Solutions to Exercise Sheet 5

Solution 5.1. Example: linear embedding and linear projection.
(1) All components are given by homogeneous polynomials of degree 1. For every point $\left[z_{0}: z_{1}\right] \in \mathbb{P}^{1}$, we have either $z_{0} \neq 0$ or $z_{1} \neq 0$, hence $\varphi\left(\left[z_{0}: z_{1}\right]\right)=\left[z_{0}: z_{1}: 0: 0\right]$ has at least one non-zero coordinate, hence is clearly a point in \mathbb{P}^{3}. Therefore φ is a morphism. It is not dominant, because for the projective algebraic set $W=\mathbb{V}\left(z_{2}, z_{3}\right) \subseteq \mathbb{P}^{3}$, we have $\varphi\left(\left[z_{0}: z_{1}\right]\right) \in W$ for every point $\left[z_{0}: z_{1}\right] \in \mathbb{P}^{1}$.
(2) All components are given by homogeneous polynomials of degree 1 . The map is not defined at every point in \mathbb{P}^{3}, but for every point $\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \in \mathbb{P}^{3}$ with $z_{2} \neq 0$ or $z_{3} \neq 0$, its image $\psi\left(\left[z_{0}: z_{1}: z_{2}: z_{3}\right]\right)=\left[z_{2}: z_{3}\right]$ has at least one non-zero coordinate, and is clearly a point in \mathbb{P}^{1}. Therefore ψ is a rational map. To see it is dominant, we first claim that ψ is surjective. In fact, for every point $\left[z_{2}: z_{3}\right] \in \mathbb{P}^{1}$, we have that $\left[z_{2}: z_{3}\right]=\psi\left(\left[z_{0}: z_{1}: z_{2}: z_{3}\right]\right)$ for any choice of $z_{0}, z_{1} \in \mathbb{k}$. Since ψ is surjective, we can apply Lemma 5.16 and choose $Z=\varnothing$ to conclude that ψ is dominant.
(3) The composition is not well-defined because for every $\left[z_{0}: z_{1}\right] \in \mathbb{P}^{1}$, we have $(\psi \circ \varphi)\left(\left[z_{0}: z_{1}\right]\right)=\psi\left(\left[z_{0}: z_{1}: 0: 0\right]\right)=[0: 0]$ which is not a point in \mathbb{P}^{1}. This shows that $\psi \circ \varphi$ is nowhere well-defined, which violates the second condition in the definition of a rational map.

Solution 5.2. Example: the cooling tower.
(1) Assume we can write $y_{0} y_{3}-y_{1} y_{2}=f g$ for some $f, g \in \mathbb{k}\left[y_{0}, y_{1}, y_{2}, y_{3}\right]$. Since the polynomial $y_{0} y_{3}-y_{1} y_{2}$ has degree 1 in y_{0}, the degrees of f and g in y_{0} should be 0 and 1 respectively. Without loss of generality we assume $f=y_{0} f_{1}+f_{0}$ and $g=g_{0}$, where $f_{1}, f_{0}, g_{0} \in \mathbb{k}\left[y_{1}, y_{2}, y_{3}\right]$. By comparing the coefficients of terms of degree 1 and 0 in y_{0}, we get $f_{1} g_{0}=y_{3}$ and $f_{0} g_{0}=-y_{1} y_{2}$. Therefore g_{0} is a common factor of y_{3} and $-y_{1} y_{2}$, which has to be a constant. This implies g is a constant, hence $y_{0} y_{3}-y_{1} y_{2}$ is irreducible. Since it is a homogeneous polynomial, $\mathbb{V}\left(y_{0} y_{3}-y_{1} y_{2}\right)$ is a projective algebraic set. By Lemma 5.4, the principal ideal $I=\left(y_{0} y_{3}-y_{1} y_{2}\right)$ in $\mathbb{k}\left[y_{0}, y_{1}, y_{2}, y_{3}\right]$ is a prime ideal. Hence by Lemma 4.17, $\mathbb{V}\left(y_{0} y_{3}-y_{1} y_{2}\right)=\mathbb{V}(I)$, which is a projective variety by Proposition 5.2.
(2) It is clear that all components of φ are given by homogeneous polynomials of degree 2. For any point $p=\left[x_{0}: x_{1}: x_{2}\right] \in \mathbb{P}^{2}$, if x_{0} is non-zero, or x_{1} and x_{2} are simultaneously non-zero, the image $\varphi(p)$ has at least one non-zero component. Hence φ is defined on a non-empty subset of \mathbb{P}^{2}. To show its image is always in Y, we find that $y_{0} y_{3}-y_{1} y_{2}=\left(x_{0}^{2}\right)\left(x_{1} x_{2}\right)-\left(x_{0} x_{1}\right)\left(x_{0} x_{2}\right)=0$. Therefore φ is a rational map.

