is called the projective closure of X. The points in

{[z0 : · · · : zn] ∈ X | z0 = 0} are called points at infinity for X.

Remark 6.6. We have already used the above modification of a polynomial in Example 4.9; that is,
first replacing all non-homogeneous coordinates by ratios of homogeneous coordinates, then clearing
the denominators. This process is often called homogenisation. More precisely, for a polynomial
f(x1, · · · , xn) ∈ k[x1, · · · , xn], assume deg f = d and let

f = f0 + f1 + · · ·+ fd−1 + fd

be its homogeneous decomposition, then the homogenisation of f is given by

zd0 · f
(
z1
z0
, · · · , zn

z0

)
= zd0f0 + zd−10 f1 + · · ·+ z0fd−1 + fd.

Example 6.7. The projective closure of An is Pn. The points at infinity are all points in H0, namely,
all points {[z0 : z1 : · · · : zn] ∈ Pn | z0 = 0}.

This definition is not easy to use in general, as it requires to homogenise infinitely many polynomials
in Ia(X). The following criterion is more convenient for computations.

Proposition 6.8. Let X = Va(f) ⊆ An be an affine hypersurface for some polynomial f ∈ k[x1, · · · , xn]
of degree d. Let

f(z0, z1, · · · , zn) = zd0f

(
z1
z0
, · · · , zn

z0

)
be the homogenisation of f . Then X = Vp(f).

Proof. Non-examinable. �

Remark 6.9. In general, when an affine algebraic set X is defined by more than one polynomial, the
projective closure of X is not defined by homogenisation of the generators of Ia(X). We will see an
example in Exercise 6.3.

Example 6.10. In Example 4.9, we have seen that the projective closure of Va(x2 − x1 + 1) ⊆ A2 is
Vp(x2−x1+x0) ⊆ P2, and that the projective closure of Va(x2−x1−1) ⊆ A2 is Vp(x2−x1−x0) ⊆ P2.
The point at infinity for both affine algebraic sets is [0 : 1 : 1].
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Example 6.11. We compute the projective closure and points at infinity for the heart curve X =
Va((x2 + y2 − 1)3 − x2y3). We use z for the extra variable. By Proposition 6.8, the projective closure
is given by one homogeneous equation of degree 6; that is

X = Vp((x2 + y2 − z2)3 − x2y3z).

To find the points at infinity, we set z = 0. Then we have (x2 + y2)3 = 0, hence y = ±
√
−1x. It

follows that there are two points at infinity given by [x : y : z] = [1 :
√
−1 : 0] and [1 : −

√
−1 : 0].

Finally we briefly mention the relation of the two constructions. They are almost inverse to each
other, subject to some assumptions. For simplicity, we only state the correspondece in the case of
varieties. We have the following bijection. Recall that H0 = Pn\U0.

{
projective varieties X ⊆ Pn

such that X 6⊆ H0

}
Y=X∩U0

//

{
affine varieties Y ⊆ U0

∼= An
such that Y 6= ∅

}
X=Y

oo

We summarise the content of the correspondence in the following result:

Proposition 6.12. There is a bijection between projective varieties in Pn which are not contained in
H0 = Pn\U0 and non-empty affine varieties in U0, given by the mutually inverse correspondences of
taking the standard affine piece in U0 and taking the projective closure.

Proof. Non-examinable. Interested reader can find the proof in [Section 5.5, Reid, Undergraduate
Algebraic Geometry] or [Section 4.3, Fulton, Algebraic Curves]. �

The importance of the two constructions relating affine and projective varieties is that they allow us
to study some properties in a relatively easier context, i.e., either affine or projective, and deduce some
similar properties in the other context. We will see two examples in future lectures.

6.2. Rational functions and function fields. As we have seen, polynomials cannot be used to
define functions on projective algebraic sets. Therefore we have to find a more flexible way to define
functions on them, namely, rational functions. For simplicity, we only consider varieties. We will first
define rational functions on affine varieties, then on projective varieties.

For any affine variety X ⊆ An, I(X) is a prime ideal in k[x1, · · · , xn] by Proposition 2.15. It follows
that k[X] = k[x1, · · · , xn]/I(X) is an integral domain by Proposition 2.12 (1).

Definition 6.13. Let X ⊆ An be an affine variety. Its function field k(X) is the field of fractions of
the integral domain k[X]. In other words,

k(X) :=

{
ϕ

ψ
| ϕ,ψ ∈ k[X] with ψ 6= 0

}
/ ∼,

where ∼ is an equivalence relation defined by

ϕ1

ψ1
∼ ϕ2

ψ2
⇐⇒ ϕ1ψ2 − ψ1ϕ2 = 0 ∈ k[X].

An element in k(X) is called a rational function on X.

Remark 6.14. Recall that ϕ and ψ can be given by polynomials, so we can also write

k(X) =

{
f

g
| f, g ∈ k[x1, · · · , xn] with g /∈ I(X)

}
/ ∼,

where ∼ is an equivalence relation defined by

f1
g1
∼ f2
g2

⇐⇒ f1g2 − g1f2 ∈ I(X).
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As a quick example, 1
x defines a rational function on the affine variety X = A1. Every polynomial

function is clearly a rational function which is defined everywhere on X. But in general, a rational
function is only a partially defined function on X.

Example 6.15. The coordinate ring of the affine variety X = An is k[An] = k[x1, · · · , xn]. By
Definition 6.13, its function field is the field of fractions of k[x1, · · · , xn], usually written as k(An) =

k(x1, · · · , xn). A rational function on X = An is given by a fraction of the form f
g with g 6= 0. Two

such fractions are considered to define the same rational function if and only if they can be reduced
to the same form after cancelling common factors in the numerator and the denomirator.

We want to find out how to make a similar definition on projective varieties. Recall from equation
(4.3) that a non-constant homogeneous polynomial cannot define a function on a projective algebraic
set, because its value at a point depends on the choice of the homogeneous coordinates. However, for
two homogeneous polynomials f, g ∈ k[z0, · · · , zn] of the same degree d, their ratio f

g is well-defined

at any point p = [a0 : · · · : an] provided that g(p) 6= 0, because for any λ 6= 0, we have

f(λa0, · · · , λan)

g(λa0, · · · , λan)
=
λdf(a0, · · · , an)

λdg(a0, · · · , an)
=
f(a0, · · · , an)

g(a0, · · · , an)
,

which is independent of the choice of the homogeneous coordinates of p. Therefore f
g can be thought

as a partially defined function on a projective variety. More precisely,

Definition 6.16. Let X ⊆ Pn be a projective variety. The function field of X is

k(X) :=

{
f

g

∣∣∣∣ f, g ∈ k[z0, · · · , zn] are homogeneous of the same degree, g /∈ I(X)

}
/ ∼,

where ∼ is an equivalence relation defined by

f1
g1
∼ f2
g2
⇐⇒ f1g2 − f2g1 ∈ I(X).

An element in k(X) is called a rational function on X.

It is in general not easy to explicitly compute the function field of a projective variety. However, the
following result allows one to reduce the question to the affine situation.

Lemma 6.17. Let X ⊆ An be an affine variety and X ⊆ Pn its projective closure. Then k(X) ∼= k(X).

Sketch of proof. (This proof is non-examinable and not covered in lectures.)

We sketch a proof. For every rational function on X

f(x1, · · · , xn)

g(x1, · · · , xn)
∈ k(X),

assume m = max{deg f, deg g}, then we can get a rational function on X

zm0 f( z1z0 , · · · ,
zn
z0

)

zm0 g( z1z0 , · · · ,
zn
z0

)
∈ k(X),

since it is the ratio of two homogeneous polynomials of degree m. In this way we can define a map
k(X)→ k(X). On the other hand, for every rational function on X

p(z0, · · · , zn)

q(z0, · · · , zn)
∈ k(X),

we have a rational function on X
p(1, x1, · · · , xn)

q(1, x1, · · · , xn)
∈ k(X).

In this way we can define a map k(X)→ k(X). We need to verify that both maps are well-defined (i.e.,
independent of the choice of the representative in each equivalence class), and are homomorphisms.
More work is required to check that they are inverse of each other hence are isomorphisms. �
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Example 6.18. By Example 6.15 we know k(An) = k(x1, · · · , xn). Since Pn is the projective closure
of An by Example 6.7, we have k(Pn) ∼= k(x1, · · · , xn) by Lemma 6.17.

Recall that polynomial maps can pullback polynomial functions on affine algebraic sets. Similarly, a
dominant rational map can pullback rational functions on projective varieties.

Definition 6.19. Let ϕ : X 99K Y be a dominant rational map between projective varieties. For
every rational function g on Y , the pullback of g along ϕ is the rational function g ◦ ϕ on X, denoted
ϕ∗(g).

Example 6.20. Consider the dominant rational map ϕ : P2 99K P2 studied in Example 5.18. Then
the pullback of the rational function x

y+z ∈ k(P2) along ϕ is

ϕ∗
(

x

y + z

)
=

yz

zx+ xy
∈ k(P2).

Recall that two affine algebraic sets are isomorphic if and only if they have isomorphic coordinate
rings. A similar result holds for projective varieties.

Proposition 6.21. A rational map ϕ : X 99K Y between projective varieties is a birational map if
and only if ϕ is dominant and ϕ∗ : k(Y ) −→ k(X) is a field isomorphism. Two projective varieties X
and Y are birational if and only if k(X) ∼= k(Y ).

Proof. Non-examinable. Interested reader can find the proof in [Section 5.8, Reid, Undergraduate
Algebraic Geometry] or [Section 6.6, Fulton, Algebraic Curves]. �

Exercise Sheet 6

This sheet will be discussed in the exercise class on 13 November. You are welcome to submit your
solutions at the end of the exercise class or anytime earlier.

Exercise 6.1. Example: the cooling tower, revisited. Consider the projective algebraic set Y =
V(y0y3 − y1y2) ⊆ P3. We know by Exercise 5.2 (1) that Y is a projective variety.

(1) Write down all standard affine pieces of Y .

(2) Explain why its function field k(Y ) ∼= k(x1, x2). (Hint: you can use the results in Exercise 5.2
and any results mentioned in lectures.)

Exercise 6.2. Example: irreducible cubic curves.

(1) Show that the affine algebraic set X = Va(y2 − (x − λ1)(x − λ2)(x − λ3)) ⊆ A2 is an affine
variety for any λ1, λ2, λ3 ∈ k.

(2) Find the projective closure X ⊆ P2 of X and the points at infinity. Use Proposition 6.12 to
conclude that X is a projective variety.

Exercise 6.3. A caution for the projective closure. We demonstrate Remark 6.9.

(1) Let X = Va(I) ⊆ A3 for the ideal I = (f1, f2) in k[x, y, z] where f1 = y − x2 and f2 =
z − x3. Using w as the extra variable, find polynomials f1 and f2 in k[w, x, y, z] which are the
homogenisations of f1 and f2 respectively.

(2) We have seen in Exercise 2.4 (3) that I = Ia(X). Let I be the homogeneous ideal in k[w, x, y, z]
defined as in Definition 6.5. Show that y2 − xz ∈ I but y2 − xz /∈ (f1, f2). Conclude that
I 6= (f1, f2). Show that X 6= Vp(f1, f2).

Remark: this example demonstrates that the projective closure of an affine algebraic set X is not
obtained simply by homogenising the generators of Ia(X) in general.

39



Exercise 6.4. Geometric interpretation of the projective closure. We consider An as the standard
affine chart U0 ⊆ Pn. Then an affine algebraic set X ⊆ An can be thought as a subset of Pn. Prove
that its projective closure X is the smallest projective algebraic set in Pn containing X. You can
follow these steps:

(1) Let W ⊆ Pn be any projective algebraic set that contains X. Let g(z0, z1, · · · , zn) ∈ Ip(W )
be a homogeneous polynomial and f(z1, · · · , zn) = g(1, z1, · · · , zn) the dehomogenisation of g.
Show that f ∈ Ia(X).

(2) Let f be the homogenisation of f . Show that g = zk0 · f for some non-negative integer k.
Conclude that g ∈ I where I is the homogenisation of the ideal Ia(X) defined as in Definition
6.5. Conclude that X ⊆W .

(3) Conclude that X is the smallest projective algebraic set in Pn containing X.

Solutions to Exercise Sheet 6

Solution 6.1. Example: the cooling tower, revisited.

(1) We can get the standard affine pieces Yi = Y ∩ Ui by setting yi = 1. Therefore the standard
affine pieces of Y are given by Y0 = Va(y3− y1y2), Y1 = Va(y0y3− y2), Y2 = Va(y0y3− y2) and
Y3 = Va(y0 − y1y2).

(2) We proved in Exercise 5.2 that Y is birational to P2. By Proposition 6.21 and Example 6.18,
we have k(X) ∼= k(P2) ∼= k(x1, x2).

Solution 6.2. Example: irreducible cubic curves.

(1) We claim that y2 − (x− λ1)(x− λ2)(x− λ3) is an irreducible polynomial. Use contradiction.
Assume y2−(x−λ1)(x−λ2)(x−λ3) = f(x, y)g(x, y) for non-constant polynomials f, g ∈ k[x, y].
Since the left-hand side has degree 2 in y, the degrees of f and g in y must be either 2 and 0,
or 1 and 1. In the first case we can write

y2 − (x− λ1)(x− λ2)(x− λ3) = (y2f2(x) + yf1(x) + f0(x)) · g(x).

Comparing coefficients of y2 we find f2(x)g(x) = 1, hence g(x) must be a constant. Contra-
diction. In the second case we can write

y2 − (x− λ1)(x− λ2)(x− λ3) = (yf1(x) + f0(x)) · (yg1(x) + g0(x)).

Comparing coefficients of y2 we find f1(x)g1(x) = 1. Without loss of generality we can assume
f1(x) = g1(x) = 1. Comparing coefficients of y we find f0(x) + g0(x) = 0. Comparing
constant terms we find −(x − λ1)(x − λ2)(x − λ3) = f0(x)g0(x) = −f0(x)2, hence f0(x)2 =
(x−λ1)(x−λ2)(x−λ3), which is also a contradiction since the right-hand side is not a square.
So we conclude that y2 − (x − λ1)(x − λ2)(x − λ3) is irreducible. By Lemma 5.4 we know
I = (y2 − (x − λ1)(x − λ2)(x − λ3)) is a prime ideal. By Proposition 2.15 we know X is an
irreducible algebraic set, i.e. an affine variety.

(2) Using z as the extra variable, the projective closure is given by X = Vp(y2z − (x − λ1z)(x −
λ2z)(x− λ3z)). To find points at infinity, we set z = 0 to get −x3 = 0. It follows that x = 0,
hence the only point at infinity for X is given by [x : y : z] = [0 : 1 : 0]. One direction of
Proposition 6.12 shows that the projective closure of a non-empty affine variety is a projective
variety. Hence by part (1), we conclude that X is a projective variety.

Solution 6.3. A caution for the projective closure.

(1) The homogenisation of f1 and f2 are given by f1 = wy − x2 and f2 = w2z − x3.
(2) We first claim y2 − xz ∈ I = (y − x2, z − x3). This can be seen by realising y2 − xz =

(y2− x4) + (x4− xz) = (y− x2)(y+ x2)− x(z− x3) which is a sum of a term with y− x2 as a
factor and a term with z−x3 as a factor. Since y2−xz is an element in I, by Definition 6.5, the
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homogenisation of y2− xz is an element in I. However, since y2− xz is already homogeneous,
its homogenisation is still y2 − xz. Therefore y2 − xz ∈ I.

