Solutions to Exercise Sheet 4

Solution 4.1. Get familiar with projective spaces.
(1) Since there is only one 1-dimensional linear subspace in $\mathbb{A}^{1}, \mathbb{P}^{0}$ is a point. $\mathbb{P}^{1}=$ $U_{0} \cup H_{0}$ where $U_{0} \cong \mathbb{A}^{1}$ is an affine space and $H_{0} \cong \mathbb{P}^{0}$ is a point. Therefore \mathbb{P}^{1} has just one more point than \mathbb{A}^{1}. When $\mathbb{k}=\mathbb{C}, U_{0} \cong \mathbb{A}_{\mathbb{C}}^{1}=\mathbb{C}^{1}$ is the complex plane. To view \mathbb{P}^{1} as a bubble, imagine we remove a point from the surface of a bubble (or a globe), the remaining part can be stretched into the complex plane.

A point $p \in \mathbb{P}^{n}$ belongs to only one of the standard affine chart U_{i} if and only if p has only one non-zero homogeneous coordinate. We can assume this non-zero homogeneous coordinate to be 1 , otherwise we can divide all components by it. So the point p can be given by $p=[0: \cdots: 0: 1: 0: \cdots: 0]$ with 1 at a certain position and 0 at all other positions. There are $n+1$ such points.
(2) We regard x_{1} and x_{2} as non-homogeneous coordinates and substitute $x_{1}=\frac{z_{1}}{z_{0}}$ and $x_{2}=\frac{z_{2}}{z_{0}}$. The equation $x_{2}^{2}-x_{1}^{2}-1=0$ becomes $\frac{z_{2}^{2}}{z_{0}^{2}}-\frac{z_{1}^{2}}{z_{0}^{2}}-1=0$. We clear the denominators to allow z_{0} to be zero, then we get $z_{2}^{2}-z_{1}^{2}-z_{0}^{2}=0$. To find the points at infinity, set $z_{0}=0$, then we have $z_{2}^{2}-z_{1}^{2}=0$, hence $z_{2}= \pm z_{1}$. As points in \mathbb{P}^{2} we get two solutions $\left[z_{0}: z_{1}: z_{2}\right]=[0: 1: 1]$ or $[0: 1:-1]$, which are the points at infinity for $\mathbb{V}_{a}\left(x_{2}^{2}-x_{1}^{2}-1\right)$. This example tells us that a hyperbola has two "asymptotic directions", which is easy to understand since a hyperbola has two asymptotes.

For $\mathbb{V}_{a}\left(x_{2}^{2}-x_{1}^{2}\right)$, we still substitute $x_{1}=\frac{z_{1}}{z_{0}}$ and $x_{2}=\frac{z_{2}}{z_{0}}$. The equation $x_{2}^{2}-x_{1}^{2}=0$ becomes $\frac{z_{2}^{2}}{z_{0}^{2}}-\frac{z_{1}^{2}}{z_{0}^{2}}=0$. We clear the denominators to allow z_{0} to be zero, then we get $z_{2}^{2}-z_{1}^{2}=0$. To find the points at infinity, set $z_{0}=0$, then we still have $z_{2}^{2}-z_{1}^{2}=0$, hence $z_{2}= \pm z_{1}$. As points in \mathbb{P}^{2} we get two solutions $\left[z_{0}: z_{1}: z_{2}\right]=[0: 1: 1]$ or $[0: 1:-1]$, which are the points at infinity for $\mathbb{V}_{a}\left(x_{2}^{2}-x_{1}^{2}\right)$. The result is not surprising, because the polynomial $x_{2}^{2}-x_{1}^{2}$ defines precisely the two asymptotes of the hyperbola in the previous case.

For $\mathbb{V}_{a}\left(x_{2}^{2}-x_{1}^{3}\right)$, we still substitute $x_{1}=\frac{z_{1}}{z_{0}}$ and $x_{2}=\frac{z_{2}}{z_{0}}$. The equation $x_{2}^{2}-x_{1}^{3}=0$ becomes $\frac{z_{2}^{2}}{z_{0}^{2}}-\frac{z_{1}^{3}}{z_{0}^{3}}=0$. We clear the denominators to allow z_{0} to be zero, then we get $z_{0} z_{2}^{2}-z_{1}^{3}=0$. To find the points at infinity, set $z_{0}=0$, then we get $-z_{1}^{3}=0$, hence $z_{1}=0$. As points in \mathbb{P}^{2} we get one solution $\left[z_{0}: z_{1}: z_{2}\right]=[0: 0: 1]$, which is the point at infinity for $\mathbb{V}_{a}\left(x_{2}^{2}-x_{1}^{3}\right)$.

