
Solutions to Exercise Sheet 3

Solution 3.1. Example: the graph of a polynomial function.

(1) Every component of π is given by a polynomial, and the image of any point in An

is clearly in Ar, so π is a polynomial map.

(2) Since X is an algebraic set, we can write X = V(S) where S is a set of polynomials

in x1, · · · , xn. Each polynomial in S can also be thought as a polynomial in

x1, · · · , xn, xn+1. Assume the polynoial function f is represented by a polynomial

F ∈ k[x1, · · · , xn]. Then consider the set of polynomials T = S ∪ {xn+1 − F} ⊆
k[x1, · · · , xn, xn+1]. We claim G(f) = V(T ).

To prove the claim, we need to show mutual inclusions. Given any point p =

(a1, · · · , an, an+1) ∈ G(f), we have (a1, · · · , an) ∈ X and an+1 = f(a1, · · · , an).

The former implies that p is a solution to all polynomials in S, and the latter

implies that p is a solution to the polynomial xn+1 − F . It follows that p ∈ V(T ).

Given any point q = (a1, · · · , an, an+1) ∈ V(T ), since xn+1 does not occur

in any polynomial in S, we know that (a1, · · · , an) ∈ V(S). Moreover an+1 −
F (a1, · · · , an) = 0 implies that an+1 = F (a1, · · · , an) = f(a1, · · · , an). Hence

q ∈ G(f). This finishes the proof of the claim G(f) = V(T ), which implies G(f)

is an algebraic set.

(3) The first n components of ϕ are obviously polynomials in a1, · · · , an. Since f is

a polynomial map, it can also be represented by a polynomial F ∈ k[x1, · · · , xn].

It remains to check the image of ϕ is always in G(f), which is clear from the

definition of G(f).

(4) We define ψ : G(f)→ X as the projection map to the first n components. Namely,

ψ(x1, · · · , xn+1) = (x1, · · · , xn). It is clearly a polynomial map. We compute both

compositions. Given any p = (a1, · · · , an) ∈ X, we have

(ψ ◦ ϕ)(p) = ψ(a1, · · · , an, f(a1, · · · , an)) = (a1, · · · , an) = p.

Given any q = (a1, · · · , an, an+1) ∈ G(f), we have

(ϕ ◦ ψ)(q) = ϕ(a1, · · · , an) = (a1, · · · , an, f(a1, · · · , an)) = (a1, · · · , an, an+1) = q.

Therefore ϕ (hence also ψ) is an isomorphism.

(5) Let X = A1, and f(x) = x2 ∈ k[x], then part (4) recovers Example 3.14.

Solution 3.2. Example: a nodal cubic.

(1) Both components in ϕ are polynomials in t. Since

y2 − x3 − x2 = (t3 − t)2 − (t2 − 1)3 − (t2 − 1)2

= t6 − 2t4 + t2 − t6 + 3t4 − 3t2 + 1− t4 + 2t2 − 1 = 0,
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we conclude ϕ(t) ∈ X for every t ∈ A1. Hence ϕ is a polynomial map.

(2) To show ϕ is surjective but not injective on points, take any point q = (x, y) ∈ X.

There are two cases. If x = 0, then by the defining equation of X we also have

y = 0. It is easy to see that the point q = (0, 0) is the image of the point t = 1 or

t = −1. Hence ϕ is not injective on points. If x 6= 0, then consider t = y
x
. To find

its image, notice that

t2 − 1 =
y2

x2
− 1 =

y2 − x2

x2
=
x3

x2
= x;

t3 − t = t · (t2 − 1) =
y

x
· x = y.

Therefore ϕ(t) = (x, y), which means the point q = (x, y) is in the image of ϕ.

The two cases together show that ϕ is surjective on points. Since we have proved

ϕ is not injective on points, it cannot be an isomorphism by Remark 3.15.

(3) Use contradiction. Assume y2 − x3 − x2 = f(x, y)g(x, y) for non-constant polyno-

mials f, g ∈ k[x, y]. Since the left-hand side has degree 2 in y, the degrees of f

and g in y must be either 2 and 0, or 1 and 1. In the first case we can write

y2 − x3 − x2 = (y2f2(x) + yf1(x) + f0(x)) · g(x).

Comparing coefficients of y2 we find f2(x)g(x) = 1, hence g(x) must be a constant.

Contradiction. In the second case we can write

y2 − x3 − x2 = (yf1(x) + f0(x)) · (yg1(x) + g0(x)).

Comparing coefficients of y2 we find f1(x)g1(x) = 1. Without loss of generality we

can assume f1(x) = g1(x) = 1. Comparing coefficients of y we find f0(x)+g0(x) =

0. Comparing constant terms we find −x3 − x2 = f0(x)g0(x) = −f0(x)2, hence

f0(x)2 = x3 + x2, which is also a contradiction since x3 + x2 = x2(x + 1) is not a

square. So we conclude that y2 − x3 − x2 is irreducible. By Exercise 2.2 (1) we

know I = (y2 − x3 − x2) is a prime ideal. By Proposition 2.12 (2) we know I is a

radical ideal. By Proposition 2.9 (1) we know I(X) = I. By Proposition 2.15 we

know X is an irreducible algebraic set, i.e. an affine variety.