To show that φ is dominant, we observe that every point $q=\left[y_{0}: y_{1}: y_{2}\right.$: $\left.y_{3}\right] \in Y$ with $y_{0} \neq 0$ is the image of the point $p=\left[y_{0}: y_{1}: y_{2}\right]$. Indeed, $\varphi(p)=\left[y_{0}^{2}: y_{0} y_{1}: y_{0} y_{2}: y_{1} y_{2}\right]=\left[y_{0}^{2}: y_{0} y_{1}: y_{0} y_{2}: y_{0} y_{3}\right]=\left[y_{0}: y_{1}: y_{2}: y_{3}\right]=q$. Set $Z=\mathbb{V}\left(y_{0} y_{3}-y_{1} y_{2}, y_{0}\right)$, then $Z \subseteq Y$, and is strictly smaller than Y (e.g. $[1: 0: 0: 0] \in Y \backslash Z)$. And every point $q \in Y \backslash Z$ is in the image of φ. By Lemma 5.16, φ is dominant.
(3) We first realise that every component of ψ is a homogeneous polynomial of degree 1. ψ is well-defined at every point $q=\left[y_{0}: y_{1}: y_{2}: y_{3}\right] \in Y$ such that y_{0}, y_{1}, y_{2} are not simultaneously zero (e.g. [1:0:0:0] is such a point). Hence it is defined on a non-empty subset of Y. The image $\psi(q)$ is always a point in \mathbb{P}^{2} if it is defined. Therefore ψ is a rational map.

To show ψ is dominant, we first observe that each point $p=\left[x_{0}: x_{1}: x_{2}\right] \in \mathbb{P}^{2}$ with $x_{0} \neq 0$ is the image of the point $q=\left[x_{0}: x_{1}: x_{2}: \frac{x_{1} x_{2}}{x_{0}}\right]$. Indeed, q is a well-defined point since $x_{0} \neq 0$, and $q \in Y$ since it satisfies the defining equation of Y. The expression that defines ψ gives $\psi(q)=p$. If we set $Z=\mathbb{V}\left(x_{0}\right)$, then $Z \subsetneq \mathbb{P}^{2}$. Since every point in $\mathbb{P}^{2} \backslash Z$ is in the image of ψ, we conclude that ψ is dominant by Lemma 5.16.
(4) We show that φ and ψ are mutually inverse rational maps. For every point $p=$ $\left[x_{0}: x_{1}: x_{2}\right] \in \mathbb{P}^{2}$ at which $\psi \circ \varphi$ is defined, we have $(\psi \circ \varphi)(p)=\psi\left(\left[x_{0}^{2}:\right.\right.$ $\left.\left.x_{0} x_{1}: x_{0} x_{2}: x_{1} x_{2}\right]\right)=\left[x_{0}^{2}: x_{0} x_{1}: x_{0} x_{2}\right]=\left[x_{0}: x_{1}: x_{2}\right]=p$. For every point $q=\left[y_{0}: y_{1}: y_{2}: y_{3}\right] \in Y$ at which $\varphi \circ \psi$ is defined, we have $(\varphi \circ \psi)(q)=\varphi\left(\left[y_{0}:\right.\right.$ $\left.\left.y_{1}: y_{2}\right]\right)=\left[y_{0}^{2}: y_{0} y_{1}: y_{0} y_{2}: y_{1} y_{2}\right]=\left[y_{0}^{2}: y_{0} y_{1}: y_{0} y_{2}: y_{0} y_{3}\right]=\left[y_{0}: y_{1}: y_{2}: y_{3}\right]=q$. Therefore φ and ψ are mutually inverse birational maps. It follows that Y is birational to \mathbb{P}^{2}, hence Y is rational.