We prove that y2 − xz /∈ (f1, f2). Use contradiction. Assume we can write y2 − xz =
f1 · g1 + f2 · g2 = (wy− x2) · g1 + (w2z − x3) · g2 for some g1, g2 ∈ k[w, x, y, z]. There are many
different ways to find a contradiction. Here is one approach: when w = x = 0 and y = z = 1,
the left-hand side is 1 while the right-hand side is 0, which is a contradiction.

Finally we prove that X 6= Vp(f1, f2). There are also many different approaches to this.

Here is one of them: On one hand, we can verify directly that f1 = 0 and f2 = 0 at the
point [w : x : y : z] = [0 : 0 : 1 : 1], hence [0 : 0 : 1 : 1] ∈ Vp(f1, f2). On the other hand,

since X = Vp(I), a point in X has to be a solution to every homogeneous polynomial in I, in
particular, it has to be a solution to the polynomial y2 − xz by what we just proved. We can
check directly that the point [w : x : y : z] = [0 : 0 : 1 : 1] is not a solution to this polynomial,
hence [0 : 0 : 1 : 1] /∈ X. This finishes the proof.

Indeed, one can see that the value of z is irrelavant. For any λ ∈ k, the point [w : x : y :
z] = [0 : 0 : 1 : λ] would do the trick.

Solution 6.4. Geometric interpretation of the projective closure.

(1) We need to show that f(p) = 0 for every point p ∈ X. Let p = (a1, · · · , an) ∈ X, where
a1, · · · , an ∈ k are the non-homogeneous coordinates of p as a point in An ∼= U0. Then as a
point in Pn, the homogeneous coordinates of p can be given by p = [1 : a1 : · · · : an]. Since
X ⊆ W , we have p ∈ W , therefore g(p) = 0. In other words, g(1, a1, · · · , an) = 0. Therefore
we have f(a1, · · · , an) = g(1, a1, · · · , an) = 0, which proves f(p) = 0. Since p is an arbitrary
point in X, we conclude that f ∈ Ia(X).

(2) We assume g is a homogeneous polynomial with deg g = d. Assume that zk0 is the highest
power dividing g, then k is a non-negative integer, and each term in g has a factor of zk0 . We
collect terms in g which have the degree with respect to z0, so we can write

g = zk0 · fd−k + zk+1
0 · fd−k−1 + · · ·+ zd−10 · f1 + zd0 · f0

where fi ∈ k[z1, · · · , zn] is homogeneous of degree i for i = 0, 1, · · · , d−k, and fd−k 6= 0. Since
f is the dehomogenisation of g with respect to z0, we have

f = fd−k + fd−k−1 + · · ·+ f1 + f0

which is precisely the homogeneous decomposition of f . We observe that deg f = d− k. Since
f is the homogenisation of f with respect to z0, we have

f = fd−k + z0 · fd−k−1 + · · ·+ zd−k−10 · f1 + zd−k0 · f0.

Comparing the formula for g and f , we find out that g = zk0 · f .

Now we prove g ∈ I. Since f ∈ Ia(X) by part (1), we have f ∈ I by Definition 6.5. Since I
is an ideal, we have g = zk0 · f ∈ I.

Since g is an arbitrary homogeneous polynomial in Ip(W ), we conclude that every homoge-

neous polynomial in the ideal Ip(W ) is a homogeneous polynomial in the ideal I. It follows

that Vp(Ip(W )) ⊇ Vp(I). We have Vp(Ip(W )) = W by Proposition 5.2, and Vp(I) = X by

Definition 6.5. Therefore W ⊇ X.

(3) We proved in parts (1) and (2) that every projective algebraic set W that contains X must
contain X. Since X itself is also a projective algebraic set that contains X (it is X together
with points at infinity), we conclude that X is the smallest one having this property.

7. Non-singularity

The non-singularity is an algebraic version of smoothness in analysis. We will find out how to determine
the non-singularity of a variety from its defining equations, and study the related notions of tangent
spaces and dimensions.
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7.1. Non-singularity of irreducible hypersurfaces. In this lecture we consider the case of ir-
reducible hypersurfaces. We start with the affine case. Let f ∈ k[x1, · · · , xn] be a non-constant
irreducible polynomial. By Lemma 5.4, we know that V(f) ⊆ An is an affine irreducible hypersurface.

Definition 7.1. Let X = V(f) ⊆ An be an affine irreducible hypersurface defined by a non-constant

irreducible polynomial f ∈ k[x1, · · · , xn]. For any point p ∈ X, we say X is singular at p if ∂f
∂xi

(p) = 0
for every i, 1 6 i 6 n; otherwise we say X is non-singular at p. If X is non-singular at every point
p ∈ X, then we say X is non-singular ; otherwise we say X is singular.

Remark 7.2. From Definition 7.1 we see that the singular points in X = V(f) form an affine algebraic

set Xsing = V(f, ∂f∂x1 , · · · ,
∂f
∂xn

) ⊆ X. To find all singular points, we just need to solve the system of
equations given by f and all its partial derivatives.

Example 7.3. Consider the affine variety X = V(f) ⊆ A2 where f = x3 + y3 − 3xy. To find all
singular points, we need to solve the system of equations given by f = x3 + y3 − 3xy = 0 and the
partial derivatives ∂f

∂x = 3x2 − 3y = 0 and ∂f
∂y = 3y2 − 3x = 0. From the two partial derivatives we

get x = y2 = x4, therefore x(x3 − 1) = 0, which implies x = 0 or x3 = 1. When x = 0, we have
y = 0. It is clear that (x, y) = (0, 0) is a solution to the system of equations. When x3 = 1, we have
x3 + y3 − 3xy = x3 + x6 − 3x3 = −1 6= 0. Contradition. Therefore the only point at which X is
singular is (0, 0).

The following result shows that X = V(f) cannot be singular everywhere. Recall that we always
assume the underlying field k is an algebraically closed field of charasteristic 0.

Theorem 7.4. Let X = V(f) ⊆ An be an affine hypersurface defined by a non-constant irreducible
polynomial f ∈ k[x1, · · · , xn]. Then the set of non-singular points in X is non-empty.

Proof. The set of singular points in X is given by

Xsing = V
(
f,
∂f

∂x1
, · · · , ∂f

∂xn

)
⊆ X.

Suppose on the contrary that Xsing = X, then ∂f
∂xi
∈ I(X) for every i.

Since f is an irreducible polynomial, (f) is a prime ideal by Lemma 5.4. It follows by Proposition 2.9
that I(X) = (f). Therefore for every i, we have

∂f

∂xi
= f · gi

for some gi ∈ k[x1, · · · , xn]. Assume f has degree di in xi. If di > 0, then ∂f
∂xi

has degree di − 1 in
xi, while f · gi has degree at least di in xi. Contradiction. Therefore di = 0. In other words, xi does
not occur in f . Since this holds for every i, f must be a constant polynomial. Contradiction. This
finishes the proof of existence of non-singular points in X = V(f). �

Definition 7.5. Let X = V(f) ⊆ An be an affine irreducible hypersurface defined by a non-constant
irreducible polynomial f ∈ k[x1, · · · , xn]. For any point p = (a1, · · · , an) ∈ X, the tangent space of X
at p is the affine variety

TpX := V
(
∂f

∂x1
(p) · (x1 − a1) + · · ·+ ∂f

∂xn
(p) · (xn − an)

)
⊆ An.

Example 7.6. Following Example 7.3, we compute the tangent spaces of X at two points p1 =
(43 ,

2
3) and p2 = (0, 0). Recall that (∂f∂x ,

∂f
∂y ) = (3x2 − 3y, 3y2 − 3x). It is easy to compute that

(∂f∂x (p1),
∂f
∂y (p1)) = (103 ,−

8
3) and (∂f∂x (p2),

∂f
∂y (p2)) = (0, 0). Therefore

Tp1X = V
(

10

3

(
x− 4

3

)
− 8

3

(
y − 2

3

))
= V(5x− 4y − 4),

Tp2X = V (0 · (x− 0) + 0 · (y − 0)) = A2

are the tangent spaces of X at p1 and p2 respectively.
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Remark 7.7. In Definition 7.5, when p is singular point of X, the defining equation of TpX is a zero
polynomial hence TpX = An, which has dimension n as a vector space over k; when X is non-singular

at p, the tangent space TpX is a shift of the vector subspace V
(
∂f
∂x1

(p) · x1 + · · ·+ ∂f
∂xn

(p) · xn
)

, which

has dimension n− 1. Therefore we can say, the irreducible hypersurface X ⊆ An is non-singular at p
if and only if dimTpX = n− 1; X is singular at p if and only if dimTpX > n− 1. We will generalise
this conclusion to arbitrary affine varieties in next lecture.

Finally we briefly mention the case of projective irreducible hypersurfaces. Let f ∈ k[z0, · · · , zn] be
a non-constant homogeneous irreducible polynomial. By Lemma 5.4, we know that V(f) ⊆ Pn is a
projective irreducible hypersurface.

Definition 7.8. Let X = V(f) ⊆ Pn be a projective irreducible hypersurface defined by a non-
constant homogeneous irreducible polynomial f ∈ k[z0, · · · , zn]. For any point p ∈ X, we say X is
singular at p if the affine hypersurface Xi = X ∩ Ui is singular at p for any standard affine piece
Xi containing p; otherwise we say X is non-singular at p. The tangent space TpX of X at p is the
projective closure of TpXi for any standard affine piece Xi containing p. If X is non-singular at every
point p ∈ X, then we say X is non-singular ; otherwise we say X is singular.

Remark 7.9. A point p ∈ X could be contained in several standard affine pieces of X. To check whether
X is singular at p, and compute the tangent space of X at p, it suffices to choose one standard affine
piece of X containing p. The result does not depend on the choice of the standard affine piece.

Example 7.10. Consider the projective variety Y = Vp(f) ⊆ P2 where f = x3 + y3 − 3xyz. The
standard affine piece Y ∩ U2 is the affine variety in Examples 7.3 and 7.6. The results in the two
examples imply that Y is non-singular at p1 = [43 : 2

3 : 1] = [4 : 2 : 3] and singular at p2 = [0 : 0 : 1].

Moreover, the tangent spaces of Y at p1 and p2 are given by Tp1Y = Vp(5x− 4y− 4z) and Tp2Y = P2.

7.2. Non-singularity of varieties. We generalise our discussion from last time and study non-
singularity of varieties. Similarly, we first consider the case of affine varieties. for any affine variety
X, we know by Corollary 1.14 that I(X) is finitely generated.

Definition 7.11. Let X ⊆ An be a non-empty affine variety. Assume I(X) = (f1, · · · , fm) for some
f1, · · · , fm ∈ k[x1, · · · , xn]. For any point p = (a1, · · · , an) ∈ X, the tangent space of X at p is the
affine variety

TpX :=

m⋂
i=1

V

 n∑
j=1

∂fi
∂xj

(p) · (xj − aj)

 ⊆ An.

Remark 7.12. We can view the tangent space TpX as a shift of the linear subspace

m⋂
i=1

V

 n∑
j=1

∂fi
∂xj

(p) · xj

 ⊆ An

which is the null space of the matrix

Mp :=

(
∂fi
∂xj

(p)

)
16i6m,16j6n

.

By the rank-nullity theorem, the dimension of TpX is given by

dimTpX = n− rankMp.

Definition 7.13. Let X ⊆ An be a non-empty affine variety. The dimension of X is

dimX = min{dimTpX | p ∈ X}.

For any point p ∈ X, we say X is singular at p if dimTpX > dimX; we say X is non-singular at
p if dimTpX = dimX. If X is non-singular at every point p ∈ X, then we say X is non-singular ;
otherwise we say X is singular.
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Remark 7.14. By Remark 7.7, we find that Definition 7.1 for hypersurfaces is consistent with the more
general Definition 7.11. We also point out: although our definition of tangent spaces and dimension
involve a choice of generators in I(X), they are in fact independent of the choice. In other words,
different choices of generators in I(X) always give the same tangent spaces and dimension.

Example 7.15. As a simple example, let X = An, then I(X) = {0}. For any point p ∈ X, it is clear
that Mp is a zero matrix and TpX = An. Therefore dimTpX = n − rankMp = n. It follows that
dimX = n, and X is non-singular.

Example 7.16. Remark 7.7 together with Theorem 7.4 shows that dimX = n−1 for any irreducible
hypersurface X ⊆ An.

Example 7.17. As another simple example, let X = {p} ⊆ An be a single point set, where p =
(a1, · · · , an). By Exercise 2.3 we know I(X) = (x1 − a1, · · · , xn − an). Then we have Mp = In is
the identity matrix, and that TpX = ∩ni=1V(xi − ai) = {p}. It follows that dimX = 0 and X is
non-singular.

Now we consider projective varieties. Similar to the hypersurface case, the non-singularity and dimen-
sion of a projective variety can be reduced to its standard affine pieces.

Definition 7.18. Let X ⊆ Pn be a non-empty projective variety. The dimension of X is defined to
be dimXi for any non-empty standard affine piece Xi = X ∩Ui, denoted dimX. For any point p ∈ X,
we say X is singular at p if Xi is singular at p for any standard affine piece Xi = X ∩ Ui containing
p; otherwise we say X is non-singular at p. If X is non-singular at every point p ∈ X, then we say X
is non-singular; otherwise we say X is singular.

Remark 7.19. The dimension of a projective variety can be computed on any of its non-empty standard
affine piece. Similarly whether X is singular at p can be computed on any of its standard affine piece
containing p. Different standard affine pieces always give the same answer. However, in order to find
all singular points in a projective variety X, we need to work with more than one standard affine piece
to avoid missing any point.

A very surprising property of the dimension is its intrinsic nature.

Theorem 7.20. Let X and Y be (affine or projective) varieties. If k(X) ∼= k(Y ), then dimX = dimY .

Proof. Non-examinable. Interested reader can find the proof in [Sections 6.7 and 6.8, Reid, Under-
graduate Algebraic Geometry] or [Section 6.5, Fulton, Algebraic Curves]. �

Remark 7.21. Theorem 7.20 shows that the dimension of a variety X only depends on its function
field k(X). In particular, by Proposition 6.21, if two projective varieties X and Y are birational, then
dimX = dimY .

Definition 7.22. An affine (resp. projective) algebraic curve C ⊆ An (resp. C ⊆ Pn) is a finite union
of affine (resp. projective) varieties of dimension 1.

Finally we look at a comprehensive example.

Example 7.23. Consider the projective variety X = Vp(w + x+ y + z, w2 + x2 + y2 + z2) ⊆ P3. We
will show that X is a non-singular curve. By Definition 7.18, we need to show every standard affine
piece of X is non-singular of dimension 1.

We look at the standard affine piece X0 = X ∩ U0 = {p = [w : x : y : z] ∈ X | w 6= 0}. Then
X0 = Va(1 +x+ y+ z, 1 +x2 + y2 + z2) ⊆ A3. To use Definition 7.11, we need to know that Ia(X0) =
(1+x+y+z, 1+x2 +y2 +z2). This can be verified by showing the ideal (1+x+y+z, 1+x2 +y2 +z2)
is prime and applying Proposition 2.9 (1). We skip the proof of this step and simply assume it is true.

