Solution 4.1. Get familiar with projective spaces.

(1) Since there is only one 1-dimensional linear subspace in \mathbb{A}^1 , \mathbb{P}^0 is a point. $\mathbb{P}^1 = U_0 \cup H_0$ where $U_0 \cong \mathbb{A}^1$ is an affine space and $H_0 \cong \mathbb{P}^0$ is a point. Therefore \mathbb{P}^1 has just one more point than \mathbb{A}^1 . When $\mathbb{k} = \mathbb{C}$, $U_0 \cong \mathbb{A}^1_{\mathbb{C}} = \mathbb{C}^1$ is the complex plane. To view \mathbb{P}^1 as a bubble, imagine we remove a point from the surface of a bubble (or a globe), the remaining part can be stretched into the complex plane. A point $p \in \mathbb{P}^n$ belongs to only one of the standard affine chart U_i if and only

if p has only one non-zero homogeneous coordinate. We can assume this non-zero homogeneous coordinate to be 1, otherwise we can divide all components by it. So the point p can be given by $p = [0 : \cdots : 0 : 1 : 0 : \cdots : 0]$ with 1 at a certain position and 0 at all other positions. There are n + 1 such points.

(2) We regard x_1 and x_2 as non-homogeneous coordinates and substitute $x_1 = \frac{z_1}{z_0}$ and $x_2 = \frac{z_2}{z_0}$. The equation $x_2^2 - x_1^2 - 1 = 0$ becomes $\frac{z_2^2}{z_0^2} - \frac{z_1^2}{z_0^2} - 1 = 0$. We clear the denominators to allow z_0 to be zero, then we get $z_2^2 - z_1^2 - z_0^2 = 0$. To find the points at infinity, set $z_0 = 0$, then we have $z_2^2 - z_1^2 = 0$, hence $z_2 = \pm z_1$. As points in \mathbb{P}^2 we get two solutions $[z_0 : z_1 : z_2] = [0 : 1 : 1]$ or [0 : 1 : -1], which are the points at infinity for $\mathbb{V}_a(x_2^2 - x_1^2 - 1)$. This example tells us that a hyperbola has two "asymptotic directions", which is easy to understand since a hyperbola has two asymptotes.

For $\mathbb{V}_a(x_2^2 - x_1^2)$, we still substitute $x_1 = \frac{z_1}{z_0}$ and $x_2 = \frac{z_2}{z_0}$. The equation $x_2^2 - x_1^2 = 0$ becomes $\frac{z_2^2}{z_0^2} - \frac{z_1^2}{z_0^2} = 0$. We clear the denominators to allow z_0 to be zero, then we get $z_2^2 - z_1^2 = 0$. To find the points at infinity, set $z_0 = 0$, then we still have $z_2^2 - z_1^2 = 0$, hence $z_2 = \pm z_1$. As points in \mathbb{P}^2 we get two solutions $[z_0 : z_1 : z_2] = [0 : 1 : 1]$ or [0:1:-1], which are the points at infinity for $\mathbb{V}_a(x_2^2 - x_1^2)$. The result is not surprising, because the polynomial $x_2^2 - x_1^2$ defines precisely the two asymptotes of the hyperbola in the previous case.

For $\mathbb{V}_a(x_2^2 - x_1^3)$, we still substitute $x_1 = \frac{z_1}{z_0}$ and $x_2 = \frac{z_2}{z_0}$. The equation $x_2^2 - x_1^3 = 0$ becomes $\frac{z_2^2}{z_0^2} - \frac{z_1^3}{z_0^3} = 0$. We clear the denominators to allow z_0 to be zero, then we get $z_0 z_2^2 - z_1^3 = 0$. To find the points at infinity, set $z_0 = 0$, then we get $-z_1^3 = 0$, hence $z_1 = 0$. As points in \mathbb{P}^2 we get one solution $[z_0 : z_1 : z_2] = [0 : 0 : 1]$, which is the point at infinity for $\mathbb{V}_a(x_2^2 - x_1^3)$.

Solution 4.2. Properties of homogeneous polynomials and ideals.

(1) We write the homogeneous decompositions of g and h as

$$g = g_M + g_{M-1} + \dots + g_{m+1} + g_m,$$

$$h = h_N + h_{N-1} + \dots + h_{n+1} + h_n,$$

where M and m are the maximal and minimal degrees of non-zero monomials in grespectively; similarly N and n are the maximal and minimal degrees of non-zero monomials in h respectively. Then the degree of every monomial in the product f = gh is between m + n and M + N. Moreover, the sum of all degree M + Nmonomials in f is given by $g_M h_N$, which is non-zero since both g_M and h_N are non-zero. Similarly, the sum of all degree m + n monomials in f is given by $g_m h_n$, which is non-zero since both g_m and h_n are non-zero. If f is homogeneous, we must have M + N = m + n, which is only possible when M = m and N = n. Therefore both g and h are homogeneous.

