Solutions to Exercise Sheet 3

Solution 3.1. Example: the graph of a polynomial function.
(1) Every component of π is given by a polynomial, and the image of any point in \mathbb{A}^{n} is clearly in \mathbb{A}^{r}, so π is a polynomial map.
(2) Since X is an algebraic set, we can write $X=\mathbb{V}(S)$ where S is a set of polynomials in x_{1}, \cdots, x_{n}. Each polynomial in S can also be thought as a polynomial in $x_{1}, \cdots, x_{n}, x_{n+1}$. Assume the polynoial function f is represented by a polynomial $F \in \mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$. Then consider the set of polynomials $T=S \cup\left\{x_{n+1}-F\right\} \subseteq$ $\mathbb{k}\left[x_{1}, \cdots, x_{n}, x_{n+1}\right]$. We claim $G(f)=\mathbb{V}(T)$.

To prove the claim, we need to show mutual inclusions. Given any point $p=$ $\left(a_{1}, \cdots, a_{n}, a_{n+1}\right) \in G(f)$, we have $\left(a_{1}, \cdots, a_{n}\right) \in X$ and $a_{n+1}=f\left(a_{1}, \cdots, a_{n}\right)$. The former implies that p is a solution to all polynomials in S, and the latter implies that p is a solution to the polynomial $x_{n+1}-F$. It follows that $p \in \mathbb{V}(T)$.

Given any point $q=\left(a_{1}, \cdots, a_{n}, a_{n+1}\right) \in \mathbb{V}(T)$, since x_{n+1} does not occur in any polynomial in S, we know that $\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{V}(S)$. Moreover $a_{n+1}-$ $F\left(a_{1}, \cdots, a_{n}\right)=0$ implies that $a_{n+1}=F\left(a_{1}, \cdots, a_{n}\right)=f\left(a_{1}, \cdots, a_{n}\right)$. Hence $q \in G(f)$. This finishes the proof of the claim $G(f)=\mathbb{V}(T)$, which implies $G(f)$ is an algebraic set.
(3) The first n components of φ are obviously polynomials in a_{1}, \cdots, a_{n}. Since f is a polynomial map, it can also be represented by a polynomial $F \in \mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$. It remains to check the image of φ is always in $G(f)$, which is clear from the definition of $G(f)$.
(4) We define $\psi: G(f) \rightarrow X$ as the projection map to the first n components. Namely, $\psi\left(x_{1}, \cdots, x_{n+1}\right)=\left(x_{1}, \cdots, x_{n}\right)$. It is clearly a polynomial map. We compute both compositions. Given any $p=\left(a_{1}, \cdots, a_{n}\right) \in X$, we have

$$
(\psi \circ \varphi)(p)=\psi\left(a_{1}, \cdots, a_{n}, f\left(a_{1}, \cdots, a_{n}\right)\right)=\left(a_{1}, \cdots, a_{n}\right)=p .
$$

Given any $q=\left(a_{1}, \cdots, a_{n}, a_{n+1}\right) \in G(f)$, we have
$(\varphi \circ \psi)(q)=\varphi\left(a_{1}, \cdots, a_{n}\right)=\left(a_{1}, \cdots, a_{n}, f\left(a_{1}, \cdots, a_{n}\right)\right)=\left(a_{1}, \cdots, a_{n}, a_{n+1}\right)=q$.
Therefore φ (hence also ψ) is an isomorphism.
(5) Let $X=\mathbb{A}^{1}$, and $f(x)=x^{2} \in \mathbb{k}[x]$, then part (4) recovers Example 3.14.

Solution 3.2. Example: a nodal cubic.
(1) Both components in φ are polynomials in t. Since

$$
\begin{aligned}
y^{2}-x^{3}-x^{2} & =\left(t^{3}-t\right)^{2}-\left(t^{2}-1\right)^{3}-\left(t^{2}-1\right)^{2} \\
& =t^{6}-2 t^{4}+t^{2}-t^{6}+3 t^{4}-3 t^{2}+1-t^{4}+2 t^{2}-1=0,
\end{aligned}
$$

we conclude $\varphi(t) \in X$ for every $t \in \mathbb{A}^{1}$. Hence φ is a polynomial map.
(2) To show φ is surjective but not injective on points, take any point $q=(x, y) \in X$. There are two cases. If $x=0$, then by the defining equation of X we also have $y=0$. It is easy to see that the point $q=(0,0)$ is the image of the point $t=1$ or $t=-1$. Hence φ is not injective on points. If $x \neq 0$, then consider $t=\frac{y}{x}$. To find its image, notice that

$$
\begin{aligned}
& t^{2}-1=\frac{y^{2}}{x^{2}}-1=\frac{y^{2}-x^{2}}{x^{2}}=\frac{x^{3}}{x^{2}}=x ; \\
& t^{3}-t=t \cdot\left(t^{2}-1\right)=\frac{y}{x} \cdot x=y .
\end{aligned}
$$

