SOLUTIONS TO EXERCISE SHEET 5

Solution 5.1. Fxample: linear embedding and linear projection.

(1)

All components are given by homogeneous polynomials of degree 1. For every point
[20 : 21] € P, we have either zy # 0 or z; # 0, hence ¢([z0 : 21]) = [20 : 21 : 0 : (]
has at least one non-zero coordinate, hence is clearly a point in P3. Therefore
@ is a morphism. It is not dominant, because for the projective algebraic set
W = V(29,23) C P3 we have ¢([2q : 21]) € W for every point [z : z;] € P’

All components are given by homogeneous polynomials of degree 1. The map is
not defined at every point in P3, but for every point [zg : 21 : 2 : 23] € P? with
29 # 0 or z3 # 0, its image ©¥([z0 : 21 : 22 : 23]) = [22 : 23] has at least one non-zero
coordinate, and is clearly a point in P!. Therefore v is a rational map. To see it is
dominant, we first claim that v is surjective. In fact, for every point [y : 23] € P!,
we have that [zo : 23] = ¥([20 : 21 : 22 : z3]) for any choice of 2y, z; € k. Since
is surjective, we can apply Lemma 5.16 and choose Z = & to conclude that v is
dominant.

The composition is not well-defined because for every [zy : 2] € P!, we have
(Wo)[z0: 21]) = ¥([z0 : 21 : 0:0]) = [0: 0] which is not a point in P!. This
shows that i o ¢ is nowhere well-defined, which violates the second condition in
the definition of a rational map.

Solution 5.2. FExample: the cooling tower.

(1)

Assume we can write yoys — y1y2 = fg for some f, g € K[y, y1, 92, y3]. Since the
polynomial ygys — y1y2 has degree 1 in yg, the degrees of f and g in gy, should be 0
and 1 respectively. Without loss of generality we assume f = yo f1 + fo and g = go,
where f1, fo, 90 € k[y1,y2,ys]. By comparing the coefficients of terms of degree 1
and 0 in yg, we get figo = y3 and fogo = —vy1y2. Therefore gy is a common factor
of y3 and —y,y2, which has to be a constant. This implies g is a constant, hence
Yoys — Y1y is irreducible. Since it is a homogeneous polynomial, V(yoys — y192)
is a projective algebraic set. By Lemma 5.4, the principal ideal I = (yoys — v12)
in k[vo, ¥1, Y2, y3] is a prime ideal. Hence by Lemma 4.17, V(yoys — y1y2) = V(I),
which is a projective variety by Proposition 5.2.

It is clear that all components of ¢ are given by homogeneous polynomials of
degree 2. For any point p = [xg : x1 : 2o € P2, if 2y is non-zero, or x; and z,
are simultaneously non-zero, the image ¢(p) has at least one non-zero component.
Hence ¢ is defined on a non-empty subset of P2. To show its image is always in
Y, we find that yoyz — v1y2 = (23)(z172) — (2ox1)(xe22) = 0. Therefore ¢ is a

rational map.
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To show that ¢ is dominant, we observe that every point ¢ = [yo : y1 : ¥o :
ys] € Y with yo # 0 is the image of the point p = [yo : y1 : y2]. Indeed,
w(p) = (Y5 : Your : Yoya : 1yl = (U5 © Your : Yoz : Yoysl = [vo : v1 2t ys] = ¢
Set Z = V(yoys — y192,Y0), then Z C Y, and is strictly smaller than Y (e.g.
[1:0:0:0] € Y\Z). And every point ¢ € Y\ Z is in the image of ¢. By Lemma
5.16, ¢ is dominant.

(3) We first realise that every component of ¢ is a homogeneous polynomial of degree
1. 1 is well-defined at every point ¢ = [y : y1 : Yo : y3] € Y such that yo, y1,y2 are
not simultaneously zero (e.g. [1:0:0: 0] is such a point). Hence it is defined on
a non-empty subset of Y. The image 1 (q) is always a point in P? if it is defined.
Therefore v is a rational map.

To show 1 is dominant, we first observe that each point p = [x¢ : z; : 7] € P?
with oy # 0 is the image of the point ¢ = [z : 21 : 3 : %] Indeed, q is a
well-defined point since xg # 0, and ¢ € Y since it satisfies the defining equation
of Y. The expression that defines ¢ gives ¥(q) = p. If we set Z = V(xp), then
Z C P2 Since every point in P?\Z is in the image of 1, we conclude that ¢ is
dominant by Lemma 5.16.

(4) We show that ¢ and ¢ are mutually inverse rational maps. For every point p =
[zo : z1 : z9] € P? at which ¢ o ¢ is defined, we have (¢ o p)(p) = ¥([z2 :
ToTy : ToTy : T1To]) = [12 1 wowy : Towa] = [xo 1 Ty 1 @3] = p. For every point
q=yo:vy1:y2:ys] €Y at which ¢ o) is defined, we have (¢ o ¥)(q) = v([yo :
Y1 yal) = (Y5 Your : Yoyt Yave] = U5 1 Yoy ¢ Yoyt Yous] = [Yo 1t y2 t ys] = ¢
Therefore ¢ and v are mutually inverse birational maps. It follows that Y is
birational to P2, hence Y is rational.

