SOLUTIONS TO EXERCISE SHEET 2

Solution 2.1. Some proofs in lectures.

(1) Using the binomial expansion, we have that (a 4 b)™" = Y74 (™) a™ " ~ibi,
For every term (mj”) a™ "=yt if ¢ < n, then this term has a factor a™, hence this
term is in [; if ¢ > n, then this term has a factor b”, hence this term is also in I.

Since every such term is in 7, it follows that their sum (a + b)"™" € I.

(2) Let a,b € /T and r € R. By Definition 2.1 there exist some m,n € Z, such that
a™, b" € I. By part (1) we know that (a + b)™*" € I, hence a + b € V/I. We
also have (ra)™ = r™a™ € I, hence ra € /1. Tt follows that /T is an ideal. To
show that I C v/1, we just need to realise that for every a € I, ™ € I for m = 1.
Hence a € V1.

(3) Assume I is a maximal ideal in R, then R/I is a field by Proposition 2.12 (1).
Since every field is an integral domain, R/I is an integral domain. By Proposition
2.12 (1) again we conclude that [ is a prime ideal in 1.

Assume J is a prime ideal. For any a € v/J, there exists some n € Zy, such that
a™ € J. We claim that a € J. This can be shown by induction on n. When n = 1,
a € J is automatic. Assume a™ € J implies a € J. If we have a"™! = a - a" € J,
then either @ € J or a” € J. In either case we have a € J. This shows that
V/J C J. By part (2) we also have J C v/J. It follows that J = v/.J, hence J is a
radical ideal.

Solution 2.2. Fxamples of radical and prime ideals.

(1) Assume (f) is a prime ideal. Since (f) # klxy,---,z,], f is not a constant
polynomial. If f is not an irreducible polynomial, then assume f = f; fy for some
non-constant polynomials f; and fs. Since fifo = f € (f), it follows that either
fie (f)or fo e (f). If fi € (f), then f; = f - g1 for some non-zero polynomial
g1.- Then f = fify = fg1fo which implies g; fo = 1. Hence f, must be a constant,
which is a contradiction. If f, € (f), the same argument implies f; is a constant,
which is also a contradiction. This proves that f is irreducible.

Now assume f is an irreducible polynomial. We need to show (f) is a prime
ideal. By definition an irreducible polynomial is not a constant, hence 1 ¢ (f)
which means (f) # k[z1, -+ ,z,]. Let fify € (f) for polynomials f; and f. Then
we can write f1fs = fg for some polynomial g. If g = 0, then either f; =0 € (f)
or fo =0¢€ (f). If g # 0, then f is an irreducible factor in the factorisation of
fif2, hence f is an irreducible factor of either f; or f,. Therefore we still have

f1 € (f) or fo € (f). This proves that (f) is a prime ideal.
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(2) We first show that (f) C +/(f). For any g € (f), there exists some poly-
nomial h such that ¢ = fh = fi---f;h. Let m = max{ky,---,k}. Then
G = e R = PR R e (), hence g € /().

We prove the other inclusion /(f) € (f). For any g € /(f), there exists
some m € Z, such that g™ € (f), that is, ¢™ = fh = fI*--- ff*h for some
polynomial h. For every irreducible polynomial f;, since f; divides the right-hand
side, it must divide the left-hand side as well, i.e., f; divides ¢g"™. Therefore f;
divides ¢ for every i. It follows that each f; appears in the factorisation of g,

hence g = fi--- frg' = fg € (f).

(3) (f) is a radical ideal <= \/(f) = (f) <= (f) = (f) < f and f differ by
a unit in k[z1,---,x,] (which is a non-zero constant). This holds if and only if
ki=---=k,=1;ie. f has no repeated factors.

Solution 2.3. Fxamples of mazximal ideals.

