SOLUTIONS TO EXERCISE SHEET 6

Solution 6.1. Fxample: the cooling tower, revisited.

(1)

(2)

We can get the standard affine pieces Y; = Y NU; by setting y; = 1. Therefore the
standard affine pieces of Y are given by Yy = V,(ys — v1v2), Y1 = Vo(voys — v2),
Yy = Va(yoys — y2) and Y3 = Va(yo — y192).

We proved in Exercise 5.2 that Y is birational to P2. By Proposition 6.21 and
Example 6.18, we have k(X) = k(P?) = k(z1, x2).

Solution 6.2. Example: irreducible cubic curves.

(1)

We claim that y* — (z — A\;)(z — A\2)(z — A3) is an irreducible polynomial. Use
contradiction. Assume y? — (z — A)(z — Xo)(x — A3) = f(z,9)g(z,y) for non-
constant polynomials f, g € k[z,y|. Since the left-hand side has degree 2 in y, the
degrees of f and g in y must be either 2 and 0, or 1 and 1. In the first case we
can write

y2 — (= M)(x = A)(x — A3) = (?Jsz(?U) +yfi(z) + fo(r)) - g(z).

Comparing coefficients of y* we find fo(x)g(z) = 1, hence g(z) must be a constant.
Contradiction. In the second case we can write

v = (2 = M)(@ = A)(@ = As) = (whi(@) + fo(®)) - (ygr(x) + go()).

Comparing coefficients of y? we find fi(x)g;(z) = 1. Without loss of generality we
can assume fi(x) = g1(z) = 1. Comparing coefficients of y we find fo(z)+ go(x) =
0. Comparing constant terms we find —(z — A1) (z — A2)(z — A3) = fo(z)go(z) =
—fo(x)?, hence fo(x)?* = (x—A1)(2z— o) (x—A3), which is also a contradiction since
the right-hand side is not a square. So we conclude that y*—(z—\;)(z—X\2)(z—\3)
is irreducible. By Lemma 5.4 we know I = (y* — (z — M\)(z — Xo)(z — N3)) is a
prime ideal. By Proposition 2.15 we know X is an irreducible algebraic set, i.e.
an affine variety.

Using z as the extra variable, the projective closure is given by X = Vo(y?z —
(xr — Miz)(x — Aoz)(x — A32)). To find points at infinity, we set z = 0 to get
—2% = 0. It follows that x = 0, hence the only point at infinity for X is given by
[z:y:z] =1]0:1:0]. One direction of Proposition 6.12 shows that the projective
closure of a non-empty affine variety is a projective variety. Hence by part (1), we
conclude that X is a projective variety.

Solution 6.3. A caution for the projective closure.

(1)

The homogenisation of f; and f, are given by f; = wy — 22 and f, = w?z — z°.
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(2)

We first claim y?> — 2z € I = (y — 2%,z — 2%). This can be seen by realising
vP—wxz = (y* —2Y) + (2t — 22) = (y — 2%)(y + 2?) — 2(2 — 2) which is a sum of

2 3 as a factor. Since y? — xz

a term with y — x“ as a factor and a term with z —
is an element in I, by Definition 6.5, the homogenisation of y? — zz is an element
in 1. However, since y?> — 2z is already homogeneous, its homogenisation is still
y?> — xz. Therefore y> — zz € 1.

We prove that y?> — xz & (f1, f2). Use contradiction. Assume we can write
Y’ =1z = fi-g1+ 2 g2 = (wy—2a2)- g1+ (w2 —2%)- g, for some g1, g2 € klw, 2,7y, 2.
There are many different ways to find a contradiction. Here is one approach: when
w=2x =0 and y = z = 1, the left-hand side is 1 while the right-hand side is 0,
which is a contradiction.

Finally we prove that X # Vp(ﬁ, f2). There are also many different approaches
to this. Here is one of them: On one hand, we can verify directly that f; = 0
and fo = 0 at the point [w: 2z :y:2] =[0:0:1:1], hence [0:0:1:1] €
V,(f1, f2). On the other hand, since X = V,,(I), a point in X has to be a solution
to every homogeneous polynomial in 7, in particular, it has to be a solution to
the polynomial y? — zz by what we just proved. We can check directly that the
point [w:x :y:z =[0:0:1:1]is not a solution to this polynomial, hence
[0:0:1:1] ¢ X. This finishes the proof.

Indeed, one can see that the value of z is irrelavant. For any A € k, the point

[w:z:y:2z]=[0:0:1:\ would do the trick.

Solution 6.4. Geometric interpretation of the projective closure.

(1)

We need to show that f(p) = 0 for every point p € X. Let p = (a1,--+ ,a,) € X,
where aq,---,a, € k are the non-homogeneous coordinates of p as a point in
A™ = Uy. Then as a point in P", the homogeneous coordinates of p can be given by
p=1[l:ay: - :ayl. Since X C W, we have p € W, therefore g(p) = 0. In other
words, ¢g(1,a,--+ ,a,) = 0. Therefore we have f(ay,---,a,) =g(1l,a1, -+ ,a,) =
0, which proves f(p) = 0. Since p is an arbitrary point in X, we conclude that
feL(X).

We assume ¢ is a homogeneous polynomial with deg g = d. Assume that 2% is the
highest power dividing g, then £ is a non-negative integer, and each term in g has
a factor of zf. We collect terms in g which have the degree with respect to zg, so
we can write

g=z o+t faea b2 i 22 fo

where f; € k[z1,- -, 2,] is homogeneous of degree i for ¢ = 0,1,--- ,d — k, and
fa—x # 0. Since f is the dehomogenisation of g with respect to zy, we have

f=faor+t fora+-+fi+fo
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which is precisely the homogeneous decomposition of f. We observe that deg f =
d — k. Since f is the homogenisation of f with respect to zy, we have

7 = fd—k + 29 - fd—k—l 4+ 4 Z[C)l—k—l . fl + Zg_k ) fo,

Comparing the formula for g and f, we find out that g = zf - f.

Now we prove g € 1. Since f € I,(X) by part (1), we have f € T by Definition
6.5. Since I is an ideal, we have g = z¥ - f € I.

Since ¢ is an arbitrary homogeneous polynomial in L,(W), we conclude that
every homogeneous polynomial in the ideal I,(W) is a homogeneous polynomial
in the ideal I. Tt follows that V,(I,(W)) 2 V,(I). We have V,(I,(W)) = W by
Proposition 5.2, and V,(I) = X by Definition 6.5. Therefore W 2 X.

(3) We proved in parts (1) and (2) that every projective algebraic set W that contains
X must contain X. Since X itself is also a projective algebraic set that contains
X (it is X together with points at infinity), we conclude that X is the smallest
one having this property.
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