For any point p ∈ X0, we have

Mp =

(
1 1 1

2x 2y 2z

)
.
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Since there are two rows in Mp and the first row is non-zero, we know that 1 6 rankMp 6 2 for every
point p ∈ X0. We claim that rankMp = 2 for every p ∈ X0. Otherwise, assume rankMp = 1 for
some p ∈ X0, then the two rows must be proportional hence x = y = z. However p ∈ X0 implies
that 1 + x + y + z = 0 and 1 + x2 + y2 + z2 = 0, which become 1 + 3x = 0 and 1 + 3x2 = 0. It
is easy to see that they do not have common solutions. Hence such a point p does not exist. It
follows that dimTpX0 = 3 − rankMp = 1 for every p ∈ X0. That means X0 is non-singular, and
dimX = dimX0 = 1.

Since the defining equations of X are completely symmetric with respect to all variables, the same
computation would show that all other standard affine pieces of X are non-singular. Therefore X is
a non-singular curve.

Exercise Sheet 7

This sheet will be discussed in the exercise class on 20 November. You are welcome to submit your
solutions at the end of the exercise class or anytime earlier.

Exercise 7.1. Examples of affine varieties. Find all singular points on the affine variety X, if there
is any. In parts (1) – (3), you can assume the polynomial f is irreducible. In part (4), we know the
two given polynomials generate Ia(X) by Exercise 2.4.

(1) X = V(f) ⊆ A2 for f = (x2 + y2)3 − 4x2y2 ∈ k[x, y].

(2) X = V(f) ⊆ A3 for f = xy2 − z2 ∈ k[x, y, z].

(3) X = V(f) ⊆ A3 for f = xy + x3 + y3 ∈ k[x, y, z].

(4) X = V(f, g) ⊆ A3 for f = y − x2 ∈ k[x, y, z] and g = z − x3 ∈ k[x, y, z].

Exercise 7.2. Example of projective varieties. Show that the projective variety X = V(f) ⊆ P2 for
f = xy − z2 ∈ k[x, y, z] is non-singular. Although one can achieve this by showing all three standard
affine pieces are non-singular, it is not necessary to check every individual piece. Follow these steps
for an easier approach.

(1) Show that the standard affine piece X0 = X ∩ U0 is non-singular.

(2) Find out all points in X\X0. For each point p ∈ X\X0, use a standard affine piece of X that
contains p to show X is non-singular at p.

(3) Using this method to find all singular points on the projective variety V(f) ⊆ P2 for f =
x3z + x2yz + y3z + x4 + y4. You do not need to prove the irreducibility of any polynomial in
this problem – just assume they are.

Exercise 7.3. Example: plane cubics. Find all singular points on the projective variety V(f) ⊆ P2

where f = y2z − (x− λ1z)(x− λ2z)(x− λ3z) for some λ1, λ2, λ3 ∈ k, if there is any. You do not need
to prove irreducibility of any polynomial in this problem.

(1) λ1, λ2 and λ3 are distinct.

(2) λ1 = λ2 6= λ3.

(3) λ1 = λ2 = λ3.

Exercise 7.4. Example: projective twisted cubic. Consider the projective variety Y = Vp(y0y2 −
y21, y1y3 − y22, y0y3 − y1y2) ⊆ P3. Follow the method in Example 7.23 to

(1) Determine whether Y is non-singular or singular.

(2) Compute the dimension of Y .

Remark: For any standard affine piece Yi of Y , you can assume without proof that the dehomogeni-
sation of the above three polynomials generate Ia(Yi).
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Solutions to Exercise Sheet 7

Solution 7.1. Examples of affine varieties.

(1) The singular points are defined by f = 0 and the two partial derivatives ∂f
∂x = ∂f

∂y = 0. We

have ∂f
∂x = 6x(x2 + y2)2 − 8xy2 = 2x · (3(x2 + y2)2 − 4y2) and ∂f

∂y = 6y(x2 + y2)2 · 2y − 8x2y =

2y · (3(x2 + y2)2 − 4x2). If x = 0 or y = 0, then f = 0 forces x = y = 0. The point
(0, 0) satisfies all equations hence is a singular point. If neither x nor y is 0, then we have
3(x2 + y2)2 = 4x2 = 4y2, hence 3(x2 + x2)2 = 4x2 which implies x2 = 1

3 = y2. But then

f = (13 + 1
3)3 − 4 · 13 ·

1
3 6= 0. Therefore the only singular point is (0, 0).

(2) The singular points are defined by f = xy2 − z2 = 0, and ∂f
∂x = y2 = 0, ∂f

∂y = 2xy = 0,
∂f
∂z = −2z = 0. From the second and fourth equations we have y = z = 0. No matter what
value x takes, (x, y, z) = (x, 0, 0) always satisfies all the four equations. Therefore the singular
points of V(f) are all points of the form (x, 0, 0).

(3) The singular points are given by f = xy+x3+y3 = 0, and ∂f
∂x = y+3x2 = 0, ∂f∂y = x+3y2 = 0,

∂f
∂z = 0. From ∂f

∂x = ∂f
∂y = 0 we get x = −3y2 = −27x4, hence x = 0 or x3 = − 1

27 . If x = 0,

then f = 0 forces y = 0. It is clear that every point of the form (x, y, z) = (0, 0, z) is a solution
to all the required equations hence is a singular point on V(f). If x 6= 0, then x3 = − 1

27 . Then

we have f = xy+x3+y3 = x(−3x2)+x3+(−3x2)3 = −3x3+x3−27x6 = 1
9−

1
27−

1
27 = 1

27 6= 0.
Contradiction. Therefore (x, y, z) = (0, 0, z) are the only singular points of V(f).

(4) At every point p = (x, y, z) ∈ X, we consider the matrix Mp given by the partial derivatives

Mp =

(
−2x 1 0
−3x2 0 1

)
.

It is clear that the two rows of Mp are linearly independent, therefore rankMp = 2 for every
p ∈ X. It follows that dimTpX = 3 − rankMp = 1 for every p ∈ X. Therefore dimX = 1
and dimTpX = dimX for every p ∈ X. By Definition 7.13, X is non-singular at every point
p ∈ X.

Solution 7.2. Example of projective varieties.

(1) The standard affine piece X0 = X ∩ U0 is given by setting x = 1 in f . Hence X0 = V(f0)

where f0 = y − z2. For any point (y, z) ∈ X0,
∂f0
∂y = 1 which never vanishes. Therefore X0

does not have any singular point, hence is non-singular.

(2) The set of points in X\X0 is given by {[x : y : z] ∈ X | x = 0}. When x = 0, f = xy − z2 = 0
implies z = 0. Hence the only point in X\X0 is p = [x : y : z] = [0 : 1 : 0]. This point is
in the standard affine piece X1 = X ∩ U1 because its y-coordinate is non-zero. The standard
affine piece X1 is obtained by setting y = 1 hence X1 = Va(f1) where f1 = x− z2. The point
p = [0 : 1 : 0] has non-homogeneous coordinates p = (0, 0) in the standard affine piece X1. To
check whether X1 is singular at p = (0, 0), we need to compute the partial derivatives of the

defining equation f1. Notice that ∂f1
∂x = 1 which does not vanish at p. We conclude that p is

a non-singular point of X1, hence by Definition 7.8, p is a non-singular point of X.
Parts (1) and (2) together show that X = V(xy − z2) ⊆ P2 is non-singular.

(3) We first consider the standard affine piece X0 = X ∩ U0. By setting x = 1, we get X0 =
V(f0) ⊆ A2 where f0 = z + yz + y3z + 1 + y4. To find singular points in X0, we need to
consider the equations

f0 = z + yz + y3z + 1 + y4 = 0;

∂f0
∂y

= z + 3y2z + 4y3 = 0;

∂f0
∂z

= 1 + y + y3 = 0.
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We now solve the system. From the first equation we observe that f0 = z(1+y+y3)+(1+y4) =
0. Together with the third equation we find that 1 + y4 = 0. I claim that the two equations
1 + y + y3 = 0 and 1 + y4 = 0 do not have a common solution for y. There are many ways
to prove the claim. One possible way is to use the Euclidean division. We divide y4 + 1 by
y3 + y + 1 to get

y4 + 1 = y(y3 + y + 1)− (y2 + y − 1),

which implies y2 + y − 1 = 0. We further divide y3 + y + 1 by y2 + y − 1 to get

y3 + y + 1 = (y − 1)(y2 + y − 1) + 3y,

which implies 3y = 0 hence y = 0. Therefore if the two equations have a common solution for
y then we must have y = 0, which is not a solution. This proves the claim, which implies that
X0 is non-singular.

Finally we need to check whether the points in X\X0 are singular points. To find all points
in X\X0, we set x = 0 in f = 0. Then we get y3z + y4 = 0, which implies y = 0 or y + z = 0.
Therefore there are two points in X\X0, given by p1 = [0 : 0 : 1] and p2 = [0 : −1 : 1]
respectively. To check whether they are singular points, we need to find a standard affine
piece which contain them. Since the z-coordinates of p1 and p2 are non-zero, we can choose
X2 = X ∩ U2. The standard affine piece X2 = V(f2) where f2 = x3 + x2y + y3 + x4 + y4.
The non-homogeneous coordinates of p1 and p2 are given by p1 = (0, 0) and p2 = (0,−1)
respectively. The partial derivatives of f2 are

∂f2
∂x

= 3x2 + 2xy + 4x3;

∂f2
∂y

= x2 + 3y2 + 4y3.

It is easy to see that at the point p1 = (0, 0), we have f2(p1) = ∂f2
∂x (p1) = ∂f2

∂y (p1) = 0.

Therefore p1 is a singular point on X2. At the point p2 = (0,−1), we have ∂f2
∂y (p2) = −1 6= 0.

Therefore p2 is a non-singular point on X2. By Definition 7.8, the only singular point of X is
p1 = [0 : 0 : 1].

Solution 7.3. Example: plane cubics. There are three cases to deal with in this question. Most of
the calculations are the same in all the three cases. First of all we look at a standard affine piece of
X = V(f) ⊆ P2. You can choose any standard affine piece of X to start with. For example, we choose
the standard affine pice X2 = X ∩ U2, which is given by setting z = 1 in f . Therefore we have

X2 = V(y2 − (x− λ1)(x− λ2)(x− λ3)) ⊆ A2.

To find the singular points on X2, we need to solve the system

y2 − (x− λ1)(x− λ2)(x− λ3) = 0;

−(x− λ2)(x− λ3)− (x− λ1)(x− λ3)− (x− λ1)(x− λ2) = 0;

2y = 0.

The third equation implies y = 0, then the first equation implies x = λ1 or λ2 or λ3. Now there is
some difference in the three cases.

(1) If λ1, λ2 and λ3 are distinct, then it is clear that none of them is a solution to the second
equation. Therefore X2 is non-singular in this case.

(2) If two of the three are equal, say, λ1 = λ2 6= λ3, then it is clear that x = λ1 (or λ2) is a
solution to the second equation while x = λ3 is not a solution. Therefore X2 has a singular
point (λ1, 0), which has homogeneous coordinates [λ1 : 0 : 1] as a point in X.

(3) If all the three are equal, then x = λ1 (or λ2 or λ3) is a solution to the second equation.
Therefore X2 has a singular point (λ1, 0), which has homogeneous coordinates [λ1 : 0 : 1] as a
point in X.
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It remains to consider the points in X\X2. To find these points we set z = 0 in the equation f = 0.
We get −x3 = 0 hence x = 0. Therefore the only point in X\X2 is p = [x : y : z] = [0 : 1 : 0]. Since
the y-coordinate of p is non-zero, it is a point in the standard affine piece X1 = X ∩ U1, given by the
non-homogeneous coordinates p = (0, 0). To write down the defining polynomial for X1 we set y = 1
and get X1 = V(f1) ⊆ A2 where

f1 = z − (x− λ1z)(x− λ2z)(x− λ3z).
Its partial derivative with respect to z is given by

∂f1
∂z

= 1 + λ1(x− λ2z)(x− λ3z) + λ2(x− λ1z)(x− λ3z) + λ3(x− λ1z)(x− λ2z).

It is clear that at the point p = (0, 0), we have ∂f1
∂z (p) = 1 6= 0. Therefore p = (0, 0) is a non-singular

point of X1, hence p = [0 : 1 : 0] is a non-singular point of X. This holds in all the three cases. We
have the following conclusion:

(1) If λ1, λ2 and λ3 are distinct, X is non-singular.

(2) If two of the three are equal, say, λ1 = λ2 6= λ3, then X has a unique singular point [λ1 : 0 : 1].

(3) If all the three are equal, then X has a unique singular point [λ1 : 0 : 1].

Solution 7.4. Example: projective twisted cubic. We first consider the standard affine piece Y0 =
Y ∩ U0. By settin z0 = 1 we get

Y0 = Va(y2 − y21, y1y3 − y22, y3 − y1y2).
To find the dimension of the tangent space at any point p = (y1, y2, y3), we consider the matrix of
partial derivatives:

Mp =

−2y1 1 0
y3 −2y2 y1
−y2 −y1 1

 .

We need to find rankMp. First we compute the determinant of Mp:

detMp = 4y1y2 − y1y2 − y3 − 2y31 = 4y1y2 − y1y2 − y1y2 − 2y1y2 = 0.

Therefore rankMp 6 2. Notice that the first and third rows of Mp are linearly independent (or the
second and third columns). Therefore rankMp = 2, which implies dimTpY0 = 1 at every p ∈ Y0. It
follows that Y0 is non-singular and dimY = dimY0 = 1.

Now we consider the points in Y \Y0. Let p = [y0 : y1 : y2 : y3] be such a point, then y0 = 0,
which implies y21 = y0y2 = 0 and y22 = y1y3 = 0. Therefore the only point p ∈ Y \Y0 is given by
p = [0 : 0 : 0 : 1]. To determine whether p is a singular point, we need to look at the standard affine
piece Y3 = Y ∩ U3. We could perform a similar calculation as above to show that Y3 is non-singular.
More precisely, we have

Y3 = Va(y0y2 − y21, y1 − y22, y0 − y1y2).
For any point q = (y0, y1, y2) ∈ Y3, the matrix

Mq =

y2 −2y1 y0
0 1 −2y2
1 −y2 −y1

 .

We notice that

detMq = −y1y2 + 4y1y2 − y0 − 2y32 = −y1y2 + 4y1y2 − y1y2 − 2y1y2 = 0.

Therefore rankMq 6 2. Moreover the second and the third rows are linearly independent, hence
rankMq = 2 for every q ∈ Y3. It follows that Y3 is non-singular. To summarise, Y is non-singular and
has dimension 1.

8. Algebraic Curves

We study plane curves of degree up to 3.
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8.1. Lines and conics. From now on we focus on plane curves.

Definition 8.1. A plane curve is a hypersurface C = V(f) ⊆ P2 for some non-constant homogeneous
polynomial f ∈ k[x, y, z] without repeated factors. The degree of C is defined to be deg f . Plane
curves of degrees 1, 2, 3 and 4 are called lines, conics, cubics and quartics respectively.

Example 8.2. Let [x : y : z] be the homogeneous coordinates in P2. Every line is defined by a
polynomial f(x, y, z) = ax + by + cz for some a, b, c ∈ k which are not simultaneously zero. A line is
always irreducible.

Example 8.3. Every conic is defined by a non-zero polynomial of the form g(x, y, z) = ax2 + 2bxy+
cy2 + 2dxz + 2eyz + fz2. It is sometimes more convenient to write it in the matrix form

g(x, y, z) =
(
x y z

)a b d
b c e
d e f

xy
z

 .

