
Solutions to Exercise Sheet 6

Solution 6.1. Example: the cooling tower, revisited.

(1) We can get the standard affine pieces Yi = Y ∩Ui by setting yi = 1. Therefore the

standard affine pieces of Y are given by Y0 = Va(y3 − y1y2), Y1 = Va(y0y3 − y2),
Y2 = Va(y0y3 − y2) and Y3 = Va(y0 − y1y2).

(2) We proved in Exercise 5.2 that Y is birational to P2. By Proposition 6.21 and

Example 6.18, we have k(X) ∼= k(P2) ∼= k(x1, x2).

Solution 6.2. Example: irreducible cubic curves.

(1) We claim that y2 − (x − λ1)(x − λ2)(x − λ3) is an irreducible polynomial. Use

contradiction. Assume y2 − (x − λ1)(x − λ2)(x − λ3) = f(x, y)g(x, y) for non-

constant polynomials f, g ∈ k[x, y]. Since the left-hand side has degree 2 in y, the

degrees of f and g in y must be either 2 and 0, or 1 and 1. In the first case we

can write

y2 − (x− λ1)(x− λ2)(x− λ3) = (y2f2(x) + yf1(x) + f0(x)) · g(x).

Comparing coefficients of y2 we find f2(x)g(x) = 1, hence g(x) must be a constant.

Contradiction. In the second case we can write

y2 − (x− λ1)(x− λ2)(x− λ3) = (yf1(x) + f0(x)) · (yg1(x) + g0(x)).

Comparing coefficients of y2 we find f1(x)g1(x) = 1. Without loss of generality we

can assume f1(x) = g1(x) = 1. Comparing coefficients of y we find f0(x)+g0(x) =

0. Comparing constant terms we find −(x − λ1)(x − λ2)(x − λ3) = f0(x)g0(x) =

−f0(x)2, hence f0(x)2 = (x−λ1)(x−λ2)(x−λ3), which is also a contradiction since

the right-hand side is not a square. So we conclude that y2−(x−λ1)(x−λ2)(x−λ3)
is irreducible. By Lemma 5.4 we know I = (y2 − (x − λ1)(x − λ2)(x − λ3)) is a

prime ideal. By Proposition 2.15 we know X is an irreducible algebraic set, i.e.

an affine variety.

(2) Using z as the extra variable, the projective closure is given by X = Vp(y
2z −

(x − λ1z)(x − λ2z)(x − λ3z)). To find points at infinity, we set z = 0 to get

−x3 = 0. It follows that x = 0, hence the only point at infinity for X is given by

[x : y : z] = [0 : 1 : 0]. One direction of Proposition 6.12 shows that the projective

closure of a non-empty affine variety is a projective variety. Hence by part (1), we

conclude that X is a projective variety.

Solution 6.3. A caution for the projective closure.

(1) The homogenisation of f1 and f2 are given by f1 = wy − x2 and f2 = w2z − x3.
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(2) We first claim y2 − xz ∈ I = (y − x2, z − x3). This can be seen by realising

y2 − xz = (y2 − x4) + (x4 − xz) = (y − x2)(y + x2)− x(z − x3) which is a sum of

a term with y − x2 as a factor and a term with z − x3 as a factor. Since y2 − xz
is an element in I, by Definition 6.5, the homogenisation of y2 − xz is an element

in I. However, since y2 − xz is already homogeneous, its homogenisation is still

y2 − xz. Therefore y2 − xz ∈ I.

We prove that y2 − xz /∈ (f1, f2). Use contradiction. Assume we can write

y2−xz = f1 ·g1+f2 ·g2 = (wy−x2)·g1+(w2z−x3)·g2 for some g1, g2 ∈ k[w, x, y, z].

There are many different ways to find a contradiction. Here is one approach: when

w = x = 0 and y = z = 1, the left-hand side is 1 while the right-hand side is 0,

which is a contradiction.

Finally we prove that X 6= Vp(f1, f2). There are also many different approaches

to this. Here is one of them: On one hand, we can verify directly that f1 = 0

and f2 = 0 at the point [w : x : y : z] = [0 : 0 : 1 : 1], hence [0 : 0 : 1 : 1] ∈
Vp(f1, f2). On the other hand, since X = Vp(I), a point in X has to be a solution

to every homogeneous polynomial in I, in particular, it has to be a solution to

the polynomial y2 − xz by what we just proved. We can check directly that the

point [w : x : y : z] = [0 : 0 : 1 : 1] is not a solution to this polynomial, hence

[0 : 0 : 1 : 1] /∈ X. This finishes the proof.

Indeed, one can see that the value of z is irrelavant. For any λ