Therefore $\varphi(t)=(x, y)$, which means the point $q=(x, y)$ is in the image of φ. The two cases together show that φ is surjective on points. Since we have proved φ is not injective on points, it cannot be an isomorphism by Remark 3.15.
(3) Use contradiction. Assume $y^{2}-x^{3}-x^{2}=f(x, y) g(x, y)$ for non-constant polynomials $f, g \in \mathbb{k}[x, y]$. Since the left-hand side has degree 2 in y, the degrees of f and g in y must be either 2 and 0 , or 1 and 1 . In the first case we can write

$$
y^{2}-x^{3}-x^{2}=\left(y^{2} f_{2}(x)+y f_{1}(x)+f_{0}(x)\right) \cdot g(x) .
$$

Comparing coefficients of y^{2} we find $f_{2}(x) g(x)=1$, hence $g(x)$ must be a constant. Contradiction. In the second case we can write

$$
y^{2}-x^{3}-x^{2}=\left(y f_{1}(x)+f_{0}(x)\right) \cdot\left(y g_{1}(x)+g_{0}(x)\right) .
$$

Comparing coefficients of y^{2} we find $f_{1}(x) g_{1}(x)=1$. Without loss of generality we can assume $f_{1}(x)=g_{1}(x)=1$. Comparing coefficients of y we find $f_{0}(x)+g_{0}(x)=$ 0 . Comparing constant terms we find $-x^{3}-x^{2}=f_{0}(x) g_{0}(x)=-f_{0}(x)^{2}$, hence $f_{0}(x)^{2}=x^{3}+x^{2}$, which is also a contradiction since $x^{3}+x^{2}=x^{2}(x+1)$ is not a square. So we conclude that $y^{2}-x^{3}-x^{2}$ is irreducible. By Exercise 2.2 (1) we know $I=\left(y^{2}-x^{3}-x^{2}\right)$ is a prime ideal. By Proposition $2.12(2)$ we know I is a radical ideal. By Proposition 2.9 (1) we know $\mathbb{I}(X)=I$. By Proposition 2.15 we know X is an irreducible algebraic set, i.e. an affine variety.

Solution 3.3. Example: a cuspidal cubic.
(1) Both components in φ are polynomials in t. Since

$$
y^{2}-x^{3}=\left(t^{3}\right)^{2}-\left(t^{2}\right)^{3}=0,
$$

we conclude $\varphi(t) \in X$ for every $t \in \mathbb{A}^{1}$. Hence φ is a polynomial map.
(2) To show φ is injective and surjective on points, take any point $q=(x, y) \in X$. There are two cases. If $x=0$, then by the defining equation of X we also have $y=0$. Assume $\varphi(t)=(0,0)$, then there is a unique point $t=0$ whose image is $(0,0)$. If $x \neq 0$, assume $\varphi(t)=(x, y)$, then we must have $t=\frac{y}{x}$, so there is at most
one point whose image is (x, y). To check that its image is indeed (x, y), notice that

$$
\begin{aligned}
& t^{2}=\frac{y^{2}}{x^{2}}=\frac{x^{3}}{x^{2}} x \\
& t^{3}=t \cdot t^{2}=\frac{y}{x} \cdot x=y
\end{aligned}
$$

Therefore $\varphi(t)=(x, y)$, which means there is a unique point $t \in \mathbb{A}^{1}$ whose image is the point $q=(x, y)$. The two cases together show that φ is injective and surjective on points.
(3) Use contradiction. Assume $y^{2}-x^{3}=f(x, y) g(x, y)$ for non-constant polynomials $f, g \in \mathbb{k}[x, y]$. Since the left-hand side has degree 2 in y, the degrees of f and g in y must be either 2 and 0 , or 1 and 1 . In the first case we can write

$$
y^{2}-x^{3}=\left(y^{2} f_{2}(x)+y f_{1}(x)+f_{0}(x)\right) \cdot g(x) .
$$

Comparing coefficients of y^{2} we find $f_{2}(x) g(x)=1$, hence $g(x)$ must be a constant. Contradiction. In the second case we can write

$$
y^{2}-x^{3}=\left(y f_{1}(x)+f_{0}(x)\right) \cdot\left(y g_{1}(x)+g_{0}(x)\right) .
$$

