
Solutions to Exercise Sheet 4

Solution 4.1. Get familiar with projective spaces.

(1) Since there is only one 1-dimensional linear subspace in A1, P0 is a point. P1 =

U0 ∪ H0 where U0
∼= A1 is an affine space and H0

∼= P0 is a point. Therefore P1

has just one more point than A1. When k = C, U0
∼= A1

C = C1 is the complex

plane. To view P1 as a bubble, imagine we remove a point from the surface of a

bubble (or a globe), the remaining part can be stretched into the complex plane.

A point p ∈ Pn belongs to only one of the standard affine chart Ui if and only

if p has only one non-zero homogeneous coordinate. We can assume this non-zero

homogeneous coordinate to be 1, otherwise we can divide all components by it.

So the point p can be given by p = [0 : · · · : 0 : 1 : 0 : · · · : 0] with 1 at a certain

position and 0 at all other positions. There are n+ 1 such points.

(2) We regard x1 and x2 as non-homogeneous coordinates and substitute x1 = z1
z0

and

x2 = z2
z0

. The equation x22 − x21 − 1 = 0 becomes
z22
z20
− z21

z20
− 1 = 0. We clear the

denominators to allow z0 to be zero, then we get z22 − z21 − z20 = 0. To find the

points at infinity, set z0 = 0, then we have z22 − z21 = 0, hence z2 = ±z1. As points

in P2 we get two solutions [z0 : z1 : z2] = [0 : 1 : 1] or [0 : 1 : −1], which are the

points at infinity for Va(x
2
2 − x21 − 1). This example tells us that a hyperbola has

two “asymptotic directions”, which is easy to understand since a hyperbola has

two asymptotes.

For Va(x
2
2−x21), we still substitute x1 = z1

z0
and x2 = z2

z0
. The equation x22−x21 = 0

becomes
z22
z20
− z21

z20
= 0. We clear the denominators to allow z0 to be zero, then we get

z22−z21 = 0. To find the points at infinity, set z0 = 0, then we still have z22−z21 = 0,

hence z2 = ±z1. As points in P2 we get two solutions [z0 : z1 : z2] = [0 : 1 : 1]

or [0 : 1 : −1], which are the points at infinity for Va(x
2
2 − x21). The result is not

surprising, because the polynomial x22−x21 defines precisely the two asymptotes of

the hyperbola in the previous case.

For Va(x
2
2−x31), we still substitute x1 = z1

z0
and x2 = z2

z0
. The equation x22−x31 = 0

becomes
z22
z20
− z31

z30
= 0. We clear the denominators to allow z0 to be zero, then we

get z0z
2
2 − z31 = 0. To find the points at infinity, set z0 = 0, then we get −z31 = 0,

hence z1 = 0. As points in P2 we get one solution [z0 : z1 : z2] = [0 : 0 : 1], which

is the point at infinity for Va(x
2
2 − x31).

Solution 4.2. Properties of homogeneous polynomials and ideals.
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(1) We write the homogeneous decompositions of g and h as

g = gM + gM−1 + · · ·+ gm+1 + gm,

h = hN + hN−1 + · · ·+ hn+1 + hn,

where M and m are the maximal and minimal degrees of non-zero monomials in g

respectively; similarly N and n are the maximal and minimal degrees of non-zero

monomials in h respectively. Then the degree of every monomial in the product

f = gh is between m + n and M + N . Moreover, the sum of all degree M + N

monomials in f is given by gMhN , which is non-zero since both gM and hN are

non-zero. Similarly, the sum of all degree m+n monomials in f is given by gmhn,

which is non-zero since both gm and hn are non-zero. If f is homogeneous, we

must have M + N = m + n, which is only possible when M = m and N = n.

Therefore both g and h are homogeneous.

(2) Assume I is a homogeneous ideal. Since k[z0, · · · , zn] is a Noetherian ring, I

is finitely generated. So we can write I = (f1, · · · , fm) for some f1, · · · , fm ∈
I which are not necessarily homogeneous polynomials. However, each fi has a

homogeneous decomposition, say, fi = fi,0 + fi,1 + · · ·+ fi,di where di is the degree

of fi. We claim that I is generated by all the fi,j’s; that is,

I = (f1,0, · · · , f1,d1 , f2,0, · · · , f2,d2 , · · · · · · , fm,0, · · · fm,dm).

On one hand, since I is a homogeneous ideal, each fi,j ∈ I, which proves “⊇”.

On the other hand, we notice that every element h ∈ I can be written as h =

f1g1 + · · · + fmgm for some g1, · · · , gm ∈ k[z0, · · · , zn], which can be expanded as

h = f1,0g1 + · · ·+ f1,d1g1 + · · · · · ·+ fm,0gm + · · ·+ fm,dmgm, which proves “⊆”. The

claim shows that I can be generated by finitely many homogeneous polynomials.

Conversely, assume I = (p1, · · · , pl) for finitely many homogeneous polynomials

p1, · · · , pl ∈ k[z0, · · · , zn], with deg pi = ei. Given any polynomial q ∈ I, assume

the homogeneous decomposition of q is q = q0+ · · ·+qk, where k is the degree of q.

We need to show that every qj ∈ I. Since q ∈ I, we can write q = p1r1 + · · ·+ plrl
for some r1, · · · , rl ∈ k[z0, · · · , zn]. For each j with 0 6 j 6 k, by comparing the

degree j terms we get qj = p1r1,j−e1 + · · ·+plrl,j−el , where each ri,j−ei is the sum of

all degree j − ei monomials in ri. Since I = (p1, · · · , pl), we conclude that qj ∈ I
for every j, which implies I is a homogeneous ideal.