We consider the factorisation of g into irreducibles. By Exercise 4.2 (1), each irreducible factor of g is
also homogeneous. There are three cases:

(1) If g is an irreducible polynomial, then V(g) is an irreducible conic;

(2) If g = g1g2 for coprime irreducible homogeneous polynomials g1 and g2 of degree 1, then
V(g) = V(g1) ∪ V(g2) is the union of two distinct lines;

(3) If g = g20 for an irreducible homogeneous polynomial g0 of degree 1. Since g has repeated
factors, V(g) is not a conic. Instead, V(g) = V(g0) is a line. However, sometimes it is
convenient to say that g defines a “double line”, just to indicate that the factor g0 is repeated.

Definition 8.4. Let [x : y : z] be the homogeneous coordinates of any point in P2. For a fixed 3× 3
invertible matrix A, define a new set of coordinates [x′ : y′ : z′] by the equationx′y′

z′

 = A

xy
z

 .

This is called the linear change of homogeneous coordinates defined by A.

Remark 8.5. Why it makes sense: Multiplication of [x : y : z] by any scalar λ ∈ k\{0} results in the
multiplication of [x′ : y′ : z′] by the same scalar λ, and x′, y′, z′ cannot be all 0 unless x, y, z are all
zero since A is nonsingular. So [x′ : y′ : z′] are a new system of homogeneous coordinates for points
in the projective plane. Why we care: We can often reduce the defining equation of a curve to a very
simple form by choosing a new system of coordinates.

Lemma 8.6. Every line in P2 can be written as V(x) after a suitable linear change of homogeneous
coordinates. A non-zero homogeneous polynomial g(x, y, z) = ax2 + 2bxy + cy2 + 2dxz + 2eyz + fz2

defines an irreducible conic if and only if the matrix

G =

a b d
b c e
d e f


has rank 3; g defines a union of two lines if and only if G has rank 2; g defines a double line if and
only if G has rank 1. Every irreducible conic in P2 can be written as V(xz− y2) after a suitable linear
change of homogeneous coordinates.

Proof. Non-examinable. The proof follows from the Gram-Schmidt orthogonalisation in linear algebra.
�

Proposition 8.7. A line (or an irreducible conic) is isomorphic to P1, hence is rational.

Proof. By Lemma 8.6, we can assume the line is V(x) and the conic is V(xz − y2) without loss of
generality. The case of a line is easy; we leave the details to the reader. The case of a conic was proved
in Example 5.23. �
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The following results are special cases of a famous theorem.

Theorem 8.8. Let L be a line and D a plane curve of degree d. If L is not a component of D, then
L ∩D has at most d distinct points. When counting with multiplicities, L and D meet in precisely d
points.

Proof. Assume L = V(ax + by + cz) where a, b and c are not simultaneously zero. Without loss of
generality, we can assume c 6= 0. Then a point p ∈ L can be written as p = [x : y : −a

cx−
b
cy]. Assume

D = V(f) where f(x, y, z) is a non-zero homogeneous polynomial of degree d. Then p ∈ D if and only
if f

(
x, y,−a

cx−
b
cy
)

= 0. The left-hand side is a homogeneous polynomial of degree d in x and y. By
Exercise 4.4 (2), it can be factored into a product of d homogeneous factors of degree 1 as

f

(
x, y,−a

c
x− b

c
y

)
= (r1x+ s1y) · · · (rdx+ sdy) = 0.

Each factor rix + siy determines a solution [x : y] = [−si : ri] which gives point pi = [−si : ri :
a
c si −

b
cri] ∈ L ∩ D. Some of these points may be the same, so L and D meet in at most d points.

When counting with the number of times each distinct point occurs as a solution, we have precisely d
points. �

Remark 8.9. If p ∈ L∩D occurs m times as a solution, then we say L and D meet at p with multiplicity
m. The current proof provides a systematic method to compute all intersection points of a line and a
curve with multiplicities.

Remark 8.10. We briefly explain what it means by saying L is not a component of D. For example, if
D is a conic, it could be the union of two lines. If L happens to be one of them, then L and D meet
in more than d points, indeed, infinitely many points. The theorem indicates that if L and D meet in
more than d points, then L must be a component of D.

Proposition 8.11. Let D be an irreducible non-singular plane curve of degree d > 2. For any point
p ∈ D, the tangent line TpD and D meet at p with multiplicity at least 2.

Proof. Non-examinable. But we will see some examples in exercises. �

Theorem 8.12. Let C be a conic and D a plane curve of degree d. If C and D have no common
component, then C ∩D has at most 2d distinct points. When counting with multiplicities, C and D
meet in precisely 2d points.

Proof. Similar to the proof of Theorem 8.8. We leave it as an exercise. �

The more general version of the theorem is the following

Theorem 8.13 (Bézout’s Theorem). Let D1 and D2 be plane curves of degree d1 and d2 respectively.
Assume D1 and D2 have no common component, then D1 and D2 meet in at most d1d2 distinct points.
When these points are counted with multiplicities, D1 and D2 meet in precisely d1d2 points.

Proof. Non-examinable. Interested reader can find the proof in [Section 5.3, Fulton, Algebraic Curves].
�

Remark 8.14. This theorem shows that the number of intersection points of two plane curves can
be read off easily from their defining equations without solving them, which is a big advantage for
projective spaces. A special case of this theorem is Exercise 4.3 (2), when both plane curves have
degree 1. In the other direction, this theorem can be generalised in many different ways, thus has
become the starting point of a major branch of algebraic geometry, called intersection theory.
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8.2. Cubics. Now we consider cubic curves. We first give a classification.

Example 8.15. Every cubic curve is defined by a non-zero homogeneous polynomial f ∈ k[x, y, z] of
degree 3. By Exercise 4.2 (1), each irreducible factor of f is also homogeneous. There are a few cases:

(1) If f is an irreducible polynomial, then V(f) is an irreducible cubic;

(2) If f is the product of two irreducible factors of degree 1 and 2 respectively, then the cubic
V(f) = L∪C is the union of a line L and a conic C (in this case we still say V(f) is singular,
although we have not discussed the singularity of reducible algebraic sets);

(3) If f is the product of three irreducible factors of degree 1, then V(f) could be the union of
three distinct lines, or the union of a single line and a double line, or a triple line. The union
of three distinct lines is a cubic. The other two are not.

We have seen that there is only one line and one irreducible conic up to linear changes of homogeneous
coordinates. The situation is different for irreducible cubics.

Lemma 8.16. Up to a linear change of homogeneous coordinates, every irreducible cubic curve C can
be written in one of the following three forms

(1) C0 = Vp
(
y2z − x(x− z)(x− λz)

)
for some λ ∈ k\{0, 1};

(2) C1 = Vp
(
y2z − x2(x− z)

)
;

(3) C2 = Vp
(
y2z − x3

)
.

Proof. Non-examinable. �

Remark 8.17. The defining equations in Lemma 8.16 are called the normal forms of irreducible cubics.
By Exercise 6.2, we see that these formulas do give irreducible cubics. Moreover, by Exercise 7.3, C0 is
always non-singular; C1 is singular at the point [0 : 0 : 1], where C1 intersects with itself; C2 is singular
at the point [0 : 0 : 1], where C2 has a corner. They are known respectively as an non-singular cubic,
the nodal cubic and the cuspidal cubic. Each of them can be understood as the projective closure of
the corresponding affine variety Va(y2 − x(x− 1)(x− λ)) or Va(y2 − x2(x− 1)) or Va(y2 − x3), with
the only point at infinity [0 : 1 : 0].

Proposition 8.18. A nodal cubic curve (or a cuspidal cubic curve) is rational.

Proof. To show a nodal cubic is rational, by Lemma 8.16, we can assume the nodal cubic is C1 =
V
(
y2z − x2(x− z)

)
without loss of generality. Consider the rational maps

ϕ1 : P1 99K C1; [u : v] 7−→ [u(u2 + v2) : v(u2 + v2) : u3]

ψ1 : C1 99K P1; [x : y : z] 7−→ [x : y].

We will verify they are rational maps and they are inverse to each other. They are both given by
homogeneous polynomials of the same degree. Moreover, ϕ1 is defined, for example, at the point
[1 : 0]; ψ1 is defined, for example, at the point [0 : 1 : 0]. The image of ψ1 is always in P1. To verify
the image of ϕ1 is in C, one just needs to compute

[v(u2 + v2)]2[u3]− [u(u2 + v2)]2[u(u2 + v2)− u3] = v2(u2 + v2)2u3 − u2(u2 + v2)2uv2 = 0.

Finally we show they are inverse to each other. For any point [x : y : z] ∈ C1, we have

(ϕ1 ◦ ψ1)([x : y : z]) = ϕ1([x : y]) = [x(x2 + y2) : y(x2 + y2) : x3].

By the equation of C1 we know y2z − x2(x− z) = 0, which implies x3 = (x2 + y2)z. Therefore

[x(x2 + y2) : y(x2 + y2) : x3] = [x(x2 + y2) : y(x2 + y2) : z(x2 + y2)] = [x : y : z].

Moreover, for any point [u : v] ∈ P1, we have

(ϕ1 ◦ ψ1)([u : v]) = ϕ1([u(u2 + v2) : v(u2 + v2) : u3]) = [u(u2 + v2) : v(u2 + v2)] = [u : v].
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This shows that C1 is birational to P1, hence C1 is rational.

To show a cuspidal cubic is rational, by Lemma 8.16, we can assume the cuspidal cubic is C2 =
V
(
y2z − x3

)
without loss of generality. Consider the rational maps

ϕ2 : P1 99K C2; [u : v] 7−→ [uv2 : v3 : u3];

ψ2 : C2 99K P1; [x : y : z] 7−→ [x : y].

A similar proof shows C2 is rational. We leave the details as an exercise. �

Proposition 8.19. A non-singular cubic curve is not rational.

Proof. Non-examinable. The idea is to show that the function field of a non-singular cubic is not
isomorphic to that of P1. Interested reader can find the proof in [Section 2.2, Reid, Undergraduate
Algebraic Geometry]. This is a fun proof. The method in the proof is called “infinite descent”. There
are a few famous applications of this method in the history of mathematics. It was used to prove
that

√
2 is not a rational number, which unfortunately caused the first crisis in the foundations of

mathematics. This crisis led to the discovery of irrational numbers, which was a big step forward in
the development of mathematics. Another famous application of the descent method was in the proof
of Fermat’s last theorem. Fermat conjectured that the equation xm + ym = zm has no solutions in
positive integers for any positive integer m > 3. The proof of the theorem in m = 3 and m = 4 cases
was given by the descent method shortly after that. But it took mathematicians more than 300 years
to completely solve the problem. The Andrew Wiles Building in University of Oxford was named after
the British mathematician who finally proved this conjecture. �

Finally we look at some special points on a non-singular cubic.

Definition 8.20. Given a non-singular cubic curve C, a point p ∈ C is said to be an inflection point
of C if the tangent line TpC meets C at p with multiplicity 3.

Remark 8.21. Recall from Proposition 8.11 that TpC meets C at p with multiplicity at least 2. By
Theorem 8.8, if p is an inflection point, then p is the only intersection point of TpC and C; if p is not
an inflection point, then TpC and C meet at another point with multiplicity 1.

Example 8.22. We show that the point p = [0 : 1 : 0] is an inflection point on the non-singular cubic
C = Vp(f) where f = y2z − x3 + xz2. First of all we need to find out the tangent line TpC, which
can be computed on the standard affine piece C1 = C ∩ U1 = Va(f1) where f1 = z − x3 + xz2. The

non-homogeneous coordinates of p in U1 is p = (0, 0). Since ∂f1
∂x = −3x2 + z2 and ∂f1

∂z = 1 + 2xz, the
tangent line TpC1 = Va(0(x− 0) + 1(z − 0)) = Va(z). Its projective closure is TpC = Vp(z). To find
the intersection points of C and TpC, we follow the method in the proof of Theorem 8.8. A point on
TpC is given by [x : y : 0]. It lies in C if and only if f(x, y, 0) = 0, where f(x, y, 0) = −x3 which has
one solution [x : y] = [0 : 1] with multiplicity 3. Therefore TpC and C meet at the point [0 : 1 : 0]
with multiplicity 3, which proves p = [0 : 1 : 0] is an inflection point on C.

Exercise Sheet 8

This sheet will be discussed in the exercise class on 27 November. You are welcome to submit your
solutions at the end of the exercise class or anytime earlier.

Exercise 8.1. Examples of rational curves. Complete proofs of Propositions 8.7 and 8.18.

(1) Show that L = V(z) ⊆ P2 is isomorphic to P1. Conclude that L is rational.

(2) Show that ϕ2 and ψ2 defined in the proof of Proposition 8.18 are rational maps. Show that they
are mutually inverse to each other. Conclude that the cuspidal cubic curve C2 = V(y2z−x3) ⊆
P2 is rational.

Exercise 8.2. Example: Fermat cubic. Consider the cubic curve C = V(x3 + y3 + z3) ⊆ P2.
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(1) Show that C is non-singular.

(2) Show that the line L = V(z) meets C at 3 distinct points. Find all of them.

(3) For any p = [a : b : c] ∈ C, show that the tangent line TpC = V(a2x+ b2y + c2z).

(4) Show that every point you find in part (2) is an inflection point.

Exercise 8.3. Bézout’s theorem for conics. Prove Theorem 8.12 in these steps.

(1) If the conic C = L1 ∪ L2 is the union of two lines, use Theorem 8.8 to conclude that C ∩D
comprises at most 2d distinct points; or precisely 2d points when multiplicities are counted.
(Remark: if L1 ∩D and L2 ∩D have a common point p, the multiplicity at p is defined to be
the sum of the two multiplicities at p.)

(2) If the conic C is irreducible, without loss of generality, we can assume C = V(xz−y2) by Lemma
8.6. We have proved in Example 5.23 that every point in C can be given by [p2 : pq : q2] for
some [p : q] ∈ P1. Use the method in the proof of Theorem 8.8 to finish the proof.

Exercise 8.4. An interesting application of Bézout’s theorem. Let p1, · · · , p5 ∈ P2 be distinct points,
and assume that no 4 of them are on the same line. Prove that there exists exactly one conic through
all 5 points. You can follow these steps.

(1) Show that there exists at least one conic through all 5 points. (Hint: rank-nullity.)

(2) Suppose there are two distinct conics C1 and C2 through all 5 points. Use Bézout’s theorem
to conclude that they have a common component.

(3) If one of them is an irreducible conic, which has only one component, then the other must be
the same irreducible conic, otherwise they cannot have a common component. Therefore both
conics must be unions of two lines. Explain why we can assume C1 = L0∪L1 and C2 = L0∪L2

for distinct lines L0, L1 and L2. Explain why this leads to a contradiction.

Solutions to Exercise Sheet 8

Solution 8.1. Examples of rational curves.

(1) We claim that ϕ : P1 −→ L; [x : y] 7−→ [x : y : 0] is a morphism. It is given by homogeneous
polynomials of the same degree, and is everywhere defined, since x and y cannot be both zero.
The image of any point under ϕ lies in L because the last coordinate is zero. This justifies
the claim. Similarly we claim that ψ : L −→ P1; [x : y : z] 7−→ [x : y] is a morphism. It is
given by homogeneous polynomials of the same degree. Since z = 0, x and y cannot be both
zero, hence it is defined for every point in L. The image of any point in L under ϕ is clearly
in P1. This justifies the claim. Finally we check ϕ and ψ are inverse to each other. For any
point [x : y] ∈ P1, (ψ ◦ ϕ)([x : y]) = ψ([x : y : 0]) = [x : y]. For any point [x : y : z] ∈ L,
(ϕ ◦ ψ)([x : y : z]) = ϕ([x : y]) = [x : y : 0] = [x : y : z] since z = 0. Therefore L is isomorphic
to P1. In particular, they are birational, hence L is rational.