Solution 4.2. Properties of homogeneous polynomials and ideals.
(1) We write the homogeneous decompositions of g and h as

$$
\begin{aligned}
& g=g_{M}+g_{M-1}+\cdots+g_{m+1}+g_{m}, \\
& h=h_{N}+h_{N-1}+\cdots+h_{n+1}+h_{n},
\end{aligned}
$$

where M and m are the maximal and minimal degrees of non-zero monomials in g respectively; similarly N and n are the maximal and minimal degrees of non-zero monomials in h respectively. Then the degree of every monomial in the product $f=g h$ is between $m+n$ and $M+N$. Moreover, the sum of all degree $M+N$ monomials in f is given by $g_{M} h_{N}$, which is non-zero since both g_{M} and h_{N} are non-zero. Similarly, the sum of all degree $m+n$ monomials in f is given by $g_{m} h_{n}$, which is non-zero since both g_{m} and h_{n} are non-zero. If f is homogeneous, we must have $M+N=m+n$, which is only possible when $M=m$ and $N=n$. Therefore both g and h are homogeneous.
(2) Assume I is a homogeneous ideal. Since $\mathbb{k}\left[z_{0}, \cdots, z_{n}\right]$ is a Noetherian ring, I is finitely generated. So we can write $I=\left(f_{1}, \cdots, f_{m}\right)$ for some $f_{1}, \cdots, f_{m} \in$ I which are not necessarily homogeneous polynomials. However, each f_{i} has a homogeneous decomposition, say, $f_{i}=f_{i, 0}+f_{i, 1}+\cdots+f_{i, d_{i}}$ where d_{i} is the degree of f_{i}. We claim that I is generated by all the $f_{i, j}$'s; that is,

$$
I=\left(f_{1,0}, \cdots, f_{1, d_{1}}, f_{2,0}, \cdots, f_{2, d_{2}}, \cdots \cdots, f_{m, 0}, \cdots f_{m, d_{m}}\right)
$$

On one hand, since I is a homogeneous ideal, each $f_{i, j} \in I$, which proves " \supseteq ". On the other hand, we notice that every element $h \in I$ can be written as $h=$ $f_{1} g_{1}+\cdots+f_{m} g_{m}$ for some $g_{1}, \cdots, g_{m} \in \mathbb{k}\left[z_{0}, \cdots, z_{n}\right]$, which can be expanded as $h=f_{1,0} g_{1}+\cdots+f_{1, d_{1}} g_{1}+\cdots \cdots+f_{m, 0} g_{m}+\cdots+f_{m, d_{m}} g_{m}$, which proves " \subseteq ". The claim shows that I can be generated by finitely many homogeneous polynomials.

Conversely, assume $I=\left(p_{1}, \cdots, p_{l}\right)$ for finitely many homogeneous polynomials $p_{1}, \cdots, p_{l} \in \mathbb{k}\left[z_{0}, \cdots, z_{n}\right]$, with $\operatorname{deg} p_{i}=e_{i}$. Given any polynomial $q \in I$, assume the homogeneous decomposition of q is $q=q_{0}+\cdots+q_{k}$, where k is the degree of q. We need to show that every $q_{j} \in I$. Since $q \in I$, we can write $q=p_{1} r_{1}+\cdots+p_{l} r_{l}$ for some $r_{1}, \cdots, r_{l} \in \mathbb{k}\left[z_{0}, \cdots, z_{n}\right]$. For each j with $0 \leqslant j \leqslant k$, by comparing the degree j terms we get $q_{j}=p_{1} r_{1, j-e_{1}}+\cdots+p_{l} r_{l, j-e_{l}}$, where each $r_{i, j-e_{i}}$ is the sum of all degree $j-e_{i}$ monomials in r_{i}. Since $I=\left(p_{1}, \cdots, p_{l}\right)$, we conclude that $q_{j} \in I$ for every j, which implies I is a homogeneous ideal.
(3) Given any point $p \in \mathbb{V}(I)$, we have $g(p)=0$ for every homogeneous polynomial $g \in I$. In particular, $f_{i}(p)=0$ for every i. Therefore $p \in \mathbb{V}(S)$. This proves $\mathbb{V}(I) \subseteq \mathbb{V}(S)$.

