SOLUTIONS TO EXERCISE SHEET 3

Solution 3.1. Example: the graph of a polynomial function.

(1)

(2)

(4)

Every component of 7 is given by a polynomial, and the image of any point in A"
is clearly in A", so 7 is a polynomial map.

Since X is an algebraic set, we can write X = V() where S is a set of polynomials

in z1,---,x,. Each polynomial in S can also be thought as a polynomial in
X1, 5 Xn, Tne1- Assume the polynoial function f is represented by a polynomial
F € k[xy, -+ ,x,). Then consider the set of polynomials 7' = S U {z,41 — F} C

k[z1,- -, 2p, xpi1]. We claim G(f) = V(T).

To prove the claim, we need to show mutual inclusions. Given any point p =
(a1, -+ ,an,any1) € G(f), we have (a1, -+ ,a,) € X and a,11 = f(ag, -+ ,a,).
The former implies that p is a solution to all polynomials in S, and the latter
implies that p is a solution to the polynomial x,; — F. It follows that p € V(T).

Given any point ¢ = (a1, -+ ,ap,any1) € V(T), since x,,; does not occur
in any polynomial in S, we know that (aj,---,a,) € V(S). Moreover a,,1 —
F(ay, -+ ,a,) = 0 implies that a,+; = F(a1,- - ,a,) = f(a1,---,a,). Hence

q € G(f). This finishes the proof of the claim G(f) = V(T'), which implies G(f)
is an algebraic set.
The first n components of ¢ are obviously polynomials in aq,--- ,a,. Since f is

a polynomial map, it can also be represented by a polynomial F' € k[z1, -+, x,].
It remains to check the image of ¢ is always in G(f), which is clear from the

definition of G(f).
We define ¢ : G(f) — X as the projection map to the first n components. Namely,

U(xy, -+ xpa1) = (21, -+ ,x,). It is clearly a polynomial map. We compute both
compositions. Given any p = (ay, - ,a,) € X, we have

(¢O@)(p) = @Z}(al;"' aa'naf(a’h'” aa'n)) = ((11,"' 7an) =D
Given any g = (a1, - .4, anr) € G(f). we have

(gpogb)(q) :Qo(a’h'” van):<a17"' 7amf<a17"' 7an)>:(a1"" 7aman+1) =d(.

()

Therefore ¢ (hence also 1) is an isomorphism.

Let X = A', and f(z) = 2* € k[z], then part (4) recovers Example 3.14.

Solution 3.2. Ezample: a nodal cubic.

(1)

Both components in ¢ are polynomials in ¢. Since
y2—x3—x2:(t?’—t)Q—(t2—1)3—(t2—1)2
=t ot P 043 =3P+ 1 -t 22— 1 =0,
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we conclude ¢(t) € X for every t € A'. Hence ¢ is a polynomial map.

(2) To show ¢ is surjective but not injective on points, take any point ¢ = (x,y) € X.
There are two cases. If x = 0, then by the defining equation of X we also have
y = 0. It is easy to see that the point ¢ = (0,0) is the image of the point ¢t =1 or

t = —1. Hence ¢ is not injective on points. If x # 0, then consider ¢t = 2. To find
its image, notice that
2 2 _ .2 3
x x x
)

t3—t:t-(t2—1):;~x:y.

Therefore ¢(t) = (z,y), which means the point ¢ = (x,y) is in the image of ¢.
The two cases together show that ¢ is surjective on points. Since we have proved
© is not injective on points, it cannot be an isomorphism by Remark 3.15.

(3) Use contradiction. Assume y? —2® —2? = f(x,y)g(z,y) for non-constant polyno-

mials f, g € klz,y]. Since the left-hand side has degree 2 in y, the degrees of f
and ¢ in y must be either 2 and 0, or 1 and 1. In the first case we can write

y?— a2’ —a? = (P falz) + yfi(x) + fo(x)) - g(x).

Comparing coefficients of y* we find fy(z)g(z) = 1, hence g(z) must be a constant.
Contradiction. In the second case we can write

Y — 2’ —2? = (yfi(x) + fola)) - (ygr(x) + go()).

Comparing coefficients of 3? we find fi(x)g;(z) = 1. Without loss of generality we
can assume fi(z) = g;(z) = 1. Comparing coefficients of y we find fo(x)+ go(x) =
0. Comparing constant terms we find —2% — 2% = fy(z)go(x) = —fo(x)?, hence
fo(x)? = x® + 22, which is also a contradiction since 2 + 2? = z?(x + 1) is not a
square. So we conclude that y* — z® — z? is irreducible. By Exercise 2.2 (1) we
know I = (y*> — 2® — %) is a prime ideal. By Proposition 2.12 (2) we know I is a
radical ideal. By Proposition 2.9 (1) we know I(X) = I. By Proposition 2.15 we
know X is an irreducible algebraic set, i.e. an affine variety.

