
Solutions to Exercise Sheet 2

Solution 2.1. Some proofs in lectures.

(1) Using the binomial expansion, we have that (a + b)m+n =
∑m+n

i=0

(
m+n
i

)
am+n−ibi.

For every term
(
m+n
i

)
am+n−ibi, if i 6 n, then this term has a factor am, hence this

term is in I; if i > n, then this term has a factor bn, hence this term is also in I.

Since every such term is in I, it follows that their sum (a+ b)m+n ∈ I.

(2) Let a, b ∈
√
I and r ∈ R. By Definition 2.1 there exist some m,n ∈ Z+ such that

am, bn ∈ I. By part (1) we know that (a + b)m+n ∈ I, hence a + b ∈
√
I. We

also have (ra)m = rmam ∈ I, hence ra ∈
√
I. It follows that

√
I is an ideal. To

show that I ⊆
√
I, we just need to realise that for every a ∈ I, am ∈ I for m = 1.

Hence a ∈
√
I.

(3) Assume I is a maximal ideal in R, then R/I is a field by Proposition 2.12 (1).

Since every field is an integral domain, R/I is an integral domain. By Proposition

2.12 (1) again we conclude that I is a prime ideal in I.

Assume J is a prime ideal. For any a ∈
√
J , there exists some n ∈ Z+, such that

an ∈ J . We claim that a ∈ J . This can be shown by induction on n. When n = 1,

a ∈ J is automatic. Assume an ∈ J implies a ∈ J . If we have an+1 = a · an ∈ J ,

then either a ∈ J or an ∈ J . In either case we have a ∈ J . This shows that√
J ⊆ J . By part (2) we also have J ⊆

√
J . It follows that J =

√
J , hence J is a

radical ideal.

Solution 2.2. Examples of radical and prime ideals.

(1) Assume (f) is a prime ideal. Since (f) 6= k[x1, · · · , xn], f is not a constant

polynomial. If f is not an irreducible polynomial, then assume f = f1f2 for some

non-constant polynomials f1 and f2. Since f1f2 = f ∈ (f), it follows that either

f1 ∈ (f) or f2 ∈ (f). If f1 ∈ (f), then f1 = f · g1 for some non-zero polynomial

g1. Then f = f1f2 = fg1f2 which implies g1f2 = 1. Hence f2 must be a constant,

which is a contradiction. If f2 ∈ (f), the same argument implies f1 is a constant,

which is also a contradiction. This proves that f is irreducible.

Now assume f is an irreducible polynomial. We need to show (f) is a prime

ideal. By definition an irreducible polynomial is not a constant, hence 1 /∈ (f)

which means (f) 6= k[x1, · · · , xn]. Let f1f2 ∈ (f) for polynomials f1 and f2. Then

we can write f1f2 = fg for some polynomial g. If g = 0, then either f1 = 0 ∈ (f)

or f2 = 0 ∈ (f). If g 6= 0, then f is an irreducible factor in the factorisation of

f1f2, hence f is an irreducible factor of either f1 or f2. Therefore we still have

f1 ∈ (f) or f2 ∈ (f). This proves that (f) is a prime ideal.
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(2) We first show that (f) ⊆
√

(f). For any g ∈ (f), there exists some poly-

nomial h such that g = fh = f1 · · · fth. Let m = max{k1, · · · , kt}. Then

gm = fm1 · · · fmt hm = f · fm−k11 · · · fm−ktt hm ∈ (f), hence g ∈
√

(f).

We prove the other inclusion
√

(f) ⊆ (f). For any g ∈
√

(f), there exists

some m ∈ Z+ such that gm ∈ (f), that is, gm = fh = fk11 · · · fktt h for some

polynomial h. For every irreducible polynomial fi, since fi divides the right-hand

side, it must divide the left-hand side as well, i.e., fi divides gm. Therefore fi
divides g for every i. It follows that each fi appears in the factorisation of g,

hence g = f1 · · · fkg′ = fg′ ∈ (f).

(3) (f) is a radical ideal ⇐⇒
√

(f) = (f) ⇐⇒ (f) = (f) ⇐⇒ f and f differ by

a unit in k[x1, · · · , xn] (which is a non-zero constant). This holds if and only if

k1 = · · · = kt = 1; i.e. f has no repeated factors.

Solution 2.3. Examples of maximal ideals.

(1) We claim that every polynomial f(x1, · · · , xn) ∈ k[x1, · · · , xn] can be written in

the form

f = (x1 − a1)g1 + · · ·+ (xn − an)gn + c

for some polynomials g1, · · · , gn ∈ k[x1, · · · , xn] and a constant c ∈ k. There are

two ways to explain it (you can choose the one you like). The first approach: we

think of f as a polynomial in x1 and consider the Euclidean division of f by x1−a1.
We get f = (x1−a1)g1+r1 where r1 has degree 0 in x1, namely, r1 ∈ k[x2, · · · , xn].

