Solutions to Exercise Sheet 6

Solution 6.1. Example: the cooling tower, revisited.
(1) We can get the standard affine pieces $Y_{i}=Y \cap U_{i}$ by setting $y_{i}=1$. Therefore the standard affine pieces of Y are given by $Y_{0}=\mathbb{V}_{a}\left(y_{3}-y_{1} y_{2}\right), Y_{1}=\mathbb{V}_{a}\left(y_{0} y_{3}-y_{2}\right)$, $Y_{2}=\mathbb{V}_{a}\left(y_{0} y_{3}-y_{2}\right)$ and $Y_{3}=\mathbb{V}_{a}\left(y_{0}-y_{1} y_{2}\right)$.
(2) We proved in Exercise 5.2 that Y is birational to \mathbb{P}^{2}. By Proposition 6.21 and Example 6.18, we have $\mathbb{k}(X) \cong \mathbb{k}\left(\mathbb{P}^{2}\right) \cong \mathbb{k}\left(x_{1}, x_{2}\right)$.

Solution 6.2. Example: irreducible cubic curves.
(1) We claim that $y^{2}-\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right)$ is an irreducible polynomial. Use contradiction. Assume $y^{2}-\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right)=f(x, y) g(x, y)$ for nonconstant polynomials $f, g \in \mathbb{k}[x, y]$. Since the left-hand side has degree 2 in y, the degrees of f and g in y must be either 2 and 0 , or 1 and 1 . In the first case we can write

$$
y^{2}-\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right)=\left(y^{2} f_{2}(x)+y f_{1}(x)+f_{0}(x)\right) \cdot g(x) .
$$

Comparing coefficients of y^{2} we find $f_{2}(x) g(x)=1$, hence $g(x)$ must be a constant. Contradiction. In the second case we can write

$$
y^{2}-\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right)=\left(y f_{1}(x)+f_{0}(x)\right) \cdot\left(y g_{1}(x)+g_{0}(x)\right) .
$$

Comparing coefficients of y^{2} we find $f_{1}(x) g_{1}(x)=1$. Without loss of generality we can assume $f_{1}(x)=g_{1}(x)=1$. Comparing coefficients of y we find $f_{0}(x)+g_{0}(x)=$ 0 . Comparing constant terms we find $-\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right)=f_{0}(x) g_{0}(x)=$ $-f_{0}(x)^{2}$, hence $f_{0}(x)^{2}=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right)$, which is also a contradiction since the right-hand side is not a square. So we conclude that $y^{2}-\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right)$ is irreducible. By Lemma 5.4 we know $I=\left(y^{2}-\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right)\right)$ is a prime ideal. By Proposition 2.15 we know X is an irreducible algebraic set, i.e. an affine variety.
(2) Using z as the extra variable, the projective closure is given by $\bar{X}=\mathbb{V}_{p}\left(y^{2} z-\right.$ $\left.\left(x-\lambda_{1} z\right)\left(x-\lambda_{2} z\right)\left(x-\lambda_{3} z\right)\right)$. To find points at infinity, we set $z=0$ to get $-x^{3}=0$. It follows that $x=0$, hence the only point at infinity for X is given by $[x: y: z]=[0: 1: 0]$. One direction of Proposition 6.12 shows that the projective closure of a non-empty affine variety is a projective variety. Hence by part (1), we conclude that \bar{X} is a projective variety.

Solution 6.3. A caution for the projective closure.
(1) The homogenisation of f_{1} and f_{2} are given by $\overline{f_{1}}=w y-x^{2}$ and $\overline{f_{2}}=w^{2} z-x^{3}$.
(2) We first claim $y^{2}-x z \in I=\left(y-x^{2}, z-x^{3}\right)$. This can be seen by realising $y^{2}-x z=\left(y^{2}-x^{4}\right)+\left(x^{4}-x z\right)=\left(y-x^{2}\right)\left(y+x^{2}\right)-x\left(z-x^{3}\right)$ which is a sum of a term with $y-x^{2}$ as a factor and a term with $z-x^{3}$ as a factor. Since $y^{2}-x z$ is an element in I, by Definition 6.5, the homogenisation of $y^{2}-x z$ is an element in \bar{I}. However, since $y^{2}-x z$ is already homogeneous, its homogenisation is still $y^{2}-x z$. Therefore $y^{2}-x z \in \bar{I}$.

We prove that $y^{2}-x z \notin\left(\overline{f_{1}}, \overline{f_{2}}\right)$. Use contradiction. Assume we can write $y^{2}-x z=\overline{f_{1}} \cdot g_{1}+\overline{f_{2}} \cdot g_{2}=\left(w y-x^{2}\right) \cdot g_{1}+\left(w^{2} z-x^{3}\right) \cdot g_{2}$ for some $g_{1}, g_{2} \in \mathbb{k}[w, x, y, z]$. There are many different ways to find a contradiction. Here is one approach: when $w=x=0$ and $y=z=1$, the left-hand side is 1 while the right-hand side is 0 , which is a contradiction.

