
Solutions to Exercise Sheet 1

Solution 1.1. Examples of algebraic sets. There are many possible answers.

(1) One possible answer is X = V(x(x− 1), y(y − 1)).

(2) One possible answer is X = V(x(y − 1), y(x− 1)).

(3) One possible answer is X = V(xy, y(y − 1)).

(4) This algebraic set is the union of the three coordinate axes. In other words, it is

the set of points (x, y, z) ∈ A3 with at least two zero coordinates.

Solution 1.2. Prove Proposition 1.7.

(1) Given any p ∈ V(S1), we have f(p) = 0 for every f ∈ S1. Since every g ∈ S2 is

also an element in S1, we have g(p) = 0. Hence p ∈ V(S2).

(2) We have that ∅ = V(1) and An = V(0).

(3) We first prove ∩α(V(Sα)) ⊆ V(∪αSα). Given any point p ∈ ∩α(V(Sα)), we have

p ∈ V(Sα) for every α. Then for every f ∈ ∪αSα, there exists some α0 such that

f ∈ Sα0 , therefore f(p) = 0 since p ∈ V(Sα0). This shows that p ∈ V(∪αSα).

We then prove ∩α(V(Sα)) ⊇ V(∪αSα). Given any point q ∈ V(∪αSα), we have

g(p) = 0 for every g ∈ ∪αSα. In particular, for every α, we have p ∈ V(Sα).

Therefore p ∈ ∩α(V(Sα)).

(4) We first prove
(
V(S1) ∪ V(S2)

)
⊆ V(S). Given any p ∈ V(S1), we have f(p) = 0

for every f ∈ S1. Therefore for every fg ∈ S with f ∈ S1 and g ∈ S2, (fg)(p) =

f(p)g(p) = 0. Hence p ∈ V(S). This proves V(S1) ⊆ V(S). Similarly we have

V(S2) ⊆ V(S). Therefore
(
V(S1) ∪ V(S2)

)
⊆ V(S).

We then prove
(
V(S1) ∪ V(S2)

)
⊇ V(S). For every p ∈ V(S), we need to show

that p ∈ V(S1) ∪ V(S2). If not, then p /∈ V(S1) and p /∈ V(S2). This means there

exists some f0 ∈ S1 and g0 ∈ S2, such that f0(p) 6= 0 and g0(p) 6= 0. It follows that

(f0g0)(p) = f0(p)g0(p) 6= 0. Since f0g0 ∈ S, this implies p /∈ V(S). Contradiction.

This proves
(
V(S1) ∪ V(S2)

)
⊇ V(S).

We then use induction to prove that V(S1)∪V(S2)∪ · · · ∪V(Sn) is an algebraic

set for every positive integer n. When n = 1, V(S1) is by definition an algebraic

set. Assume the statement holds for n = k, then V(S1) ∪ V(S2) ∪ · · · ∪ V(Sk) is

an algebraic set, say, V(S ′). When n = k + 1, we can write

V(S1) ∪ V(S2) ∪ · · · ∪ V(Sk) ∪ V(Sk+1)

=
(
V(S1) ∪ V(S2) ∪ · · · ∪ V(Sk)

)
∪ V(Sk+1)

= V(S ′) ∪ V(Sk+1)

which is still an algebraic set by the statement we just proved.
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Solution 1.3. Examples of algebraic sets.

(1) We know that A1 and ∅ are algebraic sets by Proposition 1.7 (2). For any non-

empty finite subset of A1, say, X = {c1, c2, · · · , ck}, we have X = V((x− c1)(x−
c2) · · · (x− ck)), hence is an algebraic set.

(2) Say X = V(S) is an algebraic set in A1. If S does not contain any non-zero

polynomial, then X = A1. Otherwise, there is some f(x) ∈ S which is a non-zero

polynomial. Every point in X must be a root of f(x), hence X is a subset of the

all roots of f(x). Since f(x) has only finitely many roots, X has at most finitely

many elements.

(3) There are many possible counterexamples and here is one of them: for every

positive integer n, let Xn = {n} be a single-point set. Then Xn is an algebraic

set. But their union ∪nXn is the set of all positive integers, which is an infinite

set, hence is not an algebraic set by part (2).

Solution 1.4. Prove Proposition 1.16.

(1) We check that q−1(J) = {r ∈ R | r + I ∈ J} is an ideal in R. For any a1, a2 ∈
q−1(J), we have a1 + I, a2 + I ∈ J hence (a1 + a2) + I = (a1 + I) + (a2 + I) ∈ J ,

which implies a1 +a2 ∈ q−1(J). On the other hand, for any r ∈ R and a ∈ q−1(J),

we have a+ I ∈ J hence ra+ I = (r+ I)(a+ I) ∈ J hence ra ∈ q−1(J). Therefore

q−1(J) is an ideal in R.

(2) For every a ∈ q−1(J1), we have a + I ∈ J1. Since J1 ⊆ J2, we have a + I ∈ J2.
Hence a ∈ q−1(J2). This verifies that q−1(J1) ⊆ q−1(J2).

(3) Suppose J1 ⊆ J2 ⊆ J3 ⊆ · · · is an ascending chain of ideals in R/I. Then by parts

(1) and (2) we have q−1(J1) ⊆ q−1(J2) ⊆ q−1(J3) ⊆ · · · is an ascending chain of

ideals in R. Since R is a Noetherian ring, this chain stablises by Proposition 1.15.

That means, there exists some positive integer N , such that q−1(Ji) = q−1(JN)

for every i > N . In other words, q−1(Ji) and q−1(JN) contain precisely the same

cosets of I in R. Therefore Ji = JN for every i > N .

(4) We showed in part (3) that every ascending chain of ideals in R/I stabilises.

Therefore R/I is a Noetherian ring by Proposition 1.15.
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