Solution 5.3. Example: the projective twisted cubic.
(1) All components of φ are homogeneous of the same degree 3 . For every point $[u: v] \in \mathbb{P}^{1}$, we have either $u \neq 0$ or $v \neq 0$, therefore either $u^{3} \neq 0$ or $v^{3} \neq 0$, hence $\varphi([u: v])=\left[u^{3}: u^{2} v: u v^{2}: v^{3}\right]$ is always a well-defined point. To show that $\varphi([u: v]) \in Y$, we need to check all defining polynomial of Y are satisfied. Indeed, we have

$$
\begin{aligned}
y_{0} y_{2}-y_{1}^{2} & =\left(u^{3}\right)\left(u v^{2}\right)-\left(u^{2} v\right)^{2}=0 \\
y_{1} y_{3}-y_{2}^{2} & =\left(u^{2} v\right)\left(v^{3}\right)-\left(u v^{2}\right)^{2}=0 ; \\
y_{0} y_{3}-y_{1} y_{2} & =\left(u^{3}\right)\left(v^{3}\right)-\left(u^{2} v\right)\left(u v^{2}\right)=0 .
\end{aligned}
$$

We conclude that φ is a morphism.
(2) We define $\psi: Y \longrightarrow \mathbb{P}^{1}$ in the following way: for every point $\left[y_{0}: y_{1}: y_{2}: y_{3}\right] \in Y$, let $\psi\left(\left[y_{0}: y_{1}: y_{2}: y_{3}\right]\right)=\left[y_{0}: y_{1}\right]$ or $\left[y_{2}: y_{3}\right]$. We first check that ψ is a morphism.

Both expressions used to define ψ are given by homogeneous polynomials of degree 1 . For any point $\left[y_{0}: y_{1}: y_{2}: y_{3}\right]$, if either y_{0} or y_{1} is non-zero (e.g. [1:0:0:0]), then the first expression applies; if either y_{2} or y_{3} is non-zero (e.g. $[0: 0: 0: 1])$, then the second expression applies. This shows that both expressions are defined on non-empty subsets of Y. Moreover, for any point $\left[y_{0}: y_{1}: y_{2}: y_{3}\right]$, at least one of its coordinates is non-zero, hence at least one of the expressions can be used to compute its image under ψ, hence ψ is defined at every point in Y. The image $\psi(q)$ for any point $q \in Y$ is clearly a point in \mathbb{P}^{1}.

To show ψ is a morphism, it remains to show that, if the two expressions are both defined at a certain point $q=\left[y_{0}: y_{1}: y_{2}: y_{3}\right] \in Y$, then they give the same image. For such a point q, we claim $y_{0} \neq 0$; otherwise $y_{1}^{2}=y_{0} y_{2}=0$, which implies the first expression is invalid. Similarly, we claim $y_{3} \neq 0$; otherwise $y_{2}^{2}=y_{1} y_{3}=0$, which implies the second expression is invalid. Therefore $y_{1} y_{2}=y_{0} y_{3} \neq 0$, which implies $y_{1} \neq 0$ and $y_{2} \neq 0$. So all coordinates of q are non-zero. For such a point q, we have $\left[y_{0}: y_{1}\right]=\left[y_{0} y_{3}: y_{1} y_{3}\right]=\left[y_{1} y_{2}: y_{1} y_{3}\right]=\left[y_{2}: y_{3}\right]$, hence both expressions give the same image of q.

Finally we check that φ and ψ are mutually inverse to each other. Given any point $p=[u: v] \in \mathbb{P}^{1}$, we have

$$
(\psi \circ \varphi)(p)=\psi\left(\left[u^{3}: u^{2} v: u v^{2}: v^{3}\right]\right)=\left\{\begin{array}{l}
{\left[u^{3}: u^{2} v\right]=[u: v] ;} \\
{\left[u v^{2}: v^{3}\right]=[u: v]}
\end{array}\right.
$$