Comparing coefficients of y^{2} we find $f_{1}(x) g_{1}(x)=1$. Without loss of generality we can assume $f_{1}(x)=g_{1}(x)=1$. Comparing coefficients of y we find $f_{0}(x)+$ $g_{0}(x)=0$. Comparing constant terms we find $-x^{3}=f_{0}(x) g_{0}(x)=-f_{0}(x)^{2}$, hence $f_{0}(x)^{2}=x^{3}$, which is also a contradiction since x^{3} is not a square. So we conclude that $y^{2}-x^{3}$ is irreducible. By Exercise 2.2 (1) we know $I=\left(y^{2}-x^{3}\right)$ is a prime ideal. By Proposition 2.12 (2) we know I is a radical ideal. By Proposition 2.9 (1) we know $\mathbb{I}(X)=I$. By Proposition 2.15 we know X is an irreducible algebraic set, i.e. an affine variety.
(4) By part (3) we have $\mathbb{k}[X]=\mathbb{k}[x, y] /\left(y^{2}-x^{3}\right)$. To write down the pullback map explicitly, we notice that $\varphi^{*}(x)=t^{2}$ and $\varphi^{*}(y)=t^{3}$. Therefore for any polynomial map on X represented by a polynomial $f(x, y) \in \mathbb{k}[x, y]$, its image $\varphi^{*}(f)=f\left(t^{2}, t^{3}\right)$; that means, we simply replace every occurence of x by t^{2} and y by t^{3}. It is clear that $\varphi^{*}(f)$ is a polynomial in t. We claim that it has no term of degree 1 in t. Indeed, the image of the constant term of f is still the same constant, and the image of any other monomial of f is a monomial in t of degree at least 2 . This claim implies that φ^{*} is not surjective, because any polynomial in t with a non-zero degree 1 term is not in the image of φ^{*}. In particular, $t \in \mathbb{k}[t]=\mathbb{k}\left[\mathbb{A}^{1}\right]$ is not in the image of φ^{*}. Hence φ^{*} is not an isomorphism. By Proposition 3.22, φ is not an isomorphism.

Solution 3.4. Example: the twisted cubic, revisited.
(1) We define the polynomial map $\psi: X \rightarrow \mathbb{A}^{1}$ by $\psi(x, y, z)=x$. It is clearly a polynomial map as its only component is a polynomial. For any $t \in \mathbb{A}^{1}$, we have $(\psi \circ \varphi)(t)=\psi\left(t, t^{2}, t^{3}\right)=t$. For any $(x, y, z) \in X$, we have $(\varphi \circ \psi)(x, y, z)=$ $\varphi(x)=\left(x, x^{2}, x^{3}\right)=(x, y, z)$. This shows that φ is an isomorphism.
(2) We first write down the pullback map φ^{*} explicitly. By Exercise 2.4 (3), we have $\mathbb{k}[X]=\mathbb{k}[x, y, z] / \mathbb{I}(X)=\mathbb{k}[x, y, z] /\left(y-x^{2}, z-x^{3}\right)$. We also have $\mathbb{k}\left[\mathbb{A}^{1}\right]=\mathbb{k}[t]$. The pullback of the coordinate functions are given by $\varphi^{*}(x)=t, \varphi^{*}(y)=t^{2}$ and $\varphi^{*}(z)=t^{3}$. Therefore φ^{*} is given by

$$
\varphi^{*}: \quad \mathbb{k}[x, y, z] /\left(y-x^{2}, z-x^{3}\right) \longrightarrow \mathbb{k}[t] ; \quad f(x, y, z) \longmapsto f\left(t, t^{2}, t^{3}\right) .
$$

We actually have proved in Exercise 2.4 (2) that φ^{*} is an isomorphism. Indeed, φ^{*} is surjective because every $p(t) \in \mathbb{k}[t]$ is the image of $p(x) \in \mathbb{k}[x, y, z]$ (or rather, the coset $p(x)+\mathbb{I}(X)$ in the quotient ring). Moreover, φ^{*} is injective because if the image of $f(x, y, z)$ is the zero polynomial in $\mathbb{k}[t]$, it must be in $\mathbb{I}(X)$, which means that the only element in the kernel of φ^{*} is the coset $0+\mathbb{I}(X)$, which is the zero element in the quotient ring. Therefore by Proposition 3.22, we conclude that φ is an isomorphism.

