Solutions to Exercise Sheet 1

Solution 1.1. Examples of algebraic sets. There are many possible answers.
(1) One possible answer is $X=\mathbb{V}(x(x-1), y(y-1))$.
(2) One possible answer is $X=\mathbb{V}(x(y-1), y(x-1))$.
(3) One possible answer is $X=\mathbb{V}(x y, y(y-1))$.
(4) This algebraic set is the union of the three coordinate axes. In other words, it is the set of points $(x, y, z) \in \mathbb{A}^{3}$ with at least two zero coordinates.

Solution 1.2. Prove Proposition 1.7.
(1) Given any $p \in \mathbb{V}\left(S_{1}\right)$, we have $f(p)=0$ for every $f \in S_{1}$. Since every $g \in S_{2}$ is also an element in S_{1}, we have $g(p)=0$. Hence $p \in \mathbb{V}\left(S_{2}\right)$.
(2) We have that $\varnothing=\mathbb{V}(1)$ and $\mathbb{A}^{n}=\mathbb{V}(0)$.
(3) We first prove $\cap_{\alpha}\left(\mathbb{V}\left(S_{\alpha}\right)\right) \subseteq \mathbb{V}\left(\cup_{\alpha} S_{\alpha}\right)$. Given any point $p \in \cap_{\alpha}\left(\mathbb{V}\left(S_{\alpha}\right)\right)$, we have $p \in \mathbb{V}\left(S_{\alpha}\right)$ for every α. Then for every $f \in \cup_{\alpha} S_{\alpha}$, there exists some α_{0} such that $f \in S_{\alpha_{0}}$, therefore $f(p)=0$ since $p \in \mathbb{V}\left(S_{\alpha_{0}}\right)$. This shows that $p \in \mathbb{V}\left(\cup_{\alpha} S_{\alpha}\right)$.

We then prove $\cap_{\alpha}\left(\mathbb{V}\left(S_{\alpha}\right)\right) \supseteq \mathbb{V}\left(\cup_{\alpha} S_{\alpha}\right)$. Given any point $q \in \mathbb{V}\left(\cup_{\alpha} S_{\alpha}\right)$, we have $g(p)=0$ for every $g \in \cup_{\alpha} S_{\alpha}$. In particular, for every α, we have $p \in \mathbb{V}\left(S_{\alpha}\right)$. Therefore $p \in \cap_{\alpha}\left(\mathbb{V}\left(S_{\alpha}\right)\right)$.
(4) We first prove $\left(\mathbb{V}\left(S_{1}\right) \cup \mathbb{V}\left(S_{2}\right)\right) \subseteq \mathbb{V}(S)$. Given any $p \in \mathbb{V}\left(S_{1}\right)$, we have $f(p)=0$ for every $f \in S_{1}$. Therefore for every $f g \in S$ with $f \in S_{1}$ and $g \in S_{2},(f g)(p)=$ $f(p) g(p)=0$. Hence $p \in \mathbb{V}(S)$. This proves $\mathbb{V}\left(S_{1}\right) \subseteq \mathbb{V}(S)$. Similarly we have $\mathbb{V}\left(S_{2}\right) \subseteq \mathbb{V}(S)$. Therefore $\left(\mathbb{V}\left(S_{1}\right) \cup \mathbb{V}\left(S_{2}\right)\right) \subseteq \mathbb{V}(S)$.

We then prove $\left(\mathbb{V}\left(S_{1}\right) \cup \mathbb{V}\left(S_{2}\right)\right) \supseteq \mathbb{V}(S)$. For every $p \in \mathbb{V}(S)$, we need to show that $p \in \mathbb{V}\left(S_{1}\right) \cup \mathbb{V}\left(S_{2}\right)$. If not, then $p \notin \mathbb{V}\left(S_{1}\right)$ and $p \notin \mathbb{V}\left(S_{2}\right)$. This means there exists some $f_{0} \in S_{1}$ and $g_{0} \in S_{2}$, such that $f_{0}(p) \neq 0$ and $g_{0}(p) \neq 0$. It follows that $\left(f_{0} g_{0}\right)(p)=f_{0}(p) g_{0}(p) \neq 0$. Since $f_{0} g_{0} \in S$, this implies $p \notin \mathbb{V}(S)$. Contradiction. This proves $\left(\mathbb{V}\left(S_{1}\right) \cup \mathbb{V}\left(S_{2}\right)\right) \supseteq \mathbb{V}(S)$.