Solution 5.3. Fxample: the projective twisted cubic.

(1) All components of ¢ are homogeneous of the same degree 3. For every point
[u : v] € P!, we have either u # 0 or v # 0, therefore either u® # 0 or v® # 0,
hence ¢([u : v]) = [u® : v?v : wv? : v?] is always a well-defined point. To show that

©([u:v]) € Y, we need to check all defining polynomial of Y are satisfied. Indeed,

we have

Yoy — y; = (u®)(uwv?) — (v*v)* = 0;
0

vi1ys = y5 = (W0)(v°) — (uv?)?
Yoys — y1yz = (u°)(v°) — (u*v)(uv?) = 0.
We conclude that ¢ is a morphism.

(2) We define ¢ : Y — P! in the following way: for every point [y : y1 : y2 : y3] € Y,

let ¥([yo : 1 :y2 : ys]) = [yo : y1] or [y2 : ys]. We first check that ¢ is a morphism.
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Both expressions used to define ¢ are given by homogeneous polynomials of
degree 1. For any point [yo : y1 : y2 : ys], if either yy or y; is non-zero (e.g.
[1:0:0:0]), then the first expression applies; if either y, or y3 is non-zero (e.g.
[0:0:0:1]), then the second expression applies. This shows that both expressions
are defined on non-empty subsets of Y. Moreover, for any point [y : 1 : ¥2 © Y3,
at least one of its coordinates is non-zero, hence at least one of the expressions
can be used to compute its image under v, hence 1 is defined at every point in
Y. The image v(q) for any point ¢ € Y is clearly a point in P!

To show v is a morphism, it remains to show that, if the two expressions are
both defined at a certain point ¢ = [yo : 1 : y2 : y3] € Y, then they give the same
image. For such a point ¢, we claim y, # 0; otherwise 2 = yoyo = 0, which implies
the first expression is invalid. Similarly, we claim ys # 0; otherwise y3 = y1y3 = 0,
which implies the second expression is invalid. Therefore y;yo = yoys # 0, which
implies y; # 0 and y» # 0. So all coordinates of ¢ are non-zero. For such a point g,
we have [y : y1] = [Yoys : 11y3] = [v192 : y1y3] = [y2 : ys], hence both expressions
give the same image of q.

Finally we check that ¢ and 1 are mutually inverse to each other. Given any
point p = [u : v] € P!, we have

(6o @)®) = (" : u?v s u? s o7]) = {

—

[uv? = 03] = [u: ).

For any point ¢ = [yo : y1 : ¥2 : y3] € Y, we notice that yoy? = yo - yoy2 = yay2 and
Y= y1-YoY2 = Yo Y1¥2 = Yo - Youys = yays. Therefore if we use the first expression
that defines 1), we have

(o) (q) = ¢([yo : v1])

= [v5  voyr < vousi < ui)
= [ys - vour + W3v2 © Yous)
Yo Y1 Y2 yg]-

3.
0
3.
0

Similarly, noticing that y3ys = y1ys - ys = y1y3 and y3 = o - yiys = Y1y - Y3 =
Yoy3 - Y3 = Yoys, we can use the second expression that defines ¢ to compute
(ov)(q) = &(ly2 : ws)
= [y3 Y33 : Y203 * U3)
= [you3 : 9193 : v2y3 : 3]
= [yo 1 y1: Y20 Y3l

The above calculation shows that ¢ and v are mutually inverse to each other,
hence they are birational. Since they are both morphisms, they are isomorphisms.

We conclude that Y is isomorphic to P!
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Solution 5.4. A famous example: blow-up at a point.

(1) All components of ¢ are homogeneous of degree 2. Given a point p = [zg : x; :
To) € P2 if 2y # 0 or z1 # 0, then a3 # 0 or 2% # 0, hence at least one component
of ¢(p) is non-zero, which implies ¢(p) is defined. When ¢(p) is defined, we need
to check it is a point in Y. This can be verified by

YoY2 — yf = (55'3)(95%) - (x0x1)2 =0;
Yoys — Y1y = (20)(z122) — (2011 (T02) = 0;
= 0.

Y1Ys — Y2lys = (1’0351)(%952) - (ﬁ)(xol’z)

This proves ¢ is a rational map.

(2) We first write down the formula for v, then prove v is a morphism, finally show
that the two compositions of ¢ and 1 are identities.

The morphism 1 : Y — P? is defined as follows: for every point ¢ = [yo :
Y1 Y2 : Y3 c yal, let (q) = [yo : y1 : ys] or [y1 : y2 ¢ ya]. It is clear that both
expressions in the definition of 1 are given by homogeneous polynomials of degree
1. When yo, y1 and y3 are not simultaneously zero (e.g. [1:0:0:0 : 0]), then
the first expression applies. When y;, y2 and y, are not simultaneously zero (e.g.
[0:0:0:0:1]), then the second expression applies. Hence both expressions
are defined on non-empty subsets of Y. For every point ¢ € Y, at least one of its
coordinates is non-zero, which means at least one of two expressions is well-defined
at ¢. And the image of ¢ is clearly a point in P2, no matter which expression we
use to compute the image.