On the other hand, given any point $q \in \mathbb{V}(S)$, we have $f_{i}(q)=0$ for every i. For any homogeneous polynomial $g \in I$, we can write $g=f_{1} g_{1}+\cdots+f_{m} g_{m}$ for some $g_{1}, \cdots, g_{m} \in \mathbb{k}\left[z_{0}, \cdots, z_{n}\right]$. Then $g(q)=f_{1}(q) g_{1}(q)+\cdots+f_{m}(q) g_{m}(q)=$ 0 . (Rigorously speaking, one should argue that each g_{i} can be chosen to be a
homogeneous polynomial of degree equal to $\operatorname{deg} g-\operatorname{deg} f_{i}$, which can be achieved by replacing each g_{i} with its homogeneous part of degree equal to $\operatorname{deg} g-\operatorname{deg} f_{i}$.) This proves that $\mathbb{V}(S) \subseteq \mathbb{V}(I)$.

Solution 4.3. Projective spaces are better than affine spaces!
(1) Let the two points be $p=\left[p_{0}: p_{1}: p_{2}\right]$ and $q=\left[q_{0}: q_{1}: q_{2}\right]$. A line $\mathbb{V}\left(a_{0} z_{0}+a_{1} z_{1}+\right.$ $a_{2} z_{2}$) passes through these two points if and only if the following system of linear equations in a_{0}, a_{1}, a_{2} hold

$$
\begin{aligned}
p_{0} a_{0}+p_{1} a_{1}+p_{2} a_{2} & =0, \\
q_{0} a_{0}+q_{1} a_{1}+q_{2} a_{2} & =0 .
\end{aligned}
$$

Since p and q are distinct points in \mathbb{P}^{2}, the two rows in the coefficient matrix

$$
\left(\begin{array}{lll}
p_{0} & p_{1} & p_{2} \\
q_{0} & q_{1} & q_{2}
\end{array}\right)
$$

are linearly independent, hence the matrix has rank 2. By the theorem of ranknullity, the solution space to the system has dimension 1 . Let $\mathbf{v}=\left(a_{0}, a_{1}, a_{2}\right)$ be a non-zero solution, then every solution can be written as $\lambda \mathbf{v}$ for some $\lambda \in \mathbb{k}$. The solution \mathbf{v} defines a line $\mathbb{V}\left(a_{0} z_{0}+a_{1} z_{1}+a_{2} z_{2}\right)$ through the points p and q. It remains to show the uniqueness. When $\lambda=0$, we have $\lambda \mathbf{v}=(0,0,0)$ which does not define a line. For every $\lambda \in \mathbb{k} \backslash\{0\}$, the line $\mathbb{V}\left(\lambda a_{0} z_{0}+\lambda a_{1} z_{1}+\lambda a_{2} z_{2}\right)$ is the same as $\mathbb{V}\left(a_{0} z_{0}+a_{1} z_{1}+a_{2} z_{2}\right)$. Therefore the line through p and q is unique.
(2) Let the two lines by $\mathbb{V}\left(a_{0} z_{0}+a_{1} z_{1}+a_{2} z_{2}\right)$ and $\mathbb{V}\left(b_{0} z_{0}+b_{1} z_{1}+b_{2} z_{2}\right)$. A point $\left[z_{0}: z_{1}: z_{2}\right]$ lies on both lines if and only if it is a solution of the following system of linear equations in z_{0}, z_{1}, z_{2}

$$
\begin{aligned}
a_{0} z_{0}+a_{1} z_{1}+a_{2} z_{2} & =0, \\
b_{0} z_{0}+b_{1} z_{1}+b_{2} z_{2} & =0 .
\end{aligned}
$$