(2) Define rational maps ϕ2 : P1 99K C2 by ϕ2([u : v]) = [uv2 : v3 : u3] and ψ2 : C2 99K P1

by ψ2([x : y : z]) = [x : y]. To show ϕ2 is a rational map, we observe: all components are
homogeneous of degree 3; ϕ2 is defined at every point [u : v] ∈ P1 since either u3 or v3 is
non-zero; the image [uv2 : v3 : u3] is a point in C2 since it satisfies the defining equation of C2.
To show ψ2 is a rational map, we observe: all components are homogeneous of degree 1; ψ2

is well-defined at every point on C2 except [0 : 0 : 1]; image of ψ2 is clearly in P1. It remains
to show ϕ2 and ψ2 are mutually inverse to each other. For every [u : v] ∈ P1 where ψ2 ◦ ϕ2

is defined, we have (ψ2 ◦ ϕ2)([u : v]) = ψ2([uv
2 : v3 : u3]) = [uv2 : v3] = [u : v]. For every

[x : y : z] ∈ C where ϕ2 ◦ ψ2 is defined, we have (ϕ2 ◦ ψ2)([x : y : z]) = ϕ2([x : y]) = [xy2 : y3 :
x3] = [xy2 : y3 : y2z] = [x : y : z]. Therefore C2 is birational to P1, hence is rational.

Solution 8.2. Example: Fermat cubic.
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(1) We consider the standard affine piece C0 = C ∩ U0 = Va(f0) ⊆ A2 where f0 = 1 + y3 + z3.

Since ∂f0
∂y = 3y2 and ∂f0

∂z = 3z2, the two derivatives vanish if and only if y = z = 0. But

then f0 = 1 6= 0. Therefore f0 = ∂f0
∂y = ∂f0

∂z = 0 have no common solution, which means C0

is non-singular. Since the equation of C is symmetric with respect to the variables, the same
calculation shows that all other standard affine pieces are also non-singular. Therefore C is
non-singular.

(2) A point on the line L can be given by p = [x : y : 0]. If p ∈ C, then we have x3 + y3 = 0,

hence y = −x or −ωx or −ω2x where ω = e
2π
√
−1

3 is a primitive third root of unity. So the
three points in L ∩ C are p1 = [1 : −1 : 0], p2 = [1 : −ω : 0] and p3 = [1 : −ω2 : 0].

(3) At least one of the three coordinates is non-zero. Without loss of generality, we can assume
a 6= 0. Then the point p = [a : b : c] ∈ C0 = C ∩ U0 = Va(f0) ⊆ A2, in which its non-
homogeneous coordinates are given by p = ( ba ,

c
a). The tangent space of p in the standard

affine piece C0 is given by

TpC0 = Va
(

3 · b
2

a2
· (y − b

a
) + 3 · c

2

a2
· (z − c

a
)

)
.

The tangent space TpC is the projective closure of TpC0, which is given by the homogenisation
of the above polynomial

TpC = Vp
(

3 · b
2

a2
· (y − b

a
x) + 3 · c

2

a2
· (z − c

a
x)

)
.

Since we assumed a 6= 0, we can multiply this polynomial by a3

3 without changing its vanishing
locus. Then we get

TpC = Vp(b2(ay − bx) + c2(az − cx))

= Vp((−b3 − c3)x+ ab2y + ac2z)

= Vp(a3x+ ab2y + ac2z)

= Vp(a2x+ b2y + c2z).

In the last step above is valid since we assumed a 6= 0.
Since a, b and c are symmetric, a similar calculation will give the same equation for the

tangent space TpC when b 6= 0 or c 6= 0.

(4) At the point p1 = [1 : −1 : 0], the tangent space Tp1C = Vp(x+ y). For any point q = [x : y :
z] ∈ Tp1C, we have x = −y. If q ∈ C, we then have (−y)3 + y3 + z3 = 0 hence z3 = 0, which
has one solution with multiplicity 3. This means Tp1C meet C at one point with multiplicity
3, hence p1 is an inflection point.

Similarly, at the point p2 = [1 : −ω : 0], the tangent space Tp2C = Vp(x + ω2y). For any
point q = [x : y : z] ∈ Tp2C, we have x = −ω2y. If q ∈ C, we then have (−ω2y)3 + y3 + z3 = 0
hence z3 = 0, which has one solution with multiplicity 3. This means Tp2C meet C at one
point with multiplicity 3, hence p2 is an inflection point.

Moreover, at the point p3 = [1 : −ω2 : 0], the tangent space Tp3C = Vp(x + ωy). For any
point q = [x : y : z] ∈ Tp3C, we have x = −ωy. If q ∈ C, we then have (−ωy)3 + y3 + z3 = 0
hence z3 = 0, which has one solution with multiplicity 3. This means Tp3C meet C at one
point with multiplicity 3, hence p3 is an inflection point.

Solution 8.3. Bézout’s theorem for conics.

(1) If C = L1 ∪ L2, then every common point of C and D must be either a common point of L1

and D, or a common point of L2 and D. We know by Theorem 8.8 that L1 ∩ D comprises
at most d points, or precisely d points when counting with multiplicities; L2 ∩ D comprises
at most d points, or precisely d points when counting with multiplicities. Therefore C ∩ D
comprises at most 2d points, or precisely 2d points when counting with multiplicities.
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(2) We have proved in Example 5.23 that C is isomorphic to P1. In particular, every point in C
can be given by [p2 : pq : q2] for some [p : q] ∈ P1. Let D = V(f) for some homogeneous
polynomial f(x, y, z) of degree d. Then [p2 : pq : q2] ∈ V(f) if and only if f(p2, pq, q2) = 0.
The left-hand side is a homogeneous polynomial of degree 2d in p and q. By Exercise 4.4 (2),
it can be completely factored into 2d homogeneous factors of degree 1 as

f(p2, pq, q2) = (a1p+ b1q) · · · (a2dp+ b2dq) = 0.

Each factor aip + biq determines a point [p : q] = [bi : −ai] ∈ P1, hence f = 0 has at most 2d
solutions [p : q] = [bi : −ai] ∈ P1, which give at most 2d points [p2 : pq : q2] = [b2i : −aibi :
a2i ] ∈ (C ∩ D). When counting the number of times each point occurs as a solution, we get
precisely 2d points.

Solution 8.4. An interesting application of Bézout’s theorem.

(1) By Example 8.3, every conic C is given by a homogeneous polynomial g(x, y, z) = 0 of degree
2 with 6 coefficients a, b, c, d, e and f . For each i, since pi = [xi : yi : zi] ∈ C, we can plug in
x = xi, y = yi and z = zi to get an equation g(xi, yi, zi) = 0, which is a homogeneous linear
equation in a, b, c, d, e and f . In this way the 5 points give a system of 5 linear equations. Since
there are 5 equations and 6 indeterminants, by the theorem of rank-nullity, there is a solution
for a, b, c, d, e and f such that they are not simultaneously zero. This solution determines the
homogeneous polynomial g(x, y, z) of degree 2. We claim that g has no repeated factors. If
g has repeated factors, then g is the square of a linear polynomial hence gives a double line
which passes through all the 5 given points. This is a contradiction since no 4 of the given
points are allowed to be on the same line. Hence we conclude that g defines a conic.

(2) Assume that there are two distinct conics C1 and C2, both of which pass through the 5 points.
By Theorem 8.12, if they do not have any common component, then they can meet in at most
4 common points. Hence they must have a common component.

(3) If either C1 or C2 is an irreducible conic, which has only one component, then the other must
be the same conic. Under the assumption that C1 and C2 are distinct conics, both of them
must be the unions of two lines. Since they have a common component, the other component
in the two conics must be distinct. Hence we can assume C1 = L0 ∪ L1 and C2 = L0 ∪ L2,
where L0, L1 and L2 are distinct lines. We know the 5 points p1, · · · , p5 are on both conics.
For each pi, there are two possibilities: pi ∈ L0, or pi /∈ L0. If the second possibility happens,
then pi ∈ L1 since pi ∈ C1, and pi ∈ L2 since pi ∈ C2. This implies pi is a common point
of L1 and L2. Since L1 and L2 are distinct lines, by Theorem 8.8, they have only 1 common
point. It follows that among the 5 points p1, · · · , p5, at most one of them is not on L0; in other
words, at least 4 of them are on the line L0. This is a contradiction because no 4 of them are
allowed to be on the same line.

9. Elliptic Curves

A very special feature of a non-singular cubic curve C is the existence of an abelian group structure
on the set of points in C. We will see how that works.

9.1. The group law on non-singular cubics. Given any non-singular cubic C and any point
O ∈ C, there exists an abelian group structure on the set of points in C, with O being the identity
element in the group law. That means, there is a binary operation “+” defined on the set of points in
C, which satisfies the conditions required in the definition of an abelian group. The identity element
O in the group law is also called the neutral point. We will first describe the operation geometrically,
then show some explicit computations, finally explain why the construction defines an abelian group
structure.
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Construction 9.1 (The group law). Given a non-singular cubic curve C with a point O ∈ C, there
is an abelian group law on the set of points on C such that O is the identity element. For any two
points A,B ∈ C, their sum A+B is obtained in two steps

(1) The line AB meets the cubic C at a third point R;

(2) The line OR meets the cubic C at a third point R = A+B.

If A = B (resp. O = R), then the line AB (resp. OR) is defined to be the tangent line TAC (resp.
TOC). �

We can follow the above construction to make explicity computations. In each step, we need to write
down the equation of a certain line, and compute its intersection points with the cubic. The reason
for the existence of the third intersection point of a line and a cubic and the method for computing
it has been discussed in the proof of Theorem 8.8. To find the line AB (or similarly OR), we need
Definition 7.8 if A = B, or the follow simple result if A 6= B.

Lemma 9.2. Given two distinct points A = [a0 : a1 : a2] and B = [b0 : b1 : b2] in P2, there is a unique
line L passing through the two points, defined by the polynomial

f(x, y, z) = det

x a0 b0
y a1 b1
z a2 b2

 .

Proof. We have seen in Exercise 4.3 (1) that there is a unique line L passing through A and B. It
remains to verify that the given polynoial defines such a line. Notice that the given polynomial is
non-zero and homogeneous of degree 1 hence defines a line. When [x : y : z] = [a0 : a1 : a2] or
[b0 : b1 : b2], two columns of the matrix are identical hence the determinant is zero. This shows that
A and B are points on this line. �

Example 9.3. Consider the cubic C = V(y2z−x3+4xz2−z3) with the identity element O = [0 : 1 : 0].
Take two points A = [2 : 1 : 1] and B = [−2 : 1 : 1] on C. By Lemma 9.2, the line AB is defined by

det

x 2 −2
y 1 1
z 1 1

 = −4y + 4z.

By the method in the proof of Theorem 8.8, we can find the third intersection point R of AB and C
to be R = [0 : 1 : 1]. By Lemma 9.2, the line OR is defined by

det

x 0 0
y 1 1
z 0 1

 = x.

By the method in the proof of Theorem 8.8, we can find the third intersection point R of OR and C
to be R = [0 : −1 : 1]. Therefore A+B = [0 : −1 : 1].

Construction 9.1 works for any non-singular cubic with any point on it as the identity element. In
some special cases, the group law becomes particularly nice and simple. This simplified group law is
applicable only when the following two conditions are satisfied

(1) The non-singular cubic is given by C = Vp(y2z − x3 − ax2z − bxz2 − cz3) for some a, b, c ∈ k,
which is the projective closure of the affine curve C2 = Va(y2 − x3 − ax2 − bx − c) with the
only point O = [0 : 1 : 0] at infinity;

(2) The point at infinity O = [0 : 1 : 0] is the identity element.

It is important to observe that the graph of C2 is symmetric with respect to the x-axis.
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Construction 9.4 (Simplified group law). Let C = Vp(y2z − x3 − ax2z − bxz2 − cz3) be a non-
singular cubic for some a, b, c ∈ k. Let O = [0 : 1 : 0] be the identity element of the group law and
C2 = Va(y2 − x3 − ax2 − bx− c) a standard affine piece of C. Given two points A,B ∈ C, we have:

(1) If A = O, then A+B = B; if B = O, then A+B = A;

(2) If A,B ∈ C2, assume the line AB meet the cubic C at a third point R. If A = B, the line AB
is defined to be the tangent line TAC.

(a) If A and B are symmetric with respect to the x-axis, then A+B = O;

(b) Otherwise, let R = (p, q) ∈ C2, then R = (p,−q) = A+B. �

Remark 9.5. The simplified group law 9.4 also gives an easy way to compute the inverse of any point
A ∈ C. If A = O, then −A = O. Otherwise, let A = (x, y) ∈ C2, then the inverse −A = (x,−y) ∈ C2

which is the reflection of A across the x-axis.

Example 9.6. We look at Example 9.3 again. It is clear that both conditions required for the
simplified group law are met. The affine curve C2 = Va(y2 − x3 + 4x − 1). Neither A nor B is
the identity element O = [0 : 1 : 0]. In non-homogeneous coordinates, A = (2, 1) and B = (−2, 1).
The line AB in the affine plane is given by L2 = Va(y − 1). Solving the system given by equations
y2 − x3 + 4x − 1 = 0 and y − 1 = 0, we get the third point of intersection R = (0, 1). Therefore
A+B = R = (0,−1), or in homogeneous coordinates [0 : −1 : 1]. This answer is consistent with that
of Example 9.3.

Definition 9.7. A non-singular cubic curve with a chosen point on it (hence a group law is determined)
is called an elliptic curve.

The theory of elliptic curves is extremely rich and deep, and provides a good example of the profound
connections between abstract algebraic geometry, complex analysis, and number theory. It constitutes
an active area of current research, and plays a crucial role in the recent proof of Fermat’s Last
Theorem. Elliptic curves also have important applications in various aspects of cryptography, such
as encryption, digital signatures, (pseudo-)random generators and so on. There are other higher
dimensional projective varieties, on which there exist abelian group laws. They are called abelian
varieties, which is also a major branch of algebraic geometry.

9.2. Linear systems and associativity. We are aiming to prove that Construction 9.1 does define
an abelian group law. The difficulty here is the associativity. We clear up the easy bits first.

Proposition 9.8. In Construction 9.1 of the group law on a non-singular cubic curve C: the addition
is commutative; O is the identity element; and every point has an inverse.

Proof. For two points A,B ∈ C, there is no difference between the line AB and the line BA, hence
A+B = B +A is obvious. This justifies the commutativity.

To find A + O, the first step gives the third intersection point R of the line AO and C; the second
step gives the third intersection point of the line OR and C, which is A. Hence A + O = A is also
obvious. This justifies that O is the identity element in the group law.

