Solution 2.1. Some proofs in lectures.
(1) Using the binomial expansion, we have that $(a+b)^{m+n}=\sum_{i=0}^{m+n}\binom{m+n}{i} a^{m+n-i} b^{i}$. For every term $\binom{m+n}{i} a^{m+n-i} b^{i}$, if $i \leqslant n$, then this term has a factor a^{m}, hence this term is in I; if $i \geqslant n$, then this term has a factor b^{n}, hence this term is also in I. Since every such term is in I, it follows that their sum $(a+b)^{m+n} \in I$.
(2) Let $a, b \in \sqrt{I}$ and $r \in R$. By Definition 2.1 there exist some $m, n \in \mathbb{Z}_{+}$such that $a^{m}, b^{n} \in I$. By part (1) we know that $(a+b)^{m+n} \in I$, hence $a+b \in \sqrt{I}$. We also have $(r a)^{m}=r^{m} a^{m} \in I$, hence $r a \in \sqrt{I}$. It follows that \sqrt{I} is an ideal. To show that $I \subseteq \sqrt{I}$, we just need to realise that for every $a \in I, a^{m} \in I$ for $m=1$. Hence $a \in \sqrt{I}$.
(3) Assume I is a maximal ideal in R, then R / I is a field by Proposition 2.12 (1). Since every field is an integral domain, R / I is an integral domain. By Proposition 2.12 (1) again we conclude that I is a prime ideal in I.

Assume J is a prime ideal. For any $a \in \sqrt{J}$, there exists some $n \in \mathbb{Z}_{+}$, such that $a^{n} \in J$. We claim that $a \in J$. This can be shown by induction on n. When $n=1$, $a \in J$ is automatic. Assume $a^{n} \in J$ implies $a \in J$. If we have $a^{n+1}=a \cdot a^{n} \in J$, then either $a \in J$ or $a^{n} \in J$. In either case we have $a \in J$. This shows that $\sqrt{J} \subseteq J$. By part (2) we also have $J \subseteq \sqrt{J}$. It follows that $J=\sqrt{J}$, hence J is a radical ideal.

Solution 2.2. Examples of radical and prime ideals.
(1) Assume (f) is a prime ideal. Since $(f) \neq \mathbb{k}\left[x_{1}, \cdots, x_{n}\right], f$ is not a constant polynomial. If f is not an irreducible polynomial, then assume $f=f_{1} f_{2}$ for some non-constant polynomials f_{1} and f_{2}. Since $f_{1} f_{2}=f \in(f)$, it follows that either $f_{1} \in(f)$ or $f_{2} \in(f)$. If $f_{1} \in(f)$, then $f_{1}=f \cdot g_{1}$ for some non-zero polynomial g_{1}. Then $f=f_{1} f_{2}=f g_{1} f_{2}$ which implies $g_{1} f_{2}=1$. Hence f_{2} must be a constant, which is a contradiction. If $f_{2} \in(f)$, the same argument implies f_{1} is a constant, which is also a contradiction. This proves that f is irreducible.

Now assume f is an irreducible polynomial. We need to show (f) is a prime ideal. By definition an irreducible polynomial is not a constant, hence $1 \notin(f)$ which means $(f) \neq \mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$. Let $f_{1} f_{2} \in(f)$ for polynomials f_{1} and f_{2}. Then we can write $f_{1} f_{2}=f g$ for some polynomial g. If $g=0$, then either $f_{1}=0 \in(f)$ or $f_{2}=0 \in(f)$. If $g \neq 0$, then f is an irreducible factor in the factorisation of $f_{1} f_{2}$, hence f is an irreducible factor of either f_{1} or f_{2}. Therefore we still have $f_{1} \in(f)$ or $f_{2} \in(f)$. This proves that (f) is a prime ideal.
(2) We first show that $(\bar{f}) \subseteq \sqrt{(f)}$. For any $g \in(\bar{f})$, there exists some polynomial h such that $g=\bar{f} h=f_{1} \cdots f_{t} h$. Let $m=\max \left\{k_{1}, \cdots, k_{t}\right\}$. Then $g^{m}=f_{1}^{m} \cdots f_{t}^{m} h^{m}=f \cdot f_{1}^{m-k_{1}} \cdots f_{t}^{m-k_{t}} h^{m} \in(f)$, hence $g \in \sqrt{(f)}$.