Finally we prove that $\bar{X} \neq \mathbb{V}_{p}\left(\overline{f_{1}}, \overline{f_{2}}\right)$. There are also many different approaches to this. Here is one of them: On one hand, we can verify directly that $\overline{f_{1}}=0$ and $\overline{f_{2}}=0$ at the point $[w: x: y: z]=[0: 0: 1: 1]$, hence $[0: 0: 1: 1] \in$ $\mathbb{V}_{p}\left(\overline{f_{1}}, \overline{f_{2}}\right)$. On the other hand, since $\bar{X}=\mathbb{V}_{p}(\bar{I})$, a point in \bar{X} has to be a solution to every homogeneous polynomial in \bar{I}, in particular, it has to be a solution to the polynomial $y^{2}-x z$ by what we just proved. We can check directly that the point $[w: x: y: z]=[0: 0: 1: 1]$ is not a solution to this polynomial, hence $[0: 0: 1: 1] \notin \bar{X}$. This finishes the proof.

Indeed, one can see that the value of z is irrelavant. For any $\lambda \in \mathbb{k}$, the point $[w: x: y: z]=[0: 0: 1: \lambda]$ would do the trick.

Solution 6.4. Geometric interpretation of the projective closure.
(1) We need to show that $f(p)=0$ for every point $p \in X$. Let $p=\left(a_{1}, \cdots, a_{n}\right) \in X$, where $a_{1}, \cdots, a_{n} \in \mathbb{k}$ are the non-homogeneous coordinates of p as a point in $\mathbb{A}^{n} \cong U_{0}$. Then as a point in \mathbb{P}^{n}, the homogeneous coordinates of p can be given by $p=\left[1: a_{1}: \cdots: a_{n}\right]$. Since $X \subseteq W$, we have $p \in W$, therefore $g(p)=0$. In other words, $g\left(1, a_{1}, \cdots, a_{n}\right)=0$. Therefore we have $f\left(a_{1}, \cdots, a_{n}\right)=g\left(1, a_{1}, \cdots, a_{n}\right)=$ 0 , which proves $f(p)=0$. Since p is an arbitrary point in X, we conclude that $f \in \mathbb{I}_{a}(X)$.
(2) We assume g is a homogeneous polynomial with $\operatorname{deg} g=d$. Assume that z_{0}^{k} is the highest power dividing g, then k is a non-negative integer, and each term in g has a factor of z_{0}^{k}. We collect terms in g which have the degree with respect to z_{0}, so we can write

$$
g=z_{0}^{k} \cdot f_{d-k}+z_{0}^{k+1} \cdot f_{d-k-1}+\cdots+z_{0}^{d-1} \cdot f_{1}+z_{0}^{d} \cdot f_{0}
$$

where $f_{i} \in \mathbb{k}\left[z_{1}, \cdots, z_{n}\right]$ is homogeneous of degree i for $i=0,1, \cdots, d-k$, and $f_{d-k} \neq 0$. Since f is the dehomogenisation of g with respect to z_{0}, we have

$$
f=f_{d-k}+f_{d-k-1}+\cdots+f_{1}+f_{0}
$$

which is precisely the homogeneous decomposition of f. We observe that $\operatorname{deg} f=$ $d-k$. Since \bar{f} is the homogenisation of f with respect to z_{0}, we have

$$
\bar{f}=f_{d-k}+z_{0} \cdot f_{d-k-1}+\cdots+z_{0}^{d-k-1} \cdot f_{1}+z_{0}^{d-k} \cdot f_{0} .
$$

Comparing the formula for g and \bar{f}, we find out that $g=z_{0}^{k} \cdot \bar{f}$.
Now we prove $g \in \bar{I}$. Since $f \in \mathbb{I}_{a}(X)$ by part (1), we have $\bar{f} \in \bar{I}$ by Definition 6.5. Since \bar{I} is an ideal, we have $g=z_{0}^{k} \cdot \bar{f} \in \bar{I}$.

Since g is an arbitrary homogeneous polynomial in $\mathbb{I}_{p}(W)$, we conclude that every homogeneous polynomial in the ideal $\mathbb{I}_{p}(W)$ is a homogeneous polynomial in the ideal \bar{I}. It follows that $\mathbb{V}_{p}\left(\mathbb{I}_{p}(W)\right) \supseteq \mathbb{V}_{p}(\bar{I})$. We have $\mathbb{V}_{p}\left(\mathbb{I}_{p}(W)\right)=W$ by Proposition 5.2, and $\mathbb{V}_{p}(\bar{I})=\bar{X}$ by Definition 6.5. Therefore $W \supseteq \bar{X}$.
(3) We proved in parts (1) and (2) that every projective algebraic set W that contains X must contain \bar{X}. Since \bar{X} itself is also a projective algebraic set that contains X (it is X together with points at infinity), we conclude that \bar{X} is the smallest one having this property.