For any point $q=\left[y_{0}: y_{1}: y_{2}: y_{3}\right] \in Y$, we notice that $y_{0} y_{1}^{2}=y_{0} \cdot y_{0} y_{2}=y_{0}^{2} y_{2}$ and $y_{1}^{3}=y_{1} \cdot y_{0} y_{2}=y_{0} \cdot y_{1} y_{2}=y_{0} \cdot y_{0} y_{3}=y_{0}^{2} y_{3}$. Therefore if we use the first expression that defines ψ, we have

$$
\begin{aligned}
(\varphi \circ \psi)(q) & =\varphi\left(\left[y_{0}: y_{1}\right]\right) \\
& =\left[y_{0}^{3}: y_{0}^{2} y_{1}: y_{0} y_{1}^{2}: y_{1}^{3}\right] \\
& =\left[y_{0}^{3}: y_{0}^{2} y_{1}: y_{0}^{2} y_{2}: y_{0}^{2} y_{3}\right] \\
& =\left[y_{0}: y_{1}: y_{2}: y_{3}\right] .
\end{aligned}
$$

Similarly, noticing that $y_{2}^{2} y_{3}=y_{1} y_{3} \cdot y_{3}=y_{1} y_{3}^{2}$ and $y_{2}^{3}=y_{2} \cdot y_{1} y_{3}=y_{1} y_{2} \cdot y_{3}=$ $y_{0} y_{3} \cdot y_{3}=y_{0} y_{3}^{2}$, we can use the second expression that defines ψ to compute

$$
\begin{aligned}
(\varphi \circ \psi)(q) & =\varphi\left(\left[y_{2}: y_{3}\right]\right) \\
& =\left[y_{2}^{3}: y_{2}^{2} y_{3}: y_{2} y_{3}^{2}: y_{3}^{3}\right] \\
& =\left[y_{0} y_{3}^{2}: y_{1} y_{3}^{2}: y_{2} y_{3}^{2}: y_{3}^{3}\right] \\
& =\left[y_{0}: y_{1}: y_{2}: y_{3}\right] .
\end{aligned}
$$

The above calculation shows that φ and ψ are mutually inverse to each other, hence they are birational. Since they are both morphisms, they are isomorphisms. We conclude that Y is isomorphic to \mathbb{P}^{1}.

Solution 5.4. A famous example: blow-up at a point.
(1) All components of φ are homogeneous of degree 2. Given a point $p=\left[x_{0}: x_{1}:\right.$ $\left.x_{2}\right] \in \mathbb{P}^{2}$, if $x_{0} \neq 0$ or $x_{1} \neq 0$, then $x_{0}^{2} \neq 0$ or $x_{1}^{2} \neq 0$, hence at least one component of $\varphi(p)$ is non-zero, which implies $\varphi(p)$ is defined. When $\varphi(p)$ is defined, we need to check it is a point in Y. This can be verified by

$$
\begin{aligned}
y_{0} y_{2}-y_{1}^{2} & =\left(x_{0}^{2}\right)\left(x_{1}^{2}\right)-\left(x_{0} x_{1}\right)^{2}=0 ; \\
y_{0} y_{4}-y_{1} y_{3} & =\left(x_{0}^{2}\right)\left(x_{1} x_{2}\right)-\left(x_{0} x_{1}\right)\left(x_{0} x_{2}\right)=0 ; \\
y_{1} y_{4}-y_{2} y_{3} & =\left(x_{0} x_{1}\right)\left(x_{1} x_{2}\right)-\left(x_{1}^{2}\right)\left(x_{0} x_{2}\right)=0 .
\end{aligned}
$$

This proves φ is a rational map.
(2) We first write down the formula for ψ, then prove ψ is a morphism, finally show that the two compositions of φ and ψ are identities.

The morphism $\psi: Y \longrightarrow \mathbb{P}^{2}$ is defined as follows: for every point $q=\left[y_{0}:\right.$ $\left.y_{1}: y_{2}: y_{3}: y_{4}\right]$, let $\psi(q)=\left[y_{0}: y_{1}: y_{3}\right]$ or $\left[y_{1}: y_{2}: y_{4}\right]$. It is clear that both expressions in the definition of ψ are given by homogeneous polynomials of degree 1. When y_{0}, y_{1} and y_{3} are not simultaneously zero (e.g. [1:0:0:0:0]), then the first expression applies. When y_{1}, y_{2} and y_{4} are not simultaneously zero (e.g. $[0: 0: 0: 0: 1])$, then the second expression applies. Hence both expressions are defined on non-empty subsets of Y. For every point $q \in Y$, at least one of its coordinates is non-zero, which means at least one of two expressions is well-defined at q. And the image of q is clearly a point in \mathbb{P}^{2}, no matter which expression we use to compute the image.