We then use induction to prove that $\mathbb{V}\left(S_{1}\right) \cup \mathbb{V}\left(S_{2}\right) \cup \cdots \cup \mathbb{V}\left(S_{n}\right)$ is an algebraic set for every positive integer n. When $n=1, \mathbb{V}\left(S_{1}\right)$ is by definition an algebraic set. Assume the statement holds for $n=k$, then $\mathbb{V}\left(S_{1}\right) \cup \mathbb{V}\left(S_{2}\right) \cup \cdots \cup \mathbb{V}\left(S_{k}\right)$ is an algebraic set, say, $\mathbb{V}\left(S^{\prime}\right)$. When $n=k+1$, we can write

$$
\begin{aligned}
& \mathbb{V}\left(S_{1}\right) \cup \mathbb{V}\left(S_{2}\right) \cup \cdots \cup \mathbb{V}\left(S_{k}\right) \cup \mathbb{V}\left(S_{k+1}\right) \\
= & \left(\mathbb{V}\left(S_{1}\right) \cup \mathbb{V}\left(S_{2}\right) \cup \cdots \cup \mathbb{V}\left(S_{k}\right)\right) \cup \mathbb{V}\left(S_{k+1}\right) \\
= & \mathbb{V}\left(S^{\prime}\right) \cup \mathbb{V}\left(S_{k+1}\right)
\end{aligned}
$$

which is still an algebraic set by the statement we just proved.

Solution 1.3. Examples of algebraic sets.
(1) We know that \mathbb{A}^{1} and \varnothing are algebraic sets by Proposition 1.7 (2). For any nonempty finite subset of \mathbb{A}^{1}, say, $X=\left\{c_{1}, c_{2}, \cdots, c_{k}\right\}$, we have $X=\mathbb{V}\left(\left(x-c_{1}\right)(x-\right.$ $\left.\left.c_{2}\right) \cdots\left(x-c_{k}\right)\right)$, hence is an algebraic set.
(2) Say $X=\mathbb{V}(S)$ is an algebraic set in \mathbb{A}^{1}. If S does not contain any non-zero polynomial, then $X=\mathbb{A}^{1}$. Otherwise, there is some $f(x) \in S$ which is a non-zero polynomial. Every point in X must be a root of $f(x)$, hence X is a subset of the all roots of $f(x)$. Since $f(x)$ has only finitely many roots, X has at most finitely many elements.
(3) There are many possible counterexamples and here is one of them: for every positive integer n, let $X_{n}=\{n\}$ be a single-point set. Then X_{n} is an algebraic set. But their union $\cup_{n} X_{n}$ is the set of all positive integers, which is an infinite set, hence is not an algebraic set by part (2).

Solution 1.4. Prove Proposition 1.16.
(1) We check that $q^{-1}(J)=\{r \in R \mid r+I \in J\}$ is an ideal in R. For any $a_{1}, a_{2} \in$ $q^{-1}(J)$, we have $a_{1}+I, a_{2}+I \in J$ hence $\left(a_{1}+a_{2}\right)+I=\left(a_{1}+I\right)+\left(a_{2}+I\right) \in J$, which implies $a_{1}+a_{2} \in q^{-1}(J)$. On the other hand, for any $r \in R$ and $a \in q^{-1}(J)$, we have $a+I \in J$ hence $r a+I=(r+I)(a+I) \in J$ hence $r a \in q^{-1}(J)$. Therefore $q^{-1}(J)$ is an ideal in R.
(2) For every $a \in q^{-1}\left(J_{1}\right)$, we have $a+I \in J_{1}$. Since $J_{1} \subseteq J_{2}$, we have $a+I \in J_{2}$. Hence $a \in q^{-1}\left(J_{2}\right)$. This verifies that $q^{-1}\left(J_{1}\right) \subseteq q^{-1}\left(J_{2}\right)$.
(3) Suppose $J_{1} \subseteq J_{2} \subseteq J_{3} \subseteq \cdots$ is an ascending chain of ideals in R / I. Then by parts (1) and (2) we have $q^{-1}\left(J_{1}\right) \subseteq q^{-1}\left(J_{2}\right) \subseteq q^{-1}\left(J_{3}\right) \subseteq \cdots$ is an ascending chain of ideals in R. Since R is a Noetherian ring, this chain stablises by Proposition 1.15. That means, there exists some positive integer N, such that $q^{-1}\left(J_{i}\right)=q^{-1}\left(J_{N}\right)$ for every $i \geqslant N$. In other words, $q^{-1}\left(J_{i}\right)$ and $q^{-1}\left(J_{N}\right)$ contain precisely the same cosets of I in R. Therefore $J_{i}=J_{N}$ for every $i \geqslant N$.
(4) We showed in part (3) that every ascending chain of ideals in R / I stabilises. Therefore R / I is a Noetherian ring by Proposition 1.15.