We still need to show that the two expressions define the same image of ¢ when
they both apply. There are a few cases to consider. Case 1: if yq, y; and y5 are all
non-zero, then set A = z—; = z—f = y—;‘ Indeed, the three fractions are equal because
of the defining equations of Y. Then [y : y1 : y3] = [Ayo : A\y1 : Ays] = [y1 : y2 : v4)-
Case 2: if yo = 0, then y? = yoy» = 0 implies y; = 0. Since we assumed
the expression [yp : y1 : y3] is well-defined at ¢, we must have y3 # 0. Then
yoys = Y194 = 0 implies yo = 0. Since we assumed the expression [y; : y2 : y4] 18
well-defined at ¢, we must have y; # 0. Now [yo : 41 1 y3] =[0:0:y3)=1[0:0:
va] = [y1 2 y2 : ya]. Case 3: if yo # 0 and y; = 0, then yoy» = y? = 0 implies
y2 = 0, and yoys = y1ys = 0 implies y4 = 0, then the expression [y; : ya : 4] is
not defined at q. Hence this case cannot happen. Case 4: if yo # 0 and y; # 0
and y3 = 0, then yoys = y1y3 = 0 implies y, = 0. Set A = z’—; = z—f Then
o vty =1lvo:y 10 =[Ayo: Ayr 10 = [y1 192 :0] = [y1 9o gu). In
summary, we always have [yo : y1 : ys] = [y1 : y2 : ya]. This finishes the proof of

the fact that ¢ is a morphism.
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We compute the two compositions of ¢ and 1. Given any point p = [xg : 27 :
15] € P? at which 1 o ¢ is defined, we have

(¥ o@)(p) = Y([ag = woxr + 2] = wox2  2122))

B (22 : moxy : ToTo] = [To 1 1 @ Ta);
[wowy : 2% m1To] = [T0 1 1 ¢ o).

Now pick any point ¢ = [yo : y1 : ¥2 : Y3 : ya] € Y at which ¢ o9 is defined. If we
use the first expression to compute 1(q), then we have

(o) (q) = e(lyo : y1: ys]) = [y voyr = Ui : Yoys * Y1Ys]
= [3/3 S YolY1 - YoY2 : Yols - yoy4] = [3/0 Y1 Y2 T Y3 y4}-

If we use the second expression to compute ¥(q), then we have

(po)(q) =¢(lyr:y2 1 yal) = [U5 = va%2 © U3 < Y1va © Y2yl
= [yYoYa : Y12 : Ys = Yoy Yo¥a) = [Yo : Y1t Yo Y3 © Yal.

The above calculation shows that ¢ and 1 are mutually inverse rational maps.
Hence Y and P? are birational to each other. It follows that Y is rational.

We have proved that 1 is a morphism. We first find all points ¢ € Y such that
() =[0:0:1]. Let ¢ = [yo : y1 : Y2 : ys : ya] € Y. Then depending on
which expression we use to compute 1(q), there are two possibilities. If [yo : v :
ys) = [0:0: 1], then yo = y; = 0 and y3 # 0. From ysy3 = y1y4 = 0 we obtain
yo = 0. Hence ¢ = [0:0:0 : y3 : y4] for any y3 # 0 and y, € k. Similarly, if
[y1 : Y2t ya) = [0:0: 1], theny; = yo = 0 and yy4 # 0. From yoys = 11y3 = 0 we
obtain yp = 0. Hence ¢ =1[0:0:0: y3 : y4] for any y3 € k and y4 # 0. Combining
the two cases, all points ¢ € Y satisfying ¢(q) = [0 : 0 : 1] are given by points of
the form ¢ =[0:0:0: y3 : y4] where y3 and y4 not simultaneously zero.

Finally we need to show that 1 is surjective. We have seen that [0: 0 : 1] is in
the image of ¢. For any point p = [zg : o1 : 23] € P? such that p # [0: 0 : 1],
we claim that p = ¥(q) for ¢ = [23 : mox; : 2% : Toxy : x179). Indeed, when
p # [0:0: 1], we have either xy # 0 or 1 # 0. In such a case, we have checked
in part (1) that ¢ = [22 : mowy : 2% : 2wy : T179] is a well-defined point in Y. Tt
remains to show 1(q) = p. If zy # 0, then we can use the first expression of ¥ to
get ¥(q) = [22 : moxy1 : ToTa] = [Tg : 1 : ] = p. If 21y # 0, then we can use the
second expression of ¢ to get ¥(q) = [zow1 : 23 : w1wo] =[x : 1 1 2] = p. In
summary, p is always in the image of 1. Hence 9 is surjective.
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