Solutions to Exercise Sheet 3

Solution 3.1. Example: the graph of a polynomial function.

- (1) Every component of π is given by a polynomial, and the image of any point in \mathbb{A}^n is clearly in \mathbb{A}^r , so π is a polynomial map.
- (2) Since X is an algebraic set, we can write $X = \mathbb{V}(S)$ where S is a set of polynomials in x_1, \dots, x_n . Each polynomial in S can also be thought as a polynomial in x_1, \dots, x_n, x_{n+1} . Assume the polynoial function f is represented by a polynomial $F \in \mathbb{k}[x_1, \dots, x_n]$. Then consider the set of polynomials $T = S \cup \{x_{n+1} - F\} \subseteq \mathbb{k}[x_1, \dots, x_n, x_{n+1}]$. We claim $G(f) = \mathbb{V}(T)$.

To prove the claim, we need to show mutual inclusions. Given any point $p = (a_1, \dots, a_n, a_{n+1}) \in G(f)$, we have $(a_1, \dots, a_n) \in X$ and $a_{n+1} = f(a_1, \dots, a_n)$. The former implies that p is a solution to all polynomials in S, and the latter implies that p is a solution to the polynomial $x_{n+1} - F$. It follows that $p \in \mathbb{V}(T)$.

Given any point $q = (a_1, \dots, a_n, a_{n+1}) \in \mathbb{V}(T)$, since x_{n+1} does not occur in any polynomial in S, we know that $(a_1, \dots, a_n) \in \mathbb{V}(S)$. Moreover $a_{n+1} - F(a_1, \dots, a_n) = 0$ implies that $a_{n+1} = F(a_1, \dots, a_n) = f(a_1, \dots, a_n)$. Hence $q \in G(f)$. This finishes the proof of the claim $G(f) = \mathbb{V}(T)$, which implies G(f)is an algebraic set.

- (3) The first *n* components of φ are obviously polynomials in a_1, \dots, a_n . Since *f* is a polynomial map, it can also be represented by a polynomial $F \in \Bbbk[x_1, \dots, x_n]$. It remains to check the image of φ is always in G(f), which is clear from the definition of G(f).
- (4) We define $\psi : G(f) \to X$ as the projection map to the first *n* components. Namely, $\psi(x_1, \dots, x_{n+1}) = (x_1, \dots, x_n)$. It is clearly a polynomial map. We compute both compositions. Given any $p = (a_1, \dots, a_n) \in X$, we have

$$(\psi \circ \varphi)(p) = \psi(a_1, \cdots, a_n, f(a_1, \cdots, a_n)) = (a_1, \cdots, a_n) = p.$$

Given any $q = (a_1, \cdots, a_n, a_{n+1}) \in G(f)$, we have

$$(\varphi \circ \psi)(q) = \varphi(a_1, \cdots, a_n) = (a_1, \cdots, a_n, f(a_1, \cdots, a_n)) = (a_1, \cdots, a_n, a_{n+1}) = q$$

Therefore φ (hence also ψ) is an isomorphism.

(5) Let $X = \mathbb{A}^1$, and $f(x) = x^2 \in \mathbb{k}[x]$, then part (4) recovers Example 3.14.

Solution 3.2. Example: a nodal cubic.

(1) Both components in φ are polynomials in t. Since

$$y^{2} - x^{3} - x^{2} = (t^{3} - t)^{2} - (t^{2} - 1)^{3} - (t^{2} - 1)^{2}$$

= $t^{6} - 2t^{4} + t^{2} - t^{6} + 3t^{4} - 3t^{2} + 1 - t^{4} + 2t^{2} - 1 = 0$

we conclude $\varphi(t) \in X$ for every $t \in \mathbb{A}^1$. Hence φ is a polynomial map.