(2) Assume I is a homogeneous ideal. Since $\mathbb{k}[z_0, \dots, z_n]$ is a Noetherian ring, I is finitely generated. So we can write $I = (f_1, \dots, f_m)$ for some $f_1, \dots, f_m \in I$ which are not necessarily homogeneous polynomials. However, each f_i has a homogeneous decomposition, say, $f_i = f_{i,0} + f_{i,1} + \dots + f_{i,d_i}$ where d_i is the degree of f_i . We claim that I is generated by all the $f_{i,j}$'s; that is,

$$I = (f_{1,0}, \cdots, f_{1,d_1}, f_{2,0}, \cdots, f_{2,d_2}, \cdots, f_{m,0}, \cdots, f_{m,d_m}).$$

On one hand, since I is a homogeneous ideal, each $f_{i,j} \in I$, which proves " \supseteq ". On the other hand, we notice that every element $h \in I$ can be written as $h = f_1g_1 + \cdots + f_mg_m$ for some $g_1, \cdots, g_m \in \mathbb{k}[z_0, \cdots, z_n]$, which can be expanded as $h = f_{1,0}g_1 + \cdots + f_{1,d_1}g_1 + \cdots + f_{m,0}g_m + \cdots + f_{m,d_m}g_m$, which proves " \subseteq ". The claim shows that I can be generated by finitely many homogeneous polynomials.

Conversely, assume $I = (p_1, \dots, p_l)$ for finitely many homogeneous polynomials $p_1, \dots, p_l \in \mathbb{k}[z_0, \dots, z_n]$, with deg $p_i = e_i$. Given any polynomial $q \in I$, assume the homogeneous decomposition of q is $q = q_0 + \dots + q_k$, where k is the degree of q. We need to show that every $q_j \in I$. Since $q \in I$, we can write $q = p_1r_1 + \dots + p_lr_l$ for some $r_1, \dots, r_l \in \mathbb{k}[z_0, \dots, z_n]$. For each j with $0 \leq j \leq k$, by comparing the degree j terms we get $q_j = p_1r_{1,j-e_1} + \dots + p_lr_{l,j-e_l}$, where each $r_{i,j-e_i}$ is the sum of all degree $j - e_i$ monomials in r_i . Since $I = (p_1, \dots, p_l)$, we conclude that $q_j \in I$ for every j, which implies I is a homogeneous ideal.

(3) Given any point $p \in \mathbb{V}(I)$, we have g(p) = 0 for every homogeneous polynomial $g \in I$. In particular, $f_i(p) = 0$ for every *i*. Therefore $p \in \mathbb{V}(S)$. This proves $\mathbb{V}(I) \subseteq \mathbb{V}(S)$.

On the other hand, given any point $q \in \mathbb{V}(S)$, we have $f_i(q) = 0$ for every *i*. For any homogeneous polynomial $g \in I$, we can write $g = f_1g_1 + \cdots + f_mg_m$ for some $g_1, \cdots, g_m \in \mathbb{K}[z_0, \cdots, z_n]$. Then $g(q) = f_1(q)g_1(q) + \cdots + f_m(q)g_m(q) =$ 0. (Rigorously speaking, one should argue that each g_i can be chosen to be a homogeneous polynomial of degree equal to deg g – deg f_i , which can be achieved by replacing each g_i with its homogeneous part of degree equal to deg g – deg f_i .) This proves that $\mathbb{V}(S) \subseteq \mathbb{V}(I)$.

Solution 4.3. Projective spaces are better than affine spaces!

(1) Let the two points be $p = [p_0 : p_1 : p_2]$ and $q = [q_0 : q_1 : q_2]$. A line $\mathbb{V}(a_0 z_0 + a_1 z_1 + a_2 z_2)$ passes through these two points if and only if the following system of linear equations in a_0, a_1, a_2 hold

$$p_0a_0 + p_1a_1 + p_2a_2 = 0,$$

$$q_0a_0 + q_1a_1 + q_2a_2 = 0.$$

Since p and q are distinct points in \mathbb{P}^2 , the two rows in the coefficient matrix

$$\begin{pmatrix} p_0 & p_1 & p_2 \\ q_0 & q_1 & q_2 \end{pmatrix}$$

are linearly independent, hence the matrix has rank 2. By the theorem of ranknullity, the solution space to the system has dimension 1. Let $\mathbf{v} = (a_0, a_1, a_2)$ be a non-zero solution, then every solution can be written as $\lambda \mathbf{v}$ for some $\lambda \in \mathbb{k}$. The solution \mathbf{v} defines a line $\mathbb{V}(a_0z_0 + a_1z_1 + a_2z_2)$ through the points p and q. It remains to show the uniqueness. When $\lambda = 0$, we have $\lambda \mathbf{v} = (0, 0, 0)$ which does not define a line. For every $\lambda \in \mathbb{k} \setminus \{0\}$, the line $\mathbb{V}(\lambda a_0z_0 + \lambda a_1z_1 + \lambda a_2z_2)$ is the same as $\mathbb{V}(a_0z_0 + a_1z_1 + a_2z_2)$. Therefore the line through p and q is unique.