(3) Given any point p ∈ V(I), we have g(p) = 0 for every homogeneous polynomial

g ∈ I. In particular, fi(p) = 0 for every i. Therefore p ∈ V(S). This proves

V(I) ⊆ V(S).

On the other hand, given any point q ∈ V(S), we have fi(q) = 0 for every i.

For any homogeneous polynomial g ∈ I, we can write g = f1g1 + · · · + fmgm for

some g1, · · · , gm ∈ k[z0, · · · , zn]. Then g(q) = f1(q)g1(q) + · · · + fm(q)gm(q) =

0. (Rigorously speaking, one should argue that each gi can be chosen to be a
43



homogeneous polynomial of degree equal to deg g − deg fi, which can be achieved

by replacing each gi with its homogeneous part of degree equal to deg g − deg fi.)

This proves that V(S) ⊆ V(I).

Solution 4.3. Projective spaces are better than affine spaces!

(1) Let the two points be p = [p0 : p1 : p2] and q = [q0 : q1 : q2]. A line V(a0z0 +a1z1 +

a2z2) passes through these two points if and only if the following system of linear

equations in a0, a1, a2 hold

p0a0 + p1a1 + p2a2 = 0,

q0a0 + q1a1 + q2a2 = 0.

Since p and q are distinct points in P2, the two rows in the coefficient matrix(
p0 p1 p2
q0 q1 q2

)
are linearly independent, hence the matrix has rank 2. By the theorem of rank-

nullity, the solution space to the system has dimension 1. Let v = (a0, a1, a2) be

a non-zero solution, then every solution can be written as λv for some λ ∈ k.

The solution v defines a line V(a0z0 + a1z1 + a2z2) through the points p and q. It

remains to show the uniqueness. When λ = 0, we have λv = (0, 0, 0) which does

not define a line. For every λ ∈ k\{0}, the line V(λa0z0 + λa1z1 + λa2z2) is the

same as V(a0z0 + a1z1 + a2z2). Therefore the line through p and q is unique.

(2) Let the two lines by V(a0z0 + a1z1 + a2z2) and V(b0z0 + b1z1 + b2z2). A point

[z0 : z1 : z2] lies on both lines if and only if it is a solution of the following system

of linear equations in z0, z1, z2

a0z0 + a1z1 + a2z2 = 0,

b0z0 + b1z1 + b2z2 = 0.

Since the two lines are distinct, the two rows in the coefficient matrix(
a0 a1 a2
b0 b1 b2

)
are linearly independent, hence the matrix has rank 2. By the theorem of rank-

nullity, the solution space to the system has dimension 1. Let w = (z0, z1, z2) be

a non-zero solution, then every solution can be written as λw for some λ ∈ k.

The solution w defines a point [z0 : z1 : z2] of intersection. It remains to show the

uniqueness. When λ = 0, we have λw = (0, 0, 0) which does not define a point

in P2. For every λ ∈ k\{0}, the point [λz0 : λz1 : λz2] is the same as the point

[z0 : z1 : z2]. Therefore the two lines meet at a unique point in P2.

Solution 4.4. Example of projective algebraic sets.
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(1) The empty set ∅ = V(1) and the entire P1 = V(0). For any non-empty finite

subset of P1, say {[u1 : v1], [u2 : v2], · · · , [uk : vk]}, it can be written as V(f) for a

homogeneous polynomial f = (v1z0−u1z1)(v2z0−u2z1) · · · (vkz0−ukz1) ∈ k[z0, z1].

Therefore every set stated in the question is a projective algebraic set in P1.

(2) Let f ∈ k[z0, z1] be a homogeneous polynomial of degree d. Assume ze0 be the

highest power of z0 dividing f for some e 6 d. Then we can write

f = c0z
d
0 + c1z

d−1
0 z1 + · · ·+ cd−ez

e
0z
d−e
1

= zd0 ·
(
c0 + c1

z1
z0

+ · · ·+ cd−e
zd−e1

zd−e0

)
.

We consider the polynomial g(x) = c0 + c1x + · · · + cd−ex
d−e. If g is constant,

then f = c0z
d
0 is a product of d homogeneous polynomials of degree 1. If g is not

a constant, then it can be factored into a product of polynomials of degree 1 as

g(x) = (a1 + b1x) · · · (ad−e + bd−ex). Then we have

f = zd0 ·
(
a1 + b1 ·

z1
z0

)
· · ·
(
ad−e + bd−e ·

z1
z0

)
= ze0 · (a1z0 + b1z1) · · · (ad−ez0 + bd−ez1)

which is also a product of d homogeneous polynomials of degree 1.

(3) Let X ⊆ P1 be a projective algebraic set. By Corollary 4.18, we assume X = V(S)

for a finite set S of homogeneous polynomials in k[z0, z1]. If S does not have

any non-zero polynomial then X = P1. Otherwise, assume f ∈ S is a non-zero

homogeneous polynomial of degree d. By part (2) we can write f = (a1z0 +

b1z1) · · · (adz0 + bdz1) (each factor z0 can be written as 1 · z0 + 0 · z1). For every

p = [u : v] ∈ X, we have f(p) = 0, hence a certain factor of f vanishes at p; more

precisely, aiu + biv = 0 for some i. Therefore p = [bi : −ai]. There are at most d

points of this kind, hence X contains only finitely many points.
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