We prove the other inclusion $\sqrt{(f)} \subseteq(\bar{f})$. For any $g \in \sqrt{(f)}$, there exists some $m \in \mathbb{Z}_{+}$such that $g^{m} \in(f)$, that is, $g^{m}=f h=f_{1}^{k_{1}} \cdots f_{t}^{k_{t}} h$ for some polynomial h. For every irreducible polynomial f_{i}, since f_{i} divides the right-hand side, it must divide the left-hand side as well, i.e., f_{i} divides g^{m}. Therefore f_{i} divides g for every i. It follows that each f_{i} appears in the factorisation of g, hence $g=f_{1} \cdots f_{k} g^{\prime}=\bar{f} g^{\prime} \in(\bar{f})$.
(3) (f) is a radical ideal $\Longleftrightarrow \sqrt{(f)}=(f) \Longleftrightarrow(\bar{f})=(f) \Longleftrightarrow \bar{f}$ and f differ by a unit in $\mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$ (which is a non-zero constant). This holds if and only if $k_{1}=\cdots=k_{t}=1$; i.e. f has no repeated factors.

Solution 2.3. Examples of maximal ideals.
(1) We claim that every polynomial $f\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$ can be written in the form

$$
f=\left(x_{1}-a_{1}\right) g_{1}+\cdots+\left(x_{n}-a_{n}\right) g_{n}+c
$$

for some polynomials $g_{1}, \cdots, g_{n} \in \mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$ and a constant $c \in \mathbb{k}$. There are two ways to explain it (you can choose the one you like). The first approach: we think of f as a polynomial in x_{1} and consider the Euclidean division of f by $x_{1}-a_{1}$. We get $f=\left(x_{1}-a_{1}\right) g_{1}+r_{1}$ where r_{1} has degree 0 in x_{1}, namely, $r_{1} \in \mathbb{k}\left[x_{2}, \cdots, x_{n}\right]$. Then we think of r_{1} as a polynomial in x_{2}, and consider the Euclidean division of r_{1} by $x_{2}-a_{2}$, we get $r_{1}=\left(x_{2}-a_{2}\right) g_{2}+r_{2}$ for some $r_{2} \in \mathbb{k}\left[x_{3}, \cdots, x_{n}\right]$. Repeat this process to get

$$
\begin{aligned}
f & =\left(x_{1}-a_{1}\right) g_{1}+r_{1} \\
& =\left(x_{1}-a_{1}\right) g_{1}+\left(x_{2}-a_{2}\right) g_{2}+r_{2} \\
& =\cdots \\
& =\left(x_{1}-a_{1}\right) g_{1}+\cdots+\left(x_{n}-a_{n}\right) g_{n}+r_{n}
\end{aligned}
$$

where r_{n} is a constant. This justifies the claim. The second approach: we substitute $\left[\left(x_{i}-a_{i}\right)+a_{i}\right]$ into each occurence of x_{i} in f and expand the square brackets leaving the round brackets untouched. In the expansion every non-constant term has a factor of the form $\left(x_{i}-a_{i}\right)$. Then we can collect terms and write

$$
f=\left(x_{1}-a_{1}\right) g_{1}+\cdots+\left(x_{n}-a_{n}\right) g_{n}+c
$$

where c is a constant. This justifies the claim.
Now we look at the image of f under φ_{p}. We have $\varphi_{p}(f)=f\left(a_{1}, \cdots, a_{n}\right)=c$. Therefore $f \in \operatorname{ker} \varphi_{p} \Longleftrightarrow c=0 \Longleftrightarrow f=\left(x_{1}-a_{1}\right) g_{1}+\cdots+\left(x_{n}-a_{n}\right) g_{n} \Longleftrightarrow f \in$ $\left(x_{1}-a_{1}, \cdots, x_{n}-a_{n}\right)$. This proves that $m_{p}=\operatorname{ker} \varphi_{p}=\left(x_{1}-a_{1}, \cdots, x_{n}-a_{n}\right)$.

Moreover, φ_{p} is surjective, because every $c \in \mathbb{k}$ is the image of the constant polynomial $f=c$. By the fundamental isomorphism theorem, we have

$$
\mathbb{k}=\operatorname{im} \varphi_{p}=\mathbb{k}\left[x_{1}, \cdots, x_{n}\right] / \operatorname{ker} \varphi_{p}=\mathbb{k}\left[x_{1}, \cdots, x_{n}\right] / m_{p} .
$$

Since \mathbb{k} is a field, we know that m_{p} is a maximal ideal by Proposition 2.12 (1).
(2) $\mathbb{V}\left(m_{p}\right)=\{p\}$ is a single point set. By Proposition 2.16, there is a one-to-one correspondence between maximal ideals in $\mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$ and points in \mathbb{A}^{n}. Since the ideals of the form m_{p} have exhausted all points in \mathbb{A}^{n}, they must be all maximal ideals in $\mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$.

