MA40188 ALGEBRAIC CURVES 2015/16 SEMESTER 1 MOCK EXAM

In all questions, \mathbb{k} is an algebraically closed field of characteristic 0.

Question 1.

(a) What is an affine algebraic set? What is an affine hypersurface? What is an affine variety?
(b) What is a Noetherian ring? State the Hilbert basis theorem, and use it to prove that $\mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$ is a Noetherian ring for any positive integer n.
(c) What is the coordinate ring of an affine algebraic set X ? Prove that the coordinate ring of the affine algebraic set $X=\mathbb{V}(x) \subseteq \mathbb{A}^{2}$ is isomorphic to $\mathbb{k}[t]$.
(d) Let X be an irreducible affine algebraic set. Prove that the ideal $\mathbb{I}(X)$ is prime. (You do no need to prove $\mathbb{I}(X)$ is an ideal.)
(e) Let $X=\mathbb{V}\left(y^{3}-x^{4}\right) \subseteq \mathbb{A}^{2}$ be an affine algebraic set. Consider the polynomial map $\varphi: \mathbb{A}^{1} \rightarrow X$ defined by $\varphi(t)=\left(t^{3}, t^{4}\right)$. Is φ an isomorphism? Justify your answer. You can assume that $y^{3}-x^{4}$ is an irreducible polynomial without proof.

Question 2.

(a) What is a homogeneous ideal? Given a homogeneous ideal $I \subseteq \mathbb{k}\left[z_{0}, \cdots, z_{n}\right]$, what is the projective algebraic set defined by I ? State the projective Nullstellensatz.
(b) Let $I=(f) \subseteq \mathbb{k}\left[z_{0}, \cdots, z_{n}\right]$ for some non-constant polynomial f. Prove that I is a prime ideal if and only if f is an irreducible polynomial.
(c) What does it mean to say a rational map is dominant? Consider a morphism $\varphi: \mathbb{P}^{1} \rightarrow$ \mathbb{P}^{2} defined by $\varphi([u: v])=\left[u^{2}: u v: v^{2}\right]$. Is φ dominant? Briefly explain your reason. [4]
(d) Let $X=\mathbb{V}\left(z_{0} z_{3}-z_{1} z_{2}\right) \subseteq \mathbb{P}^{3}$ be a projective variety. Show that $\varphi: \mathbb{P}^{2} \rightarrow X$ defined by $\varphi([u: v: w])=\left[u^{2}: u v: u w: v w\right]$ is a rational map. Show that φ is dominant. [4]
(e) Consider the projective algebraic set $X=\mathbb{V}\left(z_{0} z_{1} z_{2}, z_{1} z_{2} z_{3}, z_{2} z_{3} z_{0}, z_{3} z_{0} z_{1}\right) \subseteq \mathbb{P}^{3}$. Is X a projective variety? Justify your answer. You can use the fact that the union of finitely many projective algebraic sets is still a projective algebraic set without proof.

Question 3.

(a) Let $X \subseteq \mathbb{P}^{n}$ be a projective algebraic set, and U_{0} a standard affine chart of \mathbb{P}^{n}. Prove that $X \cap U_{0}$ is an affine algebraic set in U_{0}.
(b) Let $X \subseteq \mathbb{A}^{n}$ be an affine algebraic set. What is the projective closure of X ? What are points at infinity for X ? If $X=\mathbb{V}\left(y^{2}-\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right)\right) \subseteq \mathbb{A}^{2}$, find the projective closure of X and points at infinity.
(c) Let $X=\mathbb{V}(f) \subseteq \mathbb{A}^{n}$ be an affine hypersurface defined by a non-constant irreducible polynomial $f \in \mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$. What does it mean to say that X is singular at a point $p \in X$? For any point $q=\left(a_{1}, \cdots, a_{n}\right) \in X$, what is the tangent space of X at q ? [4]
(d) Prove that the projective variety $X=\mathbb{V}\left(x z-y^{2}\right) \subseteq \mathbb{P}^{2}$ is non-singular. Show all your reasonings.
(e) Find all singular points on the affine curve $X=\mathbb{V}(f) \subseteq \mathbb{A}^{2}$ where the defining polynomial $f=\left(x^{2}+y^{2}+1\right)^{3}+27 x^{2} y^{2}$.

Question 4.

(a) What is a plane curve? What is the degree of a plane curve? Let C_{1}, C_{2} and C_{3} be irreducible non-singular plane curves of degree 1,2 and 3 respectively. Determine whether each of them is rational. (You do not need to justify your answer for this part.)
(b) Let L be a line and D a plane curve of degree d. If L is not a component of D, prove that $L \cap D$ has at most d dictinct points. Briefly explain why, when counting with multiplicities, L and D meet in precisely d points.
(c) Show that the nodal cubic curve $C=\mathbb{V}\left(y^{2} z-x^{2}(x-z)\right) \subseteq \mathbb{P}^{2}$ is rational.
(d) Consider the non-singular cubic curve $C=\mathbb{V}\left(y^{2} z-x^{3}-4 x z^{2}\right) \subseteq \mathbb{P}^{2}$. Let $O=[0: 1: 0]$ be the identity element in the group law. Find the order of the subgroup generated by the point $P=[2: 4: 1] \in C$.
(e) Consider the non-singular cubic curve $C=\mathbb{V}\left(x^{3}+y^{3}+z^{3}\right) \subseteq \mathbb{P}^{2}$. Let $O=[1:-1: 0]$ be the identity element in the group law. Consider the point $P=[0: 1:-1] \in C$. Find $-P$ in the group law.