Given any A ∈ C, we claim its inverse can be given like this: assume the tangent line TOC meets C
at a third point O, and the line AO meets C at a third point B, then B is the inverse of A. We need
to verify A + B = O. To compute A + B, the first step gives the third intersection point of the line
AB and C, which is O; the second step gives the third intersection point of the line OO and C, which
is O by Proposition 8.11. This justifies A+B = O, hence the inverse of A is well-defined. �

Remark 9.9. Here is a special case that is worth mentioning: if O is an inflection point, then TOC
meet C at O three times hence O = O. In such a case the inverse of A is simply the third intersection
point of the line AO and the curve C.
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It remains to check the associativity in the group law. This requires some preparation, which is very
interesting in their own stand.

Notation 9.10. Given finitely many points P1, · · · , Pk ∈ P2. For every d > 0, we write

Sd(P1, · · · , Pk) :=

{
f ∈ k[x, y, z]

∣∣∣∣ f is homogeneous of degree d
f(P1) = · · · = f(Pk) = 0

}
.

It is easy to see that Sd(P1, · · · , Pk) is a vector space over k, as it is closed under addition and
scalar multiplication. This vector space is sometimes called a linear system, but we do not need this
terminology. In the following results we will need to look at S3(P1, · · · , P8).

Lemma 9.11. Let C1 and C2 be two cubic curves whose intersection consists of precisely 9 distinct
points P1, · · · , P9. Then dimk S3(P1, · · · , P8) = 2.

Proof. Non-examinable. We do not prove it but we explain what the proof is really about. It is easy
to find out that a homogeneous polynomial f ∈ k[x, y, z] of degree 3 is determined by 10 coefficients.
For each given point Pi, the requirement f(Pi) = 0 imposes one linear condition on the coefficients of
f . If all the 8 linear conditions on the coeffcients are independent, then the remaining freedom in the
coefficient is 2, which is precisely what we need. Therefore the whole point is to show that these linear
conditions are guaranteed to be independent given the assumptions. The key ingredient in the proof is
Bézout’s Theorem 8.13. Interested reader can find the proof in [Proposition 2.6, Reid, Undergraduate
Algebraic Geometry]. �

Lemma 9.12. Let C1 = V(F1) and C2 = V(F2) be two cubic curves whose intersection consists of
precisely 9 distinct points P1, · · · , P9. Then any cubic curve D = V(G) through P1, · · · , P8 also passes
through P9.

Proof. By Lemma 9.11, we have dimk S3(P1, · · · , P8) = 2. It is clear that F1, F2 ∈ S3(P1, · · · , P8).
Moreover F1 and F2 are linearly independent, as otherwise they would define the same cubic. Therefore
F1 and F2 form a basis of S3(P1, · · · , P8). Since G ∈ S3(P1, · · · , P8), we can write G = λ1F1 + λ2F2

for some λ1, λ2 ∈ k. Now G(P9) = λ1F1(P9) + λ2F2(P9) = 0, hence D passes through P9. �

Now we are ready to prove the associativity. To avoid excessive technicality while still keeping a grasp
of the main idea in the proof, we will prove it under an extra mild assumption, which will be stated
in the proof. Some extra work will be required if this assumption is not met, which we do not discuss.

Proposition 9.13. In Construction 9.1 of the group law on a non-singular cubic curve C, the addition
is associative.

Proof. Let A,B,E ∈ C. The construction of (A+B) + E = S uses 4 lines:

L1 : ABR; L2 : ROR; L3 : ERS; L4 : SOS.

The construction of A+ (B + E) = T uses 4 lines:

M1 : BEQ; M2 : QOQ; M3 : AQT ; M4 : TOT .

We need to show S = T , for which it suffices to show S = T . We consider two cubics

D1 = L1 ∪M2 ∪ L3 and D2 = M1 ∪ L2 ∪M3.

Then by construction we have

C ∩D1 = {A,B,E,O,R,R,Q,Q, S};
C ∩D2 = {A,B,E,O,R,R,Q,Q, T}.

Now we need a mild assumption that the 9 points in C ∩D1 are distinct. Then the two cubics C and
D1 satisfy the conditions of Lemma 9.12. Since the cubic D2 passes through 8 of the 9 points, it must
pass through S as well, which means S ∈ C ∩D2. Therefore S = T since S cannot be any of the other
points by the mild assumption that we imposed. This finishes the proof under this assumption. Extra
work has to be done when this assumption is not met. �
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Remark 9.14. This is a very beautiful piece of argument in projective algebraic geometry. Bézout’s
theorem plays a key role in the course of the proof, mostly in the proof of Lemma 9.11. A similar
argument can be used to prove many other results, including the famous Pascal’s theorem (aka the
mystic hexagon), which we will see in the exercise.

Exercise Sheet 9

This sheet will be discussed in the exercise class on 4 December. You are welcome to submit your
solutions at the end of the exercise class or anytime earlier.

Exercise 9.1. Example: understanding the simplified group law.

(1) Show that [0 : 1 : 0] is an inflection point of C in the simplified group law 9.4.

(2) In the simplified group law 9.4, explain briefly how to find all points P ∈ C such that P+P = O.

(3) Consider the curve and the group law in Example 9.6. Let A = [2 : 1 : 1] and B = [−2 : −1 : 1].
Use the simplified group law to find out −A, −B and A+B.

Exercise 9.2. Example of group law. Consider the non-singular cubic curve C = V(y2z−x3−4xz2) ⊆
P2. Let O = [0 : 1 : 0] be the identity element in the group law.

(1) Find all points where C meets the line L1 = V(z) and specify their multiplicities. Do the same
for the lines L2 = V(x) and L3 = V(y − 2x).

(2) Find the order of the subgroup generated by the point P = [2 : 4 : 1] ∈ C.

(3) Find all points Q ∈ C such that Q+Q = O.

Exercise 9.3. Example: Tate’s normal form. Consider the projective closure C of the cubic curve
C2 = V(y2 + sxy− ty− x3 + tx2) ⊆ A2 for some fixed s, t ∈ k where t 6= 0. Assume C is non-singular.
Let the point at infinity O = [0 : 1 : 0] be the identity element in the group law on C.

(1) For any point P = (a, b) ∈ C2, show that −P = (a,−b− sa+ t) in the group law.

(2) Suppose Q = (0, 0) ∈ C2. Show that Q+Q = (t, t(1− s)) in the group law.

Exercise 9.4. Pascal’s mystic hexagon. Let X ⊆ P2 be an irreducible conic. Let ABCDEF be a
hexagon whose vertices are inscribed in X. Assume the three pairs of opposite sides meet in points
P,Q,R respectively. (To be precise, the lines FA and CD meet at P ; the lines AB and DE meet
at Q; the lines BC and EF meet at R.) Show that P,Q,R are colinear. (That means, the three
points are on the same line in P2.) You can follow these steps (the idea is already used in the proof
of Proposition 9.13):

(1) Sketch a picture to illustrate the given situation.

(2) The three lines FA, BC and DE form a cubic curve C1; the three lines AB, CD and EF form
a cubic curve C2. Find C1 ∩ C2.

(3) Consider a third cubic C3 given by the union of the conic X and the line PQ. Then apply
Lemma 9.12.

Solutions to Exercise Sheet 9

Solution 9.1. Understanding the simplified group law.

(1) We show that the point p = [0 : 1 : 0] is an inflection point on the non-singular cubic
C = Vp(f) where f = y2z − x3 − ax2z − bxz2 − cz3. First of all we need to find out the
tangent line TpC, which can be computed on the standard affine piece C1 = C ∩ U1 = Va(f1)
where f1 = z − x3 − ax2z − bxz2 − cz3. The non-homogeneous coordinates of p in U1 is
p = (0, 0). Since ∂f1

∂x = −3x2 − 2axz − bz2 and ∂f1
∂z = 1− ax2 − 2bxz − 3cz2, the tangent line
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TpC1 = Va(0(x − 0) + 1(z − 0)) = Va(z). Its projective closure is TpC = Vp(z). To find the
intersection points of C and TpC, we follow the method in the proof of Theorem 8.8. A point
on TpC is given by [x : y : 0]. It lies in C if and only if f(x, y, 0) = 0, where f(x, y, 0) = −x3
which has one solution [x : y] = [0 : 1] with multiplicity 3. Therefore TpC and C meet at the
point [0 : 1 : 0] with multiplicity 3, which proves p = [0 : 1 : 0] is an inflection point on C.

(2) First of all, since O is the identity element in the group law, we always have O + O = O, so
O is one of such point. It remains to find all such points P ∈ C2. The condition P + P = O
can be interpreted as P = −P . If the non-homogeneous coordinates of P in C2 is given by
P = (x, y), then by the simplified group law 9.4, −P = (x,−y). The condition P = −P holds
if and only if y = 0. Therefore all points P ∈ C satisfying P +P = O are precisely the identity
element O = [0 : 1 : 0] and those points P = (x, y) ∈ C2 such that y = 0.

(3) In the standard affine piece C2 = V(y2 − x3 + 4x − 1), the non-homogeneous coordinates of
the two points are A = (2, 1) and B = (−2,−1). The line AB is given by x− 2y = 0. To find
its third intersection points with C2, we need to solve the system

y2 − x3 + 4x− 1 = 0,

x− 2y = 0.

We substitute x by 2y in the first equation to get y2− 8y3 + 8y− 1 = 0, which can be factored
as (y2 − 1)(1− 8y) = 0. The solutions are y = ±1 and y = 1

8 . Therefore the third intersection

point is (14 ,
1
8), whose reflection across the x-axis is the sum of A and B; that is A+B = (14 ,−

1
8),

or [14 : −1
8 : 1] in homogeneous coordinates (or [2 : −1 : 8] if you prefer). The inverse −A is the

reflection of A across the x-axis, so −A = (2,−1), or [2 : −1 : 1] in homogeneous coordinates.
The inverse −B is the reflection of B across the x-axis, so −B = (−2, 1), or [−2 : 1 : 1] in
homogeneous coordinates.

Solution 9.2. Example of group law.

(1) For L1 ∩ C, set z = 0 in the equation defining C to obtain x3 = 0, which gives solutions
[x : y] = [0 : 1] with multiplicity 3. Hence [x : y : z] = [0 : 1 : 0] is the only intersection point
with multiplicity 3. For L2 ∩C, set x = 0 in the equation defining C to obtain y2z = 0, which
gives solutions [y : z] = [0 : 1] with multiplicity 2 and [1 : 0] with multiplicity 1. Hence the line
L2 meets C at [0 : 0 : 1] with multiplicity 2 and [0 : 1 : 0] with multiplicity 1. For L3 ∩ C, set
y = 2x to obtain x(4xz−x2−4z2) = 0, which can be written as −x(x−2z)2 = 0. Its solutions
are [x : z] = [0 : 1] with multiplicity 1, and [x : z] = [2 : 1] with multiplicity 2. Therefore L3

meets C at [x : y : z] = [0 : 0 : 1] with multiplicity 1 and [2 : 4 : 1] with mulplicity 2.

(2) We can use the simplified group law 9.4. The standard affine piece C2 = Va(f2) ⊆ A2 where
f2 = y2−x3−4x. We first compute P+P . The non-homogeneous coordinates of P are (2, 4). To

compute the tangent line TPC2, we find ∂f2
∂x = −3x2−4 and ∂f2

∂y = 2y. Therefore ∂f2
∂x (P ) = −16

and ∂f2
∂y = 8. It follows that TPC2 = Va(−16(x− 2) + 8(y − 4)) = Va(−2(x− 2) + (y − 4)) =

Va(−2x + y) ⊆ A2. To find the third intersection point of TPC2 and C, we solve the system
of equations

y2 − x3 − 4x = 0,

−2x+ y = 0.

We substitute y by 2x in the first equation to get 4x2 − x3 − 4x = 0, which is −x(x− 2)2 = 0.
Therefore the system has a solution (x, y) = (2, 4) with multiplicity 2 and a solution (x, y) =
(0, 0) with multiplicity 1. The solution (2, 4) corresponds to the point P , hence the third
intersection point is R = (0, 0). The sum P + P is the reflection R of R across the x-axis,
which is still (0, 0). Hence P + P = R = (0, 0) = R.

Now we compute R + R. Since R = (0, 0), by the simplified group law 9.4 (2a), we im-
mediately have R + R = O. Therefore P + P + P + P = O. It follows that the order of P
must divide 4, which can only be 1 or 2 or 4. Since P 6= O, the order of P is not 1. Since
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P + P = R 6= O, the order of P is not 2. Therefore the order of P is 4, which means the
subgroup generated by P has order 4.

(3) To find all points Q ∈ C such that Q+Q = O, we use Exercise 9.1 (2). First of all O = [0 : 1 : 0]
is such a point. It remains to find all points Q = (x, y) ∈ C2 such that y = 0. In the equation
f2 = y2 − x3 − 4x = 0 we set y = 0. Then we have −x3 − 4x = −x(x2 + 4) = 0. Hence x = 0
or 2
√
−1 or −2

√
−1. The corresponding points are Q = (0, 0) or (2

√
−1, 0) or (−2

√
−1, 0).

In summary, we found 4 points Q ∈ C such that Q + Q = O, which are [0 : 1 : 0], [0 : 0 : 1],
[2
√
−1 : 0 : 1] and [−2

√
−1 : 0 : 1].

Solution 9.3. Example: Tate’s normal form.

Notice that the defining polynomial of the cubic does not meet the conditions required for using the
simplified group law. So we need to use the group law 9.1.

(1) To find the inverse, we use the method in the proof of Proposition 9.8. We need to find the
third intersection point O of TOC and C, then find the third intersection point of OP and C,
which is −P .

Since C is the projective closure of C2, we can write down its defining equation as C =
Vp(y2z+sxyz− tyz2−x3 + tx2z) ⊆ P2. It is easy to see that O = [0 : 1 : 0] is the only point at
infinity. To find the tangent line TOC, we need to consider the standard affine piece C1 = C∩U1

which contains the point O. We have C1 = Va(f1) ⊆ A2 where f1 = z + sxz − tz2 − x3 + tx2z

and O = (0, 0) ∈ C1. Since ∂f1
∂x = sz − 3x2 + 2txz and ∂f1

∂z = 1 + sx − 2tz + tx2, we have
∂f1
∂x (O) = 0 and ∂f1

∂z (O) = 1, hence TOC1 = Va(z) ⊆ A2. Taking its projective closure, we get

TOC = Vp(z) ⊆ P2. To find the intersection points of TOC and C, we consider an arbitrary
point [x : y : z] = [x : y : 0] ∈ TOC. If this point is also in C, then we set z = 0 in
the defining equation of C to get −x3 = 0. Therefore TOC and C meet at the only point
[x : y : z] = [0 : 1 : 0] with multiplicity 3, which means that the third intersection point O of
TOC and C is still O = O = [0 : 1 : 0].

To find −P , we need to write down the line OP . We first make an observation. Since
P = (a, b) ∈ C2, its coordinates have to satisfy the defining polynomial of C2, namely

b2 + sab− tb− a3 + ta2 = 0,

or equivalently

−a3 + ta2 = −b(b+ sa− t).
The homogeneous coordinates of P are given by P = [a : b : 1]. By Lemma 9.2 the line is

given by

det

x 0 a
y 1 b
z 0 1

 = x− az = 0.

To find the third intersection point of OP and C, we consider an arbitrary point [x : y : z] =
[az : y : z] ∈ OP . Since this point is also in C, we get

y2z + sayz2 − tyz2 − a3z3 + ta2z3 = 0.

Using the observation above, we get

y2z + (sa− t)yz2 − b(b+ sa− t)z3 = 0

which can be factored into

z(y − bz)(y + (b+ sa− t)z) = 0.