(2) Let the two lines by $\mathbb{V}(a_0z_0 + a_1z_1 + a_2z_2)$ and $\mathbb{V}(b_0z_0 + b_1z_1 + b_2z_2)$. A point $[z_0: z_1: z_2]$ lies on both lines if and only if it is a solution of the following system of linear equations in z_0, z_1, z_2

$$a_0z_0 + a_1z_1 + a_2z_2 = 0,$$

 $b_0z_0 + b_1z_1 + b_2z_2 = 0.$

Since the two lines are distinct, the two rows in the coefficient matrix

$$\begin{pmatrix} a_0 & a_1 & a_2 \\ b_0 & b_1 & b_2 \end{pmatrix}$$

are linearly independent, hence the matrix has rank 2. By the theorem of ranknullity, the solution space to the system has dimension 1. Let $\mathbf{w} = (z_0, z_1, z_2)$ be a non-zero solution, then every solution can be written as $\lambda \mathbf{w}$ for some $\lambda \in \mathbb{k}$. The solution \mathbf{w} defines a point $[z_0 : z_1 : z_2]$ of intersection. It remains to show the uniqueness. When $\lambda = 0$, we have $\lambda \mathbf{w} = (0, 0, 0)$ which does not define a point in \mathbb{P}^2 . For every $\lambda \in \mathbb{k} \setminus \{0\}$, the point $[\lambda z_0 : \lambda z_1 : \lambda z_2]$ is the same as the point $[z_0 : z_1 : z_2]$. Therefore the two lines meet at a unique point in \mathbb{P}^2 .

Solution 4.4. Example of projective algebraic sets.

- (1) The empty set $\emptyset = \mathbb{V}(1)$ and the entire $\mathbb{P}^1 = \mathbb{V}(0)$. For any non-empty finite subset of \mathbb{P}^1 , say $\{[u_1:v_1], [u_2:v_2], \cdots, [u_k:v_k]\}$, it can be written as $\mathbb{V}(f)$ for a homogeneous polynomial $f = (v_1z_0 u_1z_1)(v_2z_0 u_2z_1)\cdots(v_kz_0 u_kz_1) \in \mathbb{k}[z_0, z_1]$. Therefore every set stated in the question is a projective algebraic set in \mathbb{P}^1 .
- (2) Let $f \in \mathbb{k}[z_0, z_1]$ be a homogeneous polynomial of degree d. Assume z_0^e be the highest power of z_0 dividing f for some $e \leq d$. Then we can write

$$f = c_0 z_0^d + c_1 z_0^{d-1} z_1 + \dots + c_{d-e} z_0^e z_1^{d-e}$$
$$= z_0^d \cdot \left(c_0 + c_1 \frac{z_1}{z_0} + \dots + c_{d-e} \frac{z_1^{d-e}}{z_0^{d-e}} \right).$$

We consider the polynomial $g(x) = c_0 + c_1 x + \cdots + c_{d-e} x^{d-e}$. If g is constant, then $f = c_0 z_0^d$ is a product of d homogeneous polynomials of degree 1. If g is not a constant, then it can be factored into a product of polynomials of degree 1 as $g(x) = (a_1 + b_1 x) \cdots (a_{d-e} + b_{d-e} x)$. Then we have

$$f = z_0^d \cdot \left(a_1 + b_1 \cdot \frac{z_1}{z_0} \right) \cdots \left(a_{d-e} + b_{d-e} \cdot \frac{z_1}{z_0} \right)$$
$$= z_0^e \cdot (a_1 z_0 + b_1 z_1) \cdots (a_{d-e} z_0 + b_{d-e} z_1)$$

which is also a product of d homogeneous polynomials of degree 1.

(3) Let $X \subseteq \mathbb{P}^1$ be a projective algebraic set. By Corollary 4.18, we assume $X = \mathbb{V}(S)$ for a finite set S of homogeneous polynomials in $\mathbb{k}[z_0, z_1]$. If S does not have any non-zero polynomial then $X = \mathbb{P}^1$. Otherwise, assume $f \in S$ is a non-zero homogeneous polynomial of degree d. By part (2) we can write $f = (a_1z_0 + b_1z_1)\cdots(a_dz_0 + b_dz_1)$ (each factor z_0 can be written as $1 \cdot z_0 + 0 \cdot z_1$). For every $p = [u:v] \in X$, we have f(p) = 0, hence a certain factor of f vanishes at p; more precisely, $a_iu + b_iv = 0$ for some i. Therefore $p = [b_i: -a_i]$. There are at most dpoints of this kind, hence X contains only finitely many points.