(2) To show φ is surjective but not injective on points, take any point $q = (x, y) \in X$. There are two cases. If x = 0, then by the defining equation of X we also have y = 0. It is easy to see that the point q = (0, 0) is the image of the point t = 1 or t = -1. Hence φ is not injective on points. If $x \neq 0$, then consider $t = \frac{y}{x}$. To find its image, notice that

$$t^{2} - 1 = \frac{y^{2}}{x^{2}} - 1 = \frac{y^{2} - x^{2}}{x^{2}} = \frac{x^{3}}{x^{2}} = x;$$

$$t^{3} - t = t \cdot (t^{2} - 1) = \frac{y}{x} \cdot x = y.$$

Therefore $\varphi(t) = (x, y)$, which means the point q = (x, y) is in the image of φ . The two cases together show that φ is surjective on points. Since we have proved φ is not injective on points, it cannot be an isomorphism by Remark 3.15.

(3) Use contradiction. Assume $y^2 - x^3 - x^2 = f(x, y)g(x, y)$ for non-constant polynomials $f, g \in k[x, y]$. Since the left-hand side has degree 2 in y, the degrees of f and g in y must be either 2 and 0, or 1 and 1. In the first case we can write

$$y^{2} - x^{3} - x^{2} = (y^{2}f_{2}(x) + yf_{1}(x) + f_{0}(x)) \cdot g(x).$$

Comparing coefficients of y^2 we find $f_2(x)g(x) = 1$, hence g(x) must be a constant. Contradiction. In the second case we can write

$$y^{2} - x^{3} - x^{2} = (yf_{1}(x) + f_{0}(x)) \cdot (yg_{1}(x) + g_{0}(x)).$$

Comparing coefficients of y^2 we find $f_1(x)g_1(x) = 1$. Without loss of generality we can assume $f_1(x) = g_1(x) = 1$. Comparing coefficients of y we find $f_0(x) + g_0(x) =$ 0. Comparing constant terms we find $-x^3 - x^2 = f_0(x)g_0(x) = -f_0(x)^2$, hence $f_0(x)^2 = x^3 + x^2$, which is also a contradiction since $x^3 + x^2 = x^2(x+1)$ is not a square. So we conclude that $y^2 - x^3 - x^2$ is irreducible. By Exercise 2.2 (1) we know $I = (y^2 - x^3 - x^2)$ is a prime ideal. By Proposition 2.12 (2) we know I is a radical ideal. By Proposition 2.9 (1) we know $\mathbb{I}(X) = I$. By Proposition 2.15 we know X is an irreducible algebraic set, i.e. an affine variety.

Solution 3.3. Example: a cuspidal cubic.

(1) Both components in φ are polynomials in t. Since

$$y^{2} - x^{3} = (t^{3})^{2} - (t^{2})^{3} = 0,$$

we conclude $\varphi(t) \in X$ for every $t \in \mathbb{A}^1$. Hence φ is a polynomial map.

(2) To show φ is injective and surjective on points, take any point $q = (x, y) \in X$. There are two cases. If x = 0, then by the defining equation of X we also have y = 0. Assume $\varphi(t) = (0, 0)$, then there is a unique point t = 0 whose image is (0, 0). If $x \neq 0$, assume $\varphi(t) = (x, y)$, then we must have $t = \frac{y}{x}$, so there is at most one point whose image is (x, y). To check that its image is indeed (x, y), notice that

$$t^{2} = \frac{y^{2}}{x^{2}} = \frac{x^{3}}{x^{2}}x;$$

$$t^{3} = t \cdot t^{2} = \frac{y}{x} \cdot x = y.$$

Therefore $\varphi(t) = (x, y)$, which means there is a unique point $t \in \mathbb{A}^1$ whose image is the point q = (x, y). The two cases together show that φ is injective and surjective on points.