The three solutions are [y : z] = [1 : 0], [b : 1] and [−b − sa + t : 1]. Since x = az, the three
intersection points of OP and C are [x : y : z] = [0 : 1 : 0], [a : b : 1] and [a : −b− sa + t : 1].
The first two points are O and P , hence −P = [a : −b − sa + t : 1]. The non-homogeneous
coordinates of −P with respect to C2 is −P = (a,−b− sa+ t).
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(2) To compute Q+Q, we need to find the tangent line TQC. We know that Q ∈ C2 = Va(f2) ⊆ A2

where f2 = y2 + sxy− ty− x3 + tx2. The partial derivatives are given by ∂f2
∂x = sy− 3x2 + 2tx

and ∂f2
∂y = 2y + sx− t. At the point Q = (0, 0), their values are ∂f2

∂x (Q) = 0 and ∂f2
∂y (Q) = −t.

Since t 6= 0, we have TQC2 = Va(−ty) = Va(y) ⊆ A2, hence TQC = Vp(y) ⊆ P2. To
find the third intersection point R of the line TQC and C, we consider an arbitrary point
[x : y : z] = [x : 0 : z] ∈ TQC. When this point is also on C, we can set y = 0 in the defining
equation of C to get −x3 + tx2z = 0. It has solutions [x : z] = [0 : 1] with multiplicity 2
and [t : 1] with multiplicity 1. Therefore the intersection points of TQC and C are given by
[x : y : z] = [0 : 0 : 1] with multiplicity 2 and [t : 0 : 1] with multiplicity 1. Hence third
intersection point R of TQC and C is R = [t : 0 : 1].

It remains to find the third intersection point of OR and C, which is the sum Q + Q.
Fortunately we have done the computation in part (1). Indeed, we have seen that, given a
point P = [a : b : 1] ∈ C, the line OP (= OP ) meets C at a third point [a : −sa+ t− b : 1]. Let
a = t and b = 0, then OR meets C at a third point [t : −st + t : 1], or in non-homogeneous
coordinates (t,−st+ t). Therefore Q+Q = (t,−st+ t) = (t, t(1− s)).

Solution 9.4. Pascal’s mystic hexagon.

(1) A picture has been given in the exercise class. You can also find the same picture in [Section
2.11, Reid, Undergraduate Algebraic Geometry].

(2) From the picture we can see that C1 and C2 meet at 9 distinct points, i.e.

C1 ∩ C2 = {A,B,C,D,E, F, P,Q,R}.

Indeed, the first six points are distinct by the assumption. None of the last three points is on
X (otherwise a certain line meets X in 3 points), so none of them can coincide with any of the
first six points. The last three points must also be distinct (otherwise two certain lines meet
each other in 2 points).

(3) By assumption, the cubic curve C3 passes through 8 of the above 9 points with the point R
being the only possible exception. By Lemma 9.12, R must be on C3 as well. Therefore R is
either on the conic X or the line PQ. We claim that R is not on X. Otherwise, the line BCR
and the conic X meet at three distinct points B, C and R, which violates Bézout’s theorem
8.8. Therefore R is on the line PQ, which means that the points P,Q,R are colinear.

10. Algebraic Surfaces

We look at a few aspects of hypersurfaces in P3 of low degrees.

10.1. Planes and quadric surfaces. From now on we focus on hypersurfaces in P3.

Definition 10.1. A hypersurface S = V(f) ⊆ P3 defined by some non-constant homogeneous poly-
nomial f ∈ k[z0, z1, z2, z3] without repeated factors is called a surface. The degree of S is defined to
be deg f . Surfaces of degree 1, 2, 3 and 4 are called planes, quadrics, cubics and quartics respectively.

Example 10.2. Let [z0 : z1 : z2 : z3] be the homogeneous coordinates in P3. Every plane is defined
by a polynomial f(z0, z1, z2, z3) = a0z0 + a1z1 + a2z2 + a3z3 for some a0, a1, a2, a3 ∈ k which are not
simultaneously zero. A plane is always irreducible.

Example 10.3. Every quadric surface is defined by a non-zero homogeneous polynomial g ∈ k[z0, z1, z2, z3]
of degree 2. Similar to the case of conics, it is sometimes more convenient to write it in the matrix
form

g(z0, z1, z2, z3) = (z0, z1, z2, z3) ·M · (z0, z1, z2, z3)T

where M is a 4× 4 symmetric matrix. The classification of quadric surfaces is controlled by the rank
of M .
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There is a notion of linear change of homogeneous coordinates in P3, which is literally almost the same
as Definition 8.4, with all vectors having 4 components and A being a 4× 4 invertible matrix.

Lemma 10.4. Every plane in P3 can be written as V(z0) after a suitable linear change of homogeneous
coordinates. A non-zero homogeneous polynomial of degree 2

g(z0, z1, z2, z3) = (z0, z1, z2, z3) ·M · (z0, z1, z2, z3)T

defines a non-singular irreducible quadric surface if and only if M has rank 4; g defines a singular
irreducible quadric surface if and only if M has rank 3; g defines a union of two planes if and only
if M has rank 2; g defines a double plane if and only if M has rank 1. Every non-singular quadric
surface can be written as V(z0z3 − z1z2) after a suitable linear change of homogeneous coordinates.

Proof. Non-examinable. Application of Gram-Schmidt orthogonalisation again. �

Remark 10.5. A union of two planes can be thought as a singular algebraic set. A double plane is
not a quadric surface. So a “non-singular quadric surface” always means a “non-singular irreducible
quadric surface”.

Now we turn to the rationality problem. Recall from Proposition 8.7 that a line or a non-singular
conic is always isomorphic to P1 hence is rational. Something similar happens to surfaces.

Proposition 10.6. A plane is isomorphic to P2, hence is rational. A non-singular quadric surface is
birational to P2, hence is rational.

Proof. By Lemma 10.4, we can assume the plane is V(z0) and the non-singular quadric is V(z0z3−z1z2)
without loss of generality. It is easy to show that V(z0) is isomorphic to P2; we leave the details to
the reader. We have proved in Exercise 5.2 that V(z0z3 − z1z2) is birational to P2. �

This result suggests that a non-singular quadric surface is not isomorphic to P2. Indeed, it follows from
the fact that two curves in P2 always intersect while two curves in a quadric surface could be disjoint.
The details are left as an exercise. We would like to know what precisely a quadric surface looks
like. For that purpose we need the theory of multi-projective spaces. We will not discuss the theory
systematically. Instead, we will only focus on this particular example and mention a few ingredients
of the theory along the way. Some details in the proof are left to the reader.

Proposition 10.7. A non-singular quadric surface is isomorphic to P1 × P1.

Proof. We assume the quadric surface is S = V(z0z3−z1z2). We need to find morphisms ϕ : P1×P1 →
S and ψ : S → P1 × P1, such that both compositions are identities.

The product P1 × P1 is the simplest example of a bi-projective space. A point in it is given by a pair
of points (p, q) in P1. If p = [x0 : x1] and q = [y0 : y1], then the bi-homogeneous coordinates of (p, q)
are given by ([x0 : x1], [y0 : y1]). Notice that for any λ, µ ∈ k\{0}, we have ([λx0 : λx1], [µy0 : µy1]) =
([x0 : x1], [y0 : y1]). We construct two morphisms:

ϕ : P1 × P1 −→ S; ([x0 : x1], [y0 : y1]) −→ [x0y0 : x1y0 : x0y1 : x1y1];

ψ : S −→ P1 × P1; [z0 : z1 : z2 : z3] 7−→


([z0 : z1], [z0 : z2]) if z0 6= 0;

([z0 : z1], [z1 : z3]) if z1 6= 0;

([z2 : z3], [z0 : z2]) if z2 6= 0;

([z2 : z3], [z1 : z3]) if z3 6= 0.

We need to check they are morphisms. We have not defined the notion of a morphism in this setting,
but it is very similar to a morphism between two projective varieties. All components of ϕ are
homogeneous of the same degree with respect to the coordinates x0 and x1 of p, and the coordinates
y0 and y1 of q (aka bi-homogeneous). All components of ψ are also homogeneous of the same degree.
We observe that ϕ and ψ are both well-defined at every point in their domains (we leave the details to
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the reader). Moreover, the image of ϕ satisfies the defining equation of S. Hence ϕ is a morphism. To
show ψ is a morphism, we need to verify that the image of any point in S is independent of the choice
of any valid expression. More precisely, we need to verify [z0 : z1] = [z2 : z3] and [z0 : z2] = [z1 : z3],
both of which follow from the defining equation z0z3 = z1z2 of S.

We check the composition ψ ◦ ϕ is identity. Given any point ([x0 : x1], [y0 : y1]) ∈ P1 × P1, using the
first expression of ψ, we have

(ψ ◦ ϕ)([x0 : x1], [y0 : y1]) = ψ([x0y0 : x1y0 : x0y1 : x1y1])

= ([x0y0 : x1y0], [x0y0 : x0y1])

= ([x0 : x1], [y0 : y1]).

Similarly we can check that ψ ◦ ϕ is identity in all the other three cases.

We check the composition ϕ ◦ ψ is identity. Given any point [z0 : z1 : z2 : z3] ∈ S, using the first
expression of ψ, we have

(ϕ ◦ ψ)([z0 : z1 : z2 : z3]) = ϕ([z0 : z1], [z0 : z2])

= [z20 : z0z1 : z0z2 : z1z2]

= [z20 : z0z1 : z0z2 : z0z3]

= [z0 : z1 : z2 : z3].

Similarly we can check ϕ ◦ ψ is identity in all the other three cases.

To summarise, ϕ and ψ are mutually inverse isomorphisms. Therefore a quadric surface is isomorphic
to P1 × P1. �

Quadric surfaces are very useful in civil engineering. According to the literature, the Shukhov water
tower (in Polibino, Russia, 1896, designed by Shukhov) is the first structure of this shape ever built
in the world. Similar design can also be found at a few places inside and outside Sagrada Famı́lia (in
Barcelona, Spain, designed by Gaudi). Nowaways numerous cooling towers in power plants are built
in this shape.

10.2. Non-singular cubic surfaces. We have seen that non-singular cubic curves have very rich
geometry. The situation is similar for cubic surfaces. The theory of cubic surfaces has a long history.
It is known since 1849 that a non-singular cubic surface contains 27 lines. This discovery is one of the
first results on surfaces of higher degree and is considered by many as the start of modern algebraic
geometry. Many mathematicians contributed to the understanding of rich geometry of non-singular
cubic surfaces. In this lecture we will take a glimpse of the theory of non-singular cubic surfaces via
examples.

Definition 10.8. A line in P3 is a projective variety V(f, g), where f, g ∈ k[z0, z1, z2, z3] are non-zero
homogeneous polynomials of degree 1 which are not proportional to each other.

Remark 10.9. The definition shows that a line in P3 is defined by the system of equations{
a0z0 + a1z1 + a2z2 + a3z3 = 0

b0z0 + b1z1 + b2z2 + b3z3 = 0

such that the coefficient matrix (
a0 a1 a2 a3
b0 b1 b2 b3

)
has rank 2. We know from linear algebra that its reduced row echelon form has two pivots, therefore
the two variables corresponding to the pivots can be written as linear functions of the other variables.
For example, if the pivots are in the first two columns, then{

z0 = r2z2 + r3z3

z1 = s2z2 + s3z3
64



for some r2, r3, s2, s3 ∈ k.

Proposition 10.10. The Fermat cubic surface S = V(z30 + z31 + z32 + z33) contains exactly 27 lines.

Proof. Assume a line L in P3 is given by z0 = r2z2+r3z3 and z1 = s2z2+s3z3 for some r2, r3, s2, s3 ∈ k
(i.e. pivots in first two columns). Such a line lies in S if and only if

(r2z2 + r3z3)
3 + (s2z2 + s3z3)

3 + z32 + z33 = 0

holds for all z2, z3 ∈ k, hence is an identity. By comparing the coefficients, we get

r32 + s32 = −1 (1)

r33 + s33 = −1 (2)

r22r3 = −s22s3 (3)

r2r
2
3 = −s2s23 (4)

If r2, r3, s2, s3 are all non-zero, then (3)2/(4) gives r32 = −s32, in contradiction to (1). Hence for a line
in the cubic at least one of these numbers must be zero. By (3) r2 and r3 cannot be both non-zero.

If r2 = 0, then by (1) s32 = −1, hence by (3) s3 = 0, which by (2) implies r33 = −1. This gives 9

solutions r2 = s3 = 0, s2 = −ωj , r3 = −ωk for 0 6 j, k 6 2 and ω = exp
(
2π
√
−1

3

)
is a primitive third

root of unity. We thus obtain 9 lines given by

z0 + ωkz3 = z1 + ωjz2 = 0, 0 6 j, k 6 2.

If r3 = 0, we can similarly find out that s2 = 0 and r32 = s33 = −1, hence we obtain another 9 lines
given by

z0 + ωkz2 = z1 + ωjz3 = 0, 0 6 j, k 6 2.

As the equation of S is symmetric with respect to all variables, we can allow permutations of variables
to find other lines in the cubic (i.e. pivots not necessarily in first two columns). Some of the lines
show up repeatedly after permutations of variables, but we get 9 new lines given by

z0 + ωkz1 = z2 + ωjz3 = 0, 0 6 j, k 6 2.

In summary, we have equations of all 27 lines. �

Proposition 10.11. The cubic surface S = V(z20z1 + z21z2 + z22z3 + z23z0) is rational.

Proof. We write down two mutually inverse rational maps

ϕ : S 99K P2; [z0 : z1 : z2 : z3] 7−→ [z0z3 : z1z2 : z2z3];

ψ : P2 99K S; [r : s : t] 7−→ [rt(rt+ s2) : −s(r2s+ t3) : t2(rt+ s2) : −t(r2s+ t3)].

To check they are rational maps, we observe that they are both given by homogeneous polynomials
of the same degree. It is easy to check that ϕ([1 : −1 : 1 : −1]) = [1 : 1 : 1] and ψ([1 : 1 : 1]) = [1 :
−1 : 1 : −1]), hence both ϕ and ψ are defined on non-empty sets. We need to show the image of ψ
satisfies the defining equation of S, which can be computed directly.

It remains to show that both ψ ◦ϕ and ϕ◦ψ are identity maps on the loci where they are well-defined.
This is also a simple calculation. We leave the details to the reader. This shows that S and P2 are
birational. By definition, S is rational. �

The phenomenons in the above examples hold for every non-singular cubic surface. We summarise it
in the following result.

Theorem 10.12. Every non-singular cubic surface contains exactly 27 lines. Every non-singular
cubic surface is rational.

Proof. Non-examinable. Interested reader can find the proof in [Chapter 7, Reid, Undergraduate
Algebraic Geometry]. �
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Remark 10.13. If we fix the degree and vary the dimension, there is major difference between non-
singular cubic curves and surfaces: the former is not rational while the latter is rational. In higher
dimensions, whether a cubic hypersurface is rational is a very difficult question. (There is an answer
in dimension 3, but mostly unknown in dimension 4 or higher.)

Moreover, if we fix the dimension, then the number of lines in a non-singular surface depends on its
degree: planes and non-singular quadric surfaces contain infinitely many lines (which we will see in an
exercise); a non-singular cubic surface has 27 lines; most non-singular surfaces of higher degrees have
no lines at all.

Counting special curves in various kinds of spaces turns out to be a fascinating topic in algebraic
geometry, which is usually called enumerative geometry. These questions are not only interesting to
mathematicians, but also have been extensively studied in physics, as they play an important role in
string theory. The 27 lines in non-singular cubic surfaces is a first example of this type.