Solution 2.4. A famous example: the twisted cubic.
(1) We first show $X \subseteq \mathbb{V}(I)$. For every point $\left(t, t^{2}, t^{3}\right) \in X$, we have $y-x^{2}=t^{2}-t^{2}=0$ and $z-x^{3}=t^{3}-t^{3}=0$. We then show $\mathbb{V}(I) \subseteq X$. For every $(x, y, z) \in \mathbb{V}(I)$, we have $y-x^{2}=0$ and $z-x^{3}=0$, hence $y=x^{2}$ and $z=x^{3}$. It follows that $(x, y, z)=\left(x, x^{2}, x^{3}\right) \in X$.
(2) Consider the ring homomorphism

$$
\varphi: \mathbb{k}[x, y, z] \longrightarrow \mathbb{k}[t] ; \quad f(x, y, z) \longmapsto f\left(t, t^{2}, t^{3}\right) .
$$

By the fundamental isomorphism theorem, we have

$$
\operatorname{im} \varphi \cong \mathbb{k}[x, y, z] / \operatorname{ker} \varphi
$$

We need to find out $\operatorname{im} \varphi$ and $\operatorname{ker} \varphi$.
We claim that φ is surjective, because for every $p(t) \in \mathbb{k}[t]$, it is the image of $p(x) \in \mathbb{k}[x, y, z]$. Therefore $\operatorname{im} \varphi=\mathbb{k}[t]$.

To find out $\operatorname{ker} \varphi$, we first claim that every $f(x, y, z) \in \mathbb{k}[x, y, z]$ can be written in the form

$$
f=\left(y-x^{2}\right) g_{1}+\left(z-x^{3}\right) g_{2}+h
$$

where $g_{1}, g_{2} \in \mathbb{k}[x, y, z]$ and $h \in \mathbb{k}[x]$. To see this, there are still two methods. The first method: think of f as a polynomial in y, and consider the Euclidean division of f by $y-x^{2}$. There is a quotient $g_{1} \in \mathbb{k}[x, y, z]$ and a remainder $r_{1} \in \mathbb{k}[x, z]$. Then think of r_{1} as a polynomial in z, and consider the Euclidean division of r_{1} by $z-x^{3}$. There is a quotient $g_{2} \in \mathbb{k}[x, y, z]$ (in fact, in $\mathbb{k}[x, z]$) and a remainder $h \in \mathbb{k}[x]$. In formulas,

$$
f=\left(y-x^{2}\right) g_{1}+r_{1}=\left(y-x^{2}\right) g_{1}+\left(z-x^{3}\right) g_{2}+h .
$$

The second method: we substitute $\left[\left(y-x^{2}\right)+x^{2}\right]$ into each occurence of y in f and substitute $\left[\left(z-x^{3}\right)+x^{3}\right]$ into each occurence of z in f. We then expand the square brackets leaving the round brackets untouched. In the expansion we collect terms with a factor $\left(y-x^{2}\right)$ or $\left(z-x^{3}\right)$, and write

$$
f=\left(y-x^{2}\right) g_{1}+\left(z-x^{3}\right) g_{2}+h
$$

where $h \in \mathbb{k}[x]$ does not involve y or z.
Armed with this claim, we find that the image of f under φ is given by

$$
\varphi(f)=\left(t^{2}-t^{2}\right) \varphi\left(g_{1}\right)+\left(t^{3}-t^{3}\right) \varphi\left(g_{2}\right)+h(t)=h(t) .
$$

Therefore $\varphi(f)=0 \Longleftrightarrow h=0 \Longleftrightarrow f=\left(y-x^{2}\right) g_{1}+\left(z-x^{3}\right) g_{2} \Longleftrightarrow f \in$ $\left(y-x^{2}, z-x^{3}\right)$. This means $\operatorname{ker} \varphi=\left(y-x^{2}, z-x^{3}\right)=I$.

Therefore the fundamental isomorphism theorem yields that $\mathbb{k}[t] \cong \mathbb{k}[x, y, z] / I$.
(3) Since $\mathbb{k}[t]$ is an integral domain, by Proposition 2.12, we conclude that I is a prime ideal, hence a radical ideal. By part (1) and Proposition 2.9, $X=\mathbb{V}(I)$ implies that $I=\mathbb{I}(X)$. Since I is a prime ideal, Proposition 2.15 shows that X is an irreducible algebraic set, hence an affine variety.