Solution 3.3. Example: a cuspidal cubic.

(1) Both components in ϕ are polynomials in t. Since

y2 − x3 = (t3)2 − (t2)3 = 0,

we conclude ϕ(t) ∈ X for every t ∈ A1. Hence ϕ is a polynomial map.

(2) To show ϕ is injective and surjective on points, take any point q = (x, y) ∈ X.

There are two cases. If x = 0, then by the defining equation of X we also have

y = 0. Assume ϕ(t) = (0, 0), then there is a unique point t = 0 whose image is

(0, 0). If x 6= 0, assume ϕ(t) = (x, y), then we must have t = y
x
, so there is at most
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one point whose image is (x, y). To check that its image is indeed (x, y), notice

that

t2 =
y2

x2
=
x3

x2
x;

t3 = t · t2 =
y

x
· x = y.

Therefore ϕ(t) = (x, y), which means there is a unique point t ∈ A1 whose image is

the point q = (x, y). The two cases together show that ϕ is injective and surjective

on points.

(3) Use contradiction. Assume y2 − x3 = f(x, y)g(x, y) for non-constant polynomials

f, g ∈ k[x, y]. Since the left-hand side has degree 2 in y, the degrees of f and g in

y must be either 2 and 0, or 1 and 1. In the first case we can write

y2 − x3 = (y2f2(x) + yf1(x) + f0(x)) · g(x).

Comparing coefficients of y2 we find f2(x)g(x) = 1, hence g(x) must be a constant.

Contradiction. In the second case we can write

y2 − x3 = (yf1(x) + f0(x)) · (yg1(x) + g0(x)).

Comparing coefficients of y2 we find f1(x)g1(x) = 1. Without loss of generality

we can assume f1(x) = g1(x) = 1. Comparing coefficients of y we find f0(x) +

g0(x) = 0. Comparing constant terms we find −x3 = f0(x)g0(x) = −f0(x)2, hence

f0(x)2 = x3, which is also a contradiction since x3 is not a square. So we conclude

that y2 − x3 is irreducible. By Exercise 2.2 (1) we know I = (y2 − x3) is a prime

ideal. By Proposition 2.12 (2) we know I is a radical ideal. By Proposition 2.9

(1) we know I(X) = I. By Proposition 2.15 we know X is an irreducible algebraic

set, i.e. an affine variety.

(4) By part (3) we have k[X] = k[x, y]/(y2 − x3). To write down the pullback

map explicitly, we notice that ϕ∗(x) = t2 and ϕ∗(y) = t3. Therefore for any

polynomial map on X represented by a polynomial f(x, y) ∈ k[x, y], its image

ϕ∗(f) = f(t2, t3); that means, we simply replace every occurence of x by t2 and y

by t3. It is clear that ϕ∗(f) is a polynomial in t. We claim that it has no term of

degree 1 in t. Indeed, the image of the constant term of f is still the same constant,

and the image of any other monomial of f is a monomial in t of degree at least 2.

This claim implies that ϕ∗ is not surjective, because any polynomial in t with a

non-zero degree 1 term is not in the image of ϕ∗. In particular, t ∈ k[t] = k[A1] is

not in the image of ϕ∗. Hence ϕ∗ is not an isomorphism. By Proposition 3.22, ϕ

is not an isomorphism.

Solution 3.4. Example: the twisted cubic, revisited.
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(1) We define the polynomial map ψ : X → A1 by ψ(x, y, z) = x. It is clearly a

polynomial map as its only component is a polynomial. For any t ∈ A1, we have

(ψ ◦ ϕ)(t) = ψ(t, t2, t3) = t. For any (x, y, z) ∈ X, we have (ϕ ◦ ψ)(x, y, z) =

ϕ(x) = (x, x2, x3) = (x, y, z). This shows that ϕ is an isomorphism.

(2) We first write down the pullback map ϕ∗ explicitly. By Exercise 2.4 (3), we have

k[X] = k[x, y, z]/I(X) = k[x, y, z]/(y − x2, z − x3). We also have k[A1] = k[t].

The pullback of the coordinate functions are given by ϕ∗(x) = t, ϕ∗(y) = t2 and

ϕ∗(z) = t3. Therefore ϕ∗ is given by

ϕ∗ : k[x, y, z]/(y − x2, z − x3) −→ k[t]; f(x, y, z) 7−→ f(t, t2, t3).

We actually have proved in Exercise 2.4 (2) that ϕ∗ is an isomorphism. Indeed, ϕ∗

is surjective because every p(t) ∈ k[t] is the image of p(x) ∈ k[x, y, z] (or rather,

the coset p(x)+I(X) in the quotient ring). Moreover, ϕ∗ is injective because if the

image of f(x, y, z) is the zero polynomial in k[t], it must be in I(X), which means

that the only element in the kernel of ϕ∗ is the coset 0 + I(X), which is the zero

element in the quotient ring. Therefore by Proposition 3.22, we conclude that ϕ

is an isomorphism.
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