Exercise Sheet 10

This sheet will be discussed in the exercise class on 7 December. You do not need to submit your
solutions.

Exercise 10.1. Infinitely many lines on planes.

(1) Without loss of generality, we consider the plane P = V(z0) ⊆ P3. For every [a : b : c] ∈ P2,
show that V(z0, az1 + bz2 + cz3) defines a line in P .

(2) Show that two such lines always meet at exactly one point.

Exercise 10.2. Infinitely many lines on non-singular quadric surfaces.

(1) Without loss of generality, we consider the quadric surface Q = V(z0z3 − z1z2) ⊆ P3. Show
that for every [a : b] ∈ P1, V(az0 + bz1, az2 + bz3) defines a line in Q.

(2) Show that two such lines are always disjoint.

(3) Show that every point in Q lies on exactly one of such lines.

(4) Can you write down another family of pairwisely disjoint lines in Q, such that every point in
Q lies on exactly one of them?

Remark: the family of lines constructed in part (1) (or part (4)) is called a ruling on Q. We have
seen in Exercise 5.2 that Q is birational to P2. This exercise shows that Q is not isomorphic to P2.
The reason is: two lines in the same ruling on Q do not meet, while any two curves on P2 meet by
Bézout’s theorem. Since Q is isomorphic to P1 × P1, it follows that P1 × P1 is not isomorphic to P2.

Exercise 10.3. Rationality of a cubic surface. Finish the proof of Proposition 10.11.

(1) Show that any point in the image of ψ satisfies the defining equation of S.

(2) Show that ψ ◦ ϕ and ϕ ◦ ψ are both identity maps on the loci where they are well-defined.

Remark: there is a general method to find out the explicit formula for a birational map between any
given non-singular cubic surface S and P2. For that purpose we need to know the explicit equations
of two disjoint lines on S. We do not discuss the details. However, the formula is usually very messy.
The example in Proposition 10.11 is one of the very rare good-looking ones.

Exercise 10.4. Thank you and have a wonderful Christmas vacation!

Thank you all for your participation in this course. Please complete the Unit Evaluation for this
course whenever convenient. If you have any questions during your revision, please feel free to ask
me. There will be extra office hours after the vacation. You are also welcome to contact me by email
at any time. Good luck with your exams!
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Solutions to Exercise Sheet 10

Solution 10.1. Infinitely many lines on planes.

(1) Since z0 and az1+bz2+cz3 are both homogeneous polynomials of degree 1 and not proportional
to each other, L = V(z0, az1 + bz2 + cz3) defines a line in P2. To show that the line L is in P ,
we just need to observe that every point on L satisfies the equation z0 = 0, hence is a point in
P .

(2) Let L = V(z0, az1 + bz2 + cz3) and L′ = V(z0, a
′z1 + b′z2 + c′z3) be two such lines, where

[a : b : c] 6= [a′ : b′ : c′]. If a point p = [z0 : z1 : z2 : z3] is an intersection point of L and L′,
then its coordinates satisfy the system of equations

z0 = 0;

az1 + bz2 + cz3 = 0;

a′z1 + b′z2 + c′z3 = 0.

The first equation fixes the z0 coordinate. For the other coordinates, we look at the second
and the third equations. We look at the coefficient matrix(

a b c
a′ b′ c′

)
.

Since [a : b : c] and [a′ : b′ : c′] represent different points in P2, both rows are non-zero and
linearly independent. Hence the matrix has rank 2. It follows that the null-space has dimension
1, which means that there is a unique solution for [z1 : z2 : z3] (up to scaling). Therefore there
is a unique intersection point [z0 : z1 : z2 : z3] for the lines L and L′.

Solution 10.2. Infinitely many lines on non-singular quadric surfaces.

(1) It is clear that for every point [a : b] ∈ P1, the two polynomials az0 + bz1 and az2 + bz3 are
non-zero and homogeneous of degree 1. They are not propotional to each other, so V(az0 +
bz1, az2+bz3) defines a line L in P2. We still need to show that every point in L is a point in Q.
Since [a : b] ∈ P1, we have either a 6= 0 or b 6= 0. If a 6= 0, then a point p = [z0 : z1 : z2 : z3] ∈ L
satisfies z0 = − b

az1 and z2 = − b
az3. Then

z0z3 − z1z2 =

(
− b
a

)
· z1 · z3 − z1 ·

(
− b
a

)
· z3 = 0.

Hence p ∈ Q. If b 6= 0, a similar calculation shows that every point p ∈ L also satisfies the
equation z0z3 − z1z2 = 0 hence is a point in Q. We conclude that L is a line in Q.

(2) Consider two lines L = V(az0 + bz1, az2 + bz3) and L′ = V(a′z0 + b′z1, a
′z2 + b′z3) where [a : b]

and [a′ : b′] are two different points in P1. If the two lines have a common point [z0 : z1 : z2 : z3],
then the system of equations

az0 + bz1 = 0,

az2 + bz3 = 0,

a′z0 + b′z1 = 0,

a′z2 + b′z3 = 0

must have a non-zero solution. However, the coefficient matrix for the first and the third

equations is

(
a b
a′ b′

)
. Since [a : b] and [a′ : b′] are two different points in P1, the two rows are

both non-zero and linearly independent. Hence the matrix has rank 2, which means that the
only solution to these two equations is z0 = z1 = 0. For the same reason the only solution to
the second and fourth equations is z2 = z3 = 0. Since the system of four equations has only a
zero solution, L and L′ do not have any common point. In other words, they are disjoint.
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(3) For any point p = [z0 : z1 : z2 : z3] ∈ Q, we first show that p lies on a certain line L =
V(az0 + bz1, az2 + bz3). There are two cases. Case 1. If z0 and z1 are not simultaneously zero,
then we choose [a : b] = [z1 : −z0] for the line L. We claim that p ∈ L. Indeed, for such a
choice of [a : b] we have az0 + bz1 = z1z0 − z0z1 = 0 and az2 + bz3 = z1z2 − z0z3 = 0. The
claim holds. Case 2. If z0 and z1 are both zero, then z2 and z3 are not simultaneously zero.
We can choose [a : b] = [z3 : −z2] for the line L. A similar calculation shows that p ∈ L. In
both cases, the point p lies on a certain line L = V(az0 + bz1, az2 + bz3) for a suitable choice
of [a : b].

It remains to prove that p lies on only one of such lines. This is clear because we have seen
from part (2) that two such lines are always disjoint.

(4) For every [a : b] ∈ P1, V(az0 + bz2, az1 + bz3) also defines a line. These lines are pairwisely
disjoint, and every point in Q lies on exactly one of them. The proof can be obtained simply
by switching z1 and z2 in the proof for the above three parts.

Solution 10.3. Rationality of a cubic surface.

(1) We need to verify that every point in the image of ψ satisfies the defining equation of S.
Indeed, we have

z20z1 + z21z2 + z22z3 + z23z0

= −r2t2(rt+ s2)2 · s(r2s+ t3) + s2(r2s+ t3)2 · t2(rt+ s2)

− t4(rt+ s2)2 · t(r2s+ t3) + t2(r2s+ t3)2 · rt(rt+ s2)

= −(r2t2s+ t5) · (rt+ s2)2 · (r2s+ t3) + (s2t2 + rt3) · (r2s+ t3)2 · (rt+ s2)

= −t2(r2s+ t3) · (rt+ s2)2 · (r2s+ t3) + t2(s2 + rt) · (r2s+ t3)2 · (rt+ s2)

= −t2 · (rt+ s2)2 · (r2s+ t3)2 + t2 · (r2s+ t3)2 · (rt+ s2)2

= 0.

Therefore the statement holds.

(2) Let [z0 : z1 : z2 : z3] be a point in S. Then these coordinates satisfy

z20z1 + z21z2 + z22z3 + z23z0 = 0.

Then we have

(ψ ◦ ϕ)([z0 : z1 : z2 : z3])

= ψ([z0z3 : z1z2 : z2z3])

= [z0z2z
2
3(z0z2z

2
3 + z21z

2
2) : −z1z2(z20z1z2z23 + z32z

3
3) :

: z22z
2
3(z0z2z

2
3 + z21z

2
2) : −z2z3(z20z1z2z23 + z32z

3
3)]

= [z0z
2
2z

2
3(z23z0 + z21z2) : −z1z22z23(z20z1 + z22z3) :

: z32z
2
3(z23z0 + z21z2) : −z22z33(z20z1 + z22z3)]

= [z0z
2
2z

2
3(z23z0 + z21z2) : z1z

2
2z

2
3(z23z0 + z21z2) :

: z32z
2
3(z23z0 + z21z2) : z22z

3
3(z23z0 + z21z2)]

= [z0 : z1 : z2 : z3]

wherever the composition ψ ◦ ϕ is well-defined. This shows that ψ ◦ ϕ is equivalent to the
identity map on S.

Now let [r : s : t] be a point in P2. Then we have

(ϕ ◦ ψ)([r : s : t])

= ϕ([rt(rt+ s2) : −s(r2s+ t3) : t2(rt+ s2) : −t(r2s+ t3)])

= [−rt2(rt+ s2)(r2s+ t3) : −st2(r2s+ t3)(rt+ s2) : −t3(rt+ s2)(r2s+ t3)]

= [r : s : t]
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wherever the composition ϕ ◦ ψ is well-defined. This shows that ϕ ◦ ψ is equivalent to the
identity map on P2.

Appendix A. Brief Review of Algebra 2B

This is an outline of the topics in Algebra 2B that were reviewed during the exercise class in the first
week of the semester.

Ring. A ring is a set of elements with two operations: addition and multiplication, which have to
satisfy various algebraic laws. Check your Algebra 2B notes to make sure you know the full definition.
We are only interested in commutative rings with 1. More precisely, we mainly focus on polynomial
rings k[x1, · · · , xn] and their quotient rings. (In particular, k[x1, · · · , xn] can be realised as a quotient
of itself by the zero ideal.)

Ideal. An ideal I is a non-empty subset of a ring R, satisfying two closedness conditions: “a, b ∈
I =⇒ a − b ∈ I”, and “r ∈ R, a ∈ I =⇒ ra ∈ I”. When R is a commutative ring with 1, the first
condition a− b ∈ I can be replaced by the equivalent condition a+ b ∈ I.

Quotient ring. For any ideal I in a ring R, there is a quotient ring R/I, whose elements are cosets
r + I for any r ∈ R. Two cosets r1 + I and r2 + I are the same if and only if r1 − r2 ∈ I. If R is a
commutative ring with 1, then so is R/I.

Ring homomorphism. A homomorphism ϕ : R −→ S between two rings is a map which preserves
addition and multiplication. Nice and easy.

Special rings. We have “rings ⊃ integral domains ⊃ UFDs ⊃ PIDs ⊃ fields”. Make sure you know
the definition of each. It is important to us that k[x1, · · · , xn] is a UFD; namely, every polynomial
can be factored into a product of irreducible polynomials, which is unique up to the order of factors
and units (non-zero constants). It is a PID only when n = 1. (We now know that it is a Noetherian
ring for every n.)

Polynomial. A polynomial f(x1, · · · , xn) ∈ k[x1, · · · , xn] is a finite sum of monomials. If f is not
zero, then the degree of f is the highest degree of its non-zero monomials. But the degree of the
zero polynomial is quite arguable. There are different ways to treat this problem. We will adopt one
opinion and define the degree of the zero polynomial to be any non-negative integer. Details will be
explained in week 4.

Irreducible polynomial. When k is algebraic closed, the only irreducible polynomials in k[x] are
the ones of degree 1. For polynomial rings in more than 1 variable, there is no such a general rule,
but irreducible polynomials can still be determined in some cases.

Example A.1. We claim that y2 − x3 + x ∈ k[x, y] is an irreducible polynomial. We assume on the
contrary that it can be written as the product of two non-constant factors. As a polynomial in y with
coefficients in k[x], y2 − x3 + x has degree 2 in y. Hence the two factors have degrees either 2 and 0
in y respectively, or 1 and 1 respectively. More precisely,

y2 − x3 + x =
(
f2(x)y2 + f1(x)y + f0(x)

)
· g(x) or

(
f1(x)y + f0(x)

)
·
(
g1(x)y + g0(x)

)
.

In the first case, we have the identity f2(x)g(x) = 1, hence g(x) is a non-zero constant. Contradiction.
In the second case, we similarly have the identity f1(x)g1(x) = 1. Therefore both factors are non-zero
constants. Without loss of generality we can assume f1(x) = g1(x) = 1. Then we have

y2 − x3 + x = (y + f0(x))(y + g0(x)).

Comparing the coefficients of y we have f0(x) + g0(x) = 0, hence g0(x) = −f0(x). Comparing the
terms without y we have f0(x)g0(x) = −x3 + x, hence f0(x)2 = x3 − x = x(x + 1)(x − 1). The right
hand side is not a square. Contradiction. This concludes that y2−x3 +x is an irreducible polynomial.
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Algebra. You might not like the definition of a k-algebra, since it is kind of long and hard to
remember. We need to work with a special type of algebras called finitely generated k-algebras. You
might think the definition is even more involved, but it is actually very simple and explicit. A finitely
generated algebra is a ring which is isomorphic to some k[x1, · · · , xn]/I. A k-algebra homomorphism
ϕ : k[x1, · · · , xn]/I −→ k[y1, · · · , ym]/J is simply a ring homomorphism that sends a coset c + I to
c+ J for every constant c. They are formally defined in week 3.

Fundamental isomorphism theorem. The fundamental isomorphism theorem for rings is the
following statement: for a ring homomorphism f : R −→ S, there is a canonical isomorphism

im(f) ∼= R/ ker(f).

This is a very important theorem for our purpose. Look at the following example.

Example A.2. We claim that k[x, y]/(y−x2) ∼= k[t]. To see this, we construct a ring homomorphism
(in fact, a k-algebra homomorphism)

ϕ : k[x, y] −→ k[t]; x 7−→ t; y 7−→ t2.

This means that every monomial axiyj is sent to ati(t2)j = ati+2j , where a ∈ k is the coefficient. By
the fundamental isomorphism theorem, we have

im(ϕ) ∼= k[x, y]/ ker(ϕ).

We need to identify im(ϕ) and ker(ϕ).

For any p(t) ∈ k[t], we have ϕ(p(x)) = p(t). This shows ϕ is surjective, hence im(ϕ) = k[t].

For any f(x, y) ∈ k[x, y], I claim it can be written as

f = (y − x2) · g + h,

for some g(x, y) ∈ k[x, y] and h(x) ∈ k[x]. For this, one only need to replace every single occurrence
of y in f(x, y) by [(y−x2) +x2], and then multiply out the square brackets leaving the terms in round
brackets untouched. Armed with this claim, we see that

ϕ(f) = ϕ(y − x2) · ϕ(g) + ϕ(h) = (t2 − t2) · ϕ(g) + h(t) = h(t).

It follows that ϕ(f) = 0 ⇐⇒ h = 0 ⇐⇒ f ∈ (y − x2). Hence ker(ϕ) = (y − x2). Therefore the
fundamental isomorphism theorem implies that k[t] ∼= k[x, y]/(y − x2).

Field. A field is a commutative ring with 1 such that every non-zero element has a multiplicative
inverse. Check your Algebra 2B notes to make sure you know the characteristic of a field and the field
of fractions of an integral domain (which are used in week 6).
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