Then we think of r1 as a polynomial in x2, and consider the Euclidean division of

r1 by x2 − a2, we get r1 = (x2 − a2)g2 + r2 for some r2 ∈ k[x3, · · · , xn]. Repeat

this process to get

f = (x1 − a1)g1 + r1

= (x1 − a1)g1 + (x2 − a2)g2 + r2

= · · ·
= (x1 − a1)g1 + · · ·+ (xn − an)gn + rn

where rn is a constant. This justifies the claim. The second approach: we substi-

tute [(xi− ai) + ai] into each occurence of xi in f and expand the square brackets

leaving the round brackets untouched. In the expansion every non-constant term

has a factor of the form (xi − ai). Then we can collect terms and write

f = (x1 − a1)g1 + · · ·+ (xn − an)gn + c

where c is a constant. This justifies the claim.

Now we look at the image of f under ϕp. We have ϕp(f) = f(a1, · · · , an) = c.

Therefore f ∈ kerϕp ⇐⇒ c = 0⇐⇒ f = (x1 − a1)g1 + · · ·+ (xn − an)gn ⇐⇒ f ∈
(x1 − a1, · · · , xn − an). This proves that mp = kerϕp = (x1 − a1, · · · , xn − an).
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Moreover, ϕp is surjective, because every c ∈ k is the image of the constant

polynomial f = c. By the fundamental isomorphism theorem, we have

k = imϕp = k[x1, · · · , xn]/ kerϕp = k[x1, · · · , xn]/mp.

Since k is a field, we know that mp is a maximal ideal by Proposition 2.12 (1).

(2) V(mp) = {p} is a single point set. By Proposition 2.16, there is a one-to-one

correspondence between maximal ideals in k[x1, · · · , xn] and points in An. Since

the ideals of the form mp have exhausted all points in An, they must be all maximal

ideals in k[x1, · · · , xn].

Solution 2.4. A famous example: the twisted cubic.

(1) We first show X ⊆ V(I). For every point (t, t2, t3) ∈ X, we have y−x2 = t2−t2 = 0

and z − x3 = t3 − t3 = 0. We then show V(I) ⊆ X. For every (x, y, z) ∈ V(I),

we have y − x2 = 0 and z − x3 = 0, hence y = x2 and z = x3. It follows that

(x, y, z) = (x, x2, x3) ∈ X.

(2) Consider the ring homomorphism

ϕ : k[x, y, z] −→ k[t]; f(x, y, z) 7−→ f(t, t2, t3).

By the fundamental isomorphism theorem, we have

imϕ ∼= k[x, y, z]/ kerϕ.

We need to find out imϕ and kerϕ.

We claim that ϕ is surjective, because for every p(t) ∈ k[t], it is the image of

p(x) ∈ k[x, y, z]. Therefore imϕ = k[t].

To find out kerϕ, we first claim that every f(x, y, z) ∈ k[x, y, z] can be written

in the form

f = (y − x2)g1 + (z − x3)g2 + h

where g1, g2 ∈ k[x, y, z] and h ∈ k[x]. To see this, there are still two methods. The

first method: think of f as a polynomial in y, and consider the Euclidean division

of f by y − x2. There is a quotient g1 ∈ k[x, y, z] and a remainder r1 ∈ k[x, z].

Then think of r1 as a polynomial in z, and consider the Euclidean division of r1
by z − x3. There is a quotient g2 ∈ k[x, y, z] (in fact, in k[x, z]) and a remainder

h ∈ k[x]. In formulas,

f = (y − x2)g1 + r1 = (y − x2)g1 + (z − x3)g2 + h.

The second method: we substitute [(y − x2) + x2] into each occurence of y in f

and substitute [(z − x3) + x3] into each occurence of z in f . We then expand the

square brackets leaving the round brackets untouched. In the expansion we collect

terms with a factor (y − x2) or (z − x3), and write

f = (y − x2)g1 + (z − x3)g2 + h
22



where h ∈ k[x] does not involve y or z.

Armed with this claim, we find that the image of f under ϕ is given by

ϕ(f) = (t2 − t2)ϕ(g1) + (t3 − t3)ϕ(g2) + h(t) = h(t).

Therefore ϕ(f) = 0 ⇐⇒ h = 0 ⇐⇒ f = (y − x2)g1 + (z − x3)g2 ⇐⇒ f ∈
(y − x2, z − x3). This means kerϕ = (y − x2, z − x3) = I.

Therefore the fundamental isomorphism theorem yields that k[t] ∼= k[x, y, z]/I.

(3) Since k[t] is an integral domain, by Proposition 2.12, we conclude that I is a prime

ideal, hence a radical ideal. By part (1) and Proposition 2.9, X = V(I) implies

that I = I(X). Since I is a prime ideal, Proposition 2.15 shows that X is an

irreducible algebraic set, hence an affine variety.
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