Solution 3.3. Ezample: a cuspidal cubic.

(1) Both components in ¢ are polynomials in ¢. Since
Pt = (P~ () =0,
we conclude ¢(t) € X for every t € Al. Hence ¢ is a polynomial map.

o show ¢ is injective and surjective on points, take any point ¢ = (z,y) € X.
2) To sh is injecti d surjecti ints, tak int X
There are two cases. If x = 0, then by the defining equation of X we also have
y = 0. Assume ¢(t) = (0,0), then there is a unique point ¢ = 0 whose image is

(0,0). If 2 # 0, assume ¢(t) = (z,y), then we must have t = £, so there is at most
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one point whose image is (z,y). To check that its image is indeed (x,y), notice

that
2 = y_2 = x—gx
o2 a2
Yy

ﬁth?ZE-x:y

Therefore p(t) = (x,y), which means there is a unique point ¢ € A! whose image is
the point ¢ = (z,y). The two cases together show that ¢ is injective and surjective
on points.

(3) Use contradiction. Assume y? — 23 = f(x,y)g(x,y) for non-constant polynomials

f,g € k[x,y]. Since the left-hand side has degree 2 in y, the degrees of f and ¢ in
y must be either 2 and 0, or 1 and 1. In the first case we can write

y' = = (Y fala) + yfi(@) + fo(x)) - g(2).

Comparing coefficients of y* we find fo(z)g(z) = 1, hence g(x) must be a constant.
Contradiction. In the second case we can write

y* =2 = (yfilz) + fol2)) - (ygi(2) + go()).

Comparing coefficients of y* we find fi(z)g;(z) = 1. Without loss of generality
we can assume fi(x) = g1(xr) = 1. Comparing coefficients of y we find fo(x) +

go(z) = 0. Comparing constant terms we find —z% = fy(x)go(z) = — fo(z)?, hence

3 is not a square. So we conclude

2

fo(x)? = 23, which is also a contradiction since z
that y?> — 23 is irreducible. By Exercise 2.2 (1) we know I = (y? — 2?) is a prime
ideal. By Proposition 2.12 (2) we know [ is a radical ideal. By Proposition 2.9
(1) we know I(X) = I. By Proposition 2.15 we know X is an irreducible algebraic

set, i.e. an affine variety.

(4) By part (3) we have k[X] = k[z,y]/(y* — 23). To write down the pullback
map explicitly, we notice that ¢*(z) = t* and ¢*(y) = t3. Therefore for any
polynomial map on X represented by a polynomial f(z,y) € k[z,y], its image
©*(f) = f(t%,1?); that means, we simply replace every occurence of z by t* and y
by 3. Tt is clear that ©*(f) is a polynomial in t. We claim that it has no term of
degree 1 in t. Indeed, the image of the constant term of f is still the same constant,
and the image of any other monomial of f is a monomial in ¢ of degree at least 2.
This claim implies that ¢* is not surjective, because any polynomial in ¢ with a
non-zero degree 1 term is not in the image of p*. In particular, ¢t € k[t] = k[A!] is
not in the image of ¢*. Hence * is not an isomorphism. By Proposition 3.22, ¢
is not an isomorphism.

Solution 3.4. Ezample: the twisted cubic, revisited.
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(1) We define the polynomial map ¢ : X — A! by ¢(x,y,2) = x. It is clearly a
polynomial map as its only component is a polynomial. For any t € A!, we have
(Yo p)(t) = w(t,t%,t3) = t. For any (z,y,2) € X, we have (p o ¢¥)(z,y,2) =
o(z) = (z,2% 23) = (x,y, z). This shows that ¢ is an isomorphism.

(2) We first write down the pullback map ¢* explicitly. By Exercise 2.4 (3), we have
k[X] = k[z,vy, z]/I(X) = K[z,y,2]/(y — 22,z — 2%). We also have k[A!] = Kk[¢].
The pullback of the coordinate functions are given by ¢*(x) = t, ¢*(y) = t* and
¢*(z) = t3. Therefore ¢* is given by

QO* : k[x,y,z}/(y—xQ,z—x?)) —>k[t]; f([E,y,Z) '_>f(t7t2’t3>'

We actually have proved in Exercise 2.4 (2) that ¢* is an isomorphism. Indeed, ¢*
is surjective because every p(t) € k[t] is the image of p(x) € k[z,y, 2] (or rather,
the coset p(z) +1(X) in the quotient ring). Moreover, ¢* is injective because if the
image of f(x,y, z) is the zero polynomial in k[t], it must be in I(X), which means
that the only element in the kernel of ¢* is the coset 0 + I(X), which is the zero
element in the quotient ring. Therefore by Proposition 3.22, we conclude that ¢
is an isomorphism.
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