Since the two lines are distinct, the two rows in the coefficient matrix

$$
\left(\begin{array}{lll}
a_{0} & a_{1} & a_{2} \\
b_{0} & b_{1} & b_{2}
\end{array}\right)
$$

are linearly independent, hence the matrix has rank 2. By the theorem of ranknullity, the solution space to the system has dimension 1 . Let $\mathbf{w}=\left(z_{0}, z_{1}, z_{2}\right)$ be a non-zero solution, then every solution can be written as $\lambda \mathbf{w}$ for some $\lambda \in \mathbb{k}$. The solution \mathbf{w} defines a point $\left[z_{0}: z_{1}: z_{2}\right]$ of intersection. It remains to show the uniqueness. When $\lambda=0$, we have $\lambda \mathbf{w}=(0,0,0)$ which does not define a point in \mathbb{P}^{2}. For every $\lambda \in \mathbb{k} \backslash\{0\}$, the point $\left[\lambda z_{0}: \lambda z_{1}: \lambda z_{2}\right]$ is the same as the point $\left[z_{0}: z_{1}: z_{2}\right]$. Therefore the two lines meet at a unique point in \mathbb{P}^{2}.

Solution 4.4. Example of projective algebraic sets.
(1) The empty set $\varnothing=\mathbb{V}(1)$ and the entire $\mathbb{P}^{1}=\mathbb{V}(0)$. For any non-empty finite subset of \mathbb{P}^{1}, say $\left\{\left[u_{1}: v_{1}\right],\left[u_{2}: v_{2}\right], \cdots,\left[u_{k}: v_{k}\right]\right\}$, it can be written as $\mathbb{V}(f)$ for a homogeneous polynomial $f=\left(v_{1} z_{0}-u_{1} z_{1}\right)\left(v_{2} z_{0}-u_{2} z_{1}\right) \cdots\left(v_{k} z_{0}-u_{k} z_{1}\right) \in \mathbb{k}\left[z_{0}, z_{1}\right]$. Therefore every set stated in the question is a projective algebraic set in \mathbb{P}^{1}.
(2) Let $f \in \mathbb{k}\left[z_{0}, z_{1}\right]$ be a homogeneous polynomial of degree d. Assume z_{0}^{e} be the highest power of z_{0} dividing f for some $e \leqslant d$. Then we can write

$$
\begin{aligned}
f & =c_{0} z_{0}^{d}+c_{1} z_{0}^{d-1} z_{1}+\cdots+c_{d-e} z_{0}^{e} z_{1}^{d-e} \\
& =z_{0}^{d} \cdot\left(c_{0}+c_{1} \frac{z_{1}}{z_{0}}+\cdots+c_{d-e} \frac{z_{1}^{d-e}}{z_{0}^{d-e}}\right) .
\end{aligned}
$$

We consider the polynomial $g(x)=c_{0}+c_{1} x+\cdots+c_{d-e} x^{d-e}$. If g is constant, then $f=c_{0} z_{0}^{d}$ is a product of d homogeneous polynomials of degree 1 . If g is not a constant, then it can be factored into a product of polynomials of degree 1 as $g(x)=\left(a_{1}+b_{1} x\right) \cdots\left(a_{d-e}+b_{d-e} x\right)$. Then we have

$$
\begin{aligned}
f & =z_{0}^{d} \cdot\left(a_{1}+b_{1} \cdot \frac{z_{1}}{z_{0}}\right) \cdots\left(a_{d-e}+b_{d-e} \cdot \frac{z_{1}}{z_{0}}\right) \\
& =z_{0}^{e} \cdot\left(a_{1} z_{0}+b_{1} z_{1}\right) \cdots\left(a_{d-e} z_{0}+b_{d-e} z_{1}\right)
\end{aligned}
$$

which is also a product of d homogeneous polynomials of degree 1 .
(3) Let $X \subseteq \mathbb{P}^{1}$ be a projective algebraic set. By Corollary 4.18, we assume $X=\mathbb{V}(S)$ for a finite set S of homogeneous polynomials in $\mathbb{k}\left[z_{0}, z_{1}\right]$. If S does not have any non-zero polynomial then $X=\mathbb{P}^{1}$. Otherwise, assume $f \in S$ is a non-zero homogeneous polynomial of degree d. By part (2) we can write $f=\left(a_{1} z_{0}+\right.$ $\left.b_{1} z_{1}\right) \cdots\left(a_{d} z_{0}+b_{d} z_{1}\right)$ (each factor z_{0} can be written as $\left.1 \cdot z_{0}+0 \cdot z_{1}\right)$. For every $p=[u: v] \in X$, we have $f(p)=0$, hence a certain factor of f vanishes at p; more precisely, $a_{i} u+b_{i} v=0$ for some i. Therefore $p=\left[b_{i}:-a_{i}\right]$. There are at most d points of this kind, hence X contains only finitely many points.