(1) We claim that every polynomial f(xq,---,x,) € k[z1, -+ ,x,] can be written in

the form
=@ —a)g+- 4 (Tn —an)gn +c

for some polynomials gy, , g, € k[zq, - ,2,] and a constant ¢ € k. There are
two ways to explain it (you can choose the one you like). The first approach: we
think of f as a polynomial in x; and consider the Euclidean division of f by 1 —aj;.
We get f = (21 —aq)g1+r1 where r; has degree 0 in 21, namely, r; € k[xg, -+, z,].
Then we think of r; as a polynomial in x5, and consider the Euclidean division of
r1 by o — ag, we get 1 = (23 — a2)ge + ro for some ry € klzs, -+, x,]. Repeat
this process to get

f=(@ —a)g +n
= (21 —a1)g1 + (29 — az)ga + 7o

=@ —a)gr+ -+ (Tn —an)gn + 1

where r, is a constant. This justifies the claim. The second approach: we substi-
tute [(x; — a;) + a;] into each occurence of z; in f and expand the square brackets
leaving the round brackets untouched. In the expansion every non-constant term
has a factor of the form (z; — a;). Then we can collect terms and write

=1 —a)g+ -+ (20— an)gn + ¢

where ¢ is a constant. This justifies the claim.
Now we look at the image of f under ¢,. We have ¢,(f) = f(ai, -+ ,a,) = c.
Therefore f € kerp, <= c=0<=f=(r1—a)g1 +- + (T — an)gn = f €

(x1 — a1, -+ ,x, — ay). This proves that m, = ker p, = (21 —ay, -+ , T, — ay).
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Moreover, ¢, is surjective, because every ¢ € k is the image of the constant
polynomial f = c¢. By the fundamental isomorphism theorem, we have

k=imo, =k[zy, -, z,)/ ker p, = Kk[z1, -, 2,]/m,.
Since k is a field, we know that m, is a maximal ideal by Proposition 2.12 (1).

(2) V(m,) = {p} is a single point set. By Proposition 2.16, there is a one-to-one
correspondence between maximal ideals in k[xq,--- ,z,] and points in A™. Since
the ideals of the form m, have exhausted all points in A", they must be all maximal
ideals in k[zy, -+, z,].

Solution 2.4. A famous example: the twisted cubic.

(1) We first show X C V(I). For every point (¢,1, %) € X, we have y—z? = *—1? = 0
and z — 2% = 3 — 3 = 0. We then show V(I) C X. For every (z,y,2) € V(I),
we have y — 22 = 0 and 2 — 2% = 0, hence y = 2% and z = 23. It follows that

(2,y,2) = (z,22,2%) € X.
(2) Consider the ring homomorphism
i kle,y, 2] — Kkt f(a,y,2) > f(t,8,8).
By the fundamental isomorphism theorem, we have
im o = kz,y, 2]/ ker ¢.

We need to find out im ¢ and ker (.

We claim that ¢ is surjective, because for every p(t) € k[t], it is the image of
p(z) € klz,y, z]. Therefore im ¢ = k|t].

To find out ker ¢, we first claim that every f(z,y, z) € k[z,y, z] can be written
in the form

f=W—a2")g+(z—2")ga+h

where g1, g2 € k[x,y, z] and h € k[z]. To see this, there are still two methods. The
first method: think of f as a polynomial in y, and consider the Euclidean division
of f by y — 2% There is a quotient g, € k[z,y, 2] and a remainder r; € k[z, z|.
Then think of r; as a polynomial in z, and consider the Euclidean division of 7
by z — 3. There is a quotient gy € k[z,y, 2] (in fact, in k[x, 2]) and a remainder
h € klz]. In formulas,

f=W—a)g+r=(y—1)g+(z—2")g+h
The second method: we substitute [(y — 2%) + 2?] into each occurence of y in f
and substitute [(z — 2%) + 23] into each occurence of z in f. We then expand the
square brackets leaving the round brackets untouched. In the expansion we collect
terms with a factor (y — z?) or (2 — 23), and write

f=y—2)g+(z—2")g+h
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where h € k|z] does not involve y or z.
Armed with this claim, we find that the image of f under ¢ is given by

p(f) = (1 = )p(g1) + (£ = ')p(g) + h(t) = h(t).
Therefore o(f) = 0 <= h =0<+= f = (y—22)g1 + (z —2%)go < [ €
(y — 22,2z — 2%). This means ker p = (y — 22,2z — 2%) = I.
Therefore the fundamental isomorphism theorem yields that k[t] = k[x,y, 2] /1.
(3) Since k[t] is an integral domain, by Proposition 2.12, we conclude that [ is a prime
ideal, hence a radical ideal. By part (1) and Proposition 2.9, X = V(/) implies
that I = I(X). Since [ is a prime ideal, Proposition 2.15 shows that X is an
irreducible algebraic set, hence an affine variety.
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