We still need to show that the two expressions define the same image of q when they both apply. There are a few cases to consider. Case 1: if y_{0}, y_{1} and y_{3} are all non-zero, then set $\lambda=\frac{y_{1}}{y_{0}}=\frac{y_{2}}{y_{1}}=\frac{y_{4}}{y_{3}}$. Indeed, the three fractions are equal because of the defining equations of Y. Then $\left[y_{0}: y_{1}: y_{3}\right]=\left[\lambda y_{0}: \lambda y_{1}: \lambda y_{3}\right]=\left[y_{1}: y_{2}: y_{4}\right]$. Case 2: if $y_{0}=0$, then $y_{1}^{2}=y_{0} y_{2}=0$ implies $y_{1}=0$. Since we assumed the expression $\left[y_{0}: y_{1}: y_{3}\right]$ is well-defined at q, we must have $y_{3} \neq 0$. Then $y_{2} y_{3}=y_{1} y_{4}=0$ implies $y_{2}=0$. Since we assumed the expression $\left[y_{1}: y_{2}: y_{4}\right]$ is well-defined at q, we must have $y_{4} \neq 0$. Now $\left[y_{0}: y_{1}: y_{3}\right]=\left[0: 0: y_{3}\right]=[0: 0:$ $\left.y_{4}\right]=\left[y_{1}: y_{2}: y_{4}\right]$. Case 3: if $y_{0} \neq 0$ and $y_{1}=0$, then $y_{0} y_{2}=y_{1}^{2}=0$ implies $y_{2}=0$, and $y_{0} y_{4}=y_{1} y_{3}=0$ implies $y_{4}=0$, then the expression $\left[y_{1}: y_{2}: y_{4}\right]$ is not defined at q. Hence this case cannot happen. Case 4: if $y_{0} \neq 0$ and $y_{1} \neq 0$ and $y_{3}=0$, then $y_{0} y_{4}=y_{1} y_{3}=0$ implies $y_{4}=0$. Set $\lambda=\frac{y_{1}}{y_{0}}=\frac{y_{2}}{y_{1}}$. Then $\left[y_{0}: y_{1}: y_{3}\right]=\left[y_{0}: y_{1}: 0\right]=\left[\lambda y_{0}: \lambda y_{1}: 0\right]=\left[y_{1}: y_{2}: 0\right]=\left[y_{1}: y_{2}: y_{4}\right]$. In summary, we always have $\left[y_{0}: y_{1}: y_{3}\right]=\left[y_{1}: y_{2}: y_{4}\right]$. This finishes the proof of the fact that ψ is a morphism.

We compute the two compositions of φ and ψ. Given any point $p=\left[x_{0}: x_{1}\right.$: $\left.x_{2}\right] \in \mathbb{P}^{2}$ at which $\psi \circ \varphi$ is defined, we have

$$
\begin{aligned}
(\psi \circ \varphi)(p) & =\psi\left(\left[x_{0}^{2}: x_{0} x_{1}: x_{1}^{2}: x_{0} x_{2}: x_{1} x_{2}\right]\right) \\
& =\left\{\begin{array}{l}
{\left[x_{0}^{2}: x_{0} x_{1}: x_{0} x_{2}\right]=\left[x_{0}: x_{1}: x_{2}\right] ;} \\
{\left[x_{0} x_{1}: x_{1}^{2}: x_{1} x_{2}\right]=\left[x_{0}: x_{1}: x_{2}\right] .}
\end{array}\right.
\end{aligned}
$$

Now pick any point $q=\left[y_{0}: y_{1}: y_{2}: y_{3}: y_{4}\right] \in Y$ at which $\varphi \circ \psi$ is defined. If we use the first expression to compute $\psi(q)$, then we have

$$
\begin{aligned}
(\varphi \circ \psi)(q) & =\varphi\left(\left[y_{0}: y_{1}: y_{3}\right]\right)=\left[y_{0}^{2}: y_{0} y_{1}: y_{1}^{2}: y_{0} y_{3}: y_{1} y_{3}\right] \\
& =\left[y_{0}^{2}: y_{0} y_{1}: y_{0} y_{2}: y_{0} y_{3}: y_{0} y_{4}\right]=\left[y_{0}: y_{1}: y_{2}: y_{3}: y_{4}\right]
\end{aligned}
$$

If we use the second expression to compute $\psi(q)$, then we have

$$
\begin{aligned}
(\varphi \circ \psi)(q) & =\varphi\left(\left[y_{1}: y_{2}: y_{4}\right]\right)=\left[y_{1}^{2}: y_{1} y_{2}: y_{2}^{2}: y_{1} y_{4}: y_{2} y_{4}\right] \\
& =\left[y_{0} y_{2}: y_{1} y_{2}: y_{2}^{2}: y_{2} y_{3}: y_{2} y_{4}\right]=\left[y_{0}: y_{1}: y_{2}: y_{3}: y_{4}\right]
\end{aligned}
$$

The above calculation shows that φ and ψ are mutually inverse rational maps. Hence Y and \mathbb{P}^{2} are birational to each other. It follows that Y is rational.
(3) We have proved that ψ is a morphism. We first find all points $q \in Y$ such that $\psi(q)=[0: 0: 1]$. Let $q=\left[y_{0}: y_{1}: y_{2}: y_{3}: y_{4}\right] \in Y$. Then depending on which expression we use to compute $\psi(q)$, there are two possibilities. If $\left[y_{0}: y_{1}\right.$: $\left.y_{3}\right]=[0: 0: 1]$, then $y_{0}=y_{1}=0$ and $y_{3} \neq 0$. From $y_{2} y_{3}=y_{1} y_{4}=0$ we obtain $y_{2}=0$. Hence $q=\left[0: 0: 0: y_{3}: y_{4}\right]$ for any $y_{3} \neq 0$ and $y_{4} \in \mathbb{k}$. Similarly, if $\left[y_{1}: y_{2}: y_{4}\right]=[0: 0: 1]$, then $y_{1}=y_{2}=0$ and $y_{4} \neq 0$. From $y_{0} y_{4}=y_{1} y_{3}=0$ we obtain $y_{0}=0$. Hence $q=\left[0: 0: 0: y_{3}: y_{4}\right]$ for any $y_{3} \in \mathbb{k}$ and $y_{4} \neq 0$. Combining the two cases, all points $q \in Y$ satisfying $\psi(q)=[0: 0: 1]$ are given by points of the form $q=\left[0: 0: 0: y_{3}: y_{4}\right]$ where y_{3} and y_{4} not simultaneously zero.

Finally we need to show that ψ is surjective. We have seen that $[0: 0: 1]$ is in the image of ψ. For any point $p=\left[x_{0}: x_{1}: x_{2}\right] \in \mathbb{P}^{2}$ such that $p \neq[0: 0: 1]$, we claim that $p=\psi(q)$ for $q=\left[x_{0}^{2}: x_{0} x_{1}: x_{1}^{2}: x_{0} x_{2}: x_{1} x_{2}\right]$. Indeed, when $p \neq[0: 0: 1]$, we have either $x_{0} \neq 0$ or $x_{1} \neq 0$. In such a case, we have checked in part (1) that $q=\left[x_{0}^{2}: x_{0} x_{1}: x_{1}^{2}: x_{0} x_{2}: x_{1} x_{2}\right]$ is a well-defined point in Y. It remains to show $\psi(q)=p$. If $x_{0} \neq 0$, then we can use the first expression of ψ to get $\psi(q)=\left[x_{0}^{2}: x_{0} x_{1}: x_{0} x_{2}\right]=\left[x_{0}: x_{1}: x_{2}\right]=p$. If $x_{1} \neq 0$, then we can use the second expression of ψ to get $\psi(q)=\left[x_{0} x_{1}: x_{1}^{2}: x_{1} x_{2}\right]=\left[x_{0}: x_{1}: x_{2}\right]=p$. In summary, p is always in the image of ψ. Hence ψ is surjective.