(3) Use contradiction. Assume $y^2 - x^3 = f(x, y)g(x, y)$ for non-constant polynomials $f, g \in k[x, y]$. Since the left-hand side has degree 2 in y, the degrees of f and g in y must be either 2 and 0, or 1 and 1. In the first case we can write

$$y^{2} - x^{3} = (y^{2}f_{2}(x) + yf_{1}(x) + f_{0}(x)) \cdot g(x)$$

Comparing coefficients of y^2 we find $f_2(x)g(x) = 1$, hence g(x) must be a constant. Contradiction. In the second case we can write

$$y^{2} - x^{3} = (yf_{1}(x) + f_{0}(x)) \cdot (yg_{1}(x) + g_{0}(x)).$$

Comparing coefficients of y^2 we find $f_1(x)g_1(x) = 1$. Without loss of generality we can assume $f_1(x) = g_1(x) = 1$. Comparing coefficients of y we find $f_0(x) + g_0(x) = 0$. Comparing constant terms we find $-x^3 = f_0(x)g_0(x) = -f_0(x)^2$, hence $f_0(x)^2 = x^3$, which is also a contradiction since x^3 is not a square. So we conclude that $y^2 - x^3$ is irreducible. By Exercise 2.2 (1) we know $I = (y^2 - x^3)$ is a prime ideal. By Proposition 2.12 (2) we know I is a radical ideal. By Proposition 2.9 (1) we know $\mathbb{I}(X) = I$. By Proposition 2.15 we know X is an irreducible algebraic set, i.e. an affine variety.

(4) By part (3) we have $\mathbb{k}[X] = \mathbb{k}[x, y]/(y^2 - x^3)$. To write down the pullback map explicitly, we notice that $\varphi^*(x) = t^2$ and $\varphi^*(y) = t^3$. Therefore for any polynomial map on X represented by a polynomial $f(x, y) \in \mathbb{k}[x, y]$, its image $\varphi^*(f) = f(t^2, t^3)$; that means, we simply replace every occurence of x by t^2 and y by t^3 . It is clear that $\varphi^*(f)$ is a polynomial in t. We claim that it has no term of degree 1 in t. Indeed, the image of the constant term of f is still the same constant, and the image of any other monomial of f is a monomial in t of degree at least 2. This claim implies that φ^* is not surjective, because any polynomial in t with a non-zero degree 1 term is not in the image of φ^* . In particular, $t \in \mathbb{k}[t] = \mathbb{k}[\mathbb{A}^1]$ is not in the image of φ^* . Hence φ^* is not an isomorphism. By Proposition 3.22, φ is not an isomorphism.

Solution 3.4. Example: the twisted cubic, revisited.

- (1) We define the polynomial map $\psi : X \to \mathbb{A}^1$ by $\psi(x, y, z) = x$. It is clearly a polynomial map as its only component is a polynomial. For any $t \in \mathbb{A}^1$, we have $(\psi \circ \varphi)(t) = \psi(t, t^2, t^3) = t$. For any $(x, y, z) \in X$, we have $(\varphi \circ \psi)(x, y, z) = \varphi(x) = (x, x^2, x^3) = (x, y, z)$. This shows that φ is an isomorphism.
- (2) We first write down the pullback map φ^* explicitly. By Exercise 2.4 (3), we have $\mathbb{k}[X] = \mathbb{k}[x, y, z]/\mathbb{I}(X) = \mathbb{k}[x, y, z]/(y x^2, z x^3)$. We also have $\mathbb{k}[\mathbb{A}^1] = \mathbb{k}[t]$. The pullback of the coordinate functions are given by $\varphi^*(x) = t$, $\varphi^*(y) = t^2$ and $\varphi^*(z) = t^3$. Therefore φ^* is given by

$$\varphi^*: \quad \Bbbk[x,y,z]/(y-x^2,z-x^3) \longrightarrow \Bbbk[t]; \quad f(x,y,z) \longmapsto f(t,t^2,t^3).$$

We actually have proved in Exercise 2.4 (2) that φ^* is an isomorphism. Indeed, φ^* is surjective because every $p(t) \in \mathbb{k}[t]$ is the image of $p(x) \in \mathbb{k}[x, y, z]$ (or rather, the coset $p(x) + \mathbb{I}(X)$ in the quotient ring). Moreover, φ^* is injective because if the image of f(x, y, z) is the zero polynomial in $\mathbb{k}[t]$, it must be in $\mathbb{I}(X)$, which means that the only element in the kernel of φ^* is the coset $0 + \mathbb{I}(X)$, which is the zero element in the quotient ring. Therefore by Proposition 3.22, we conclude that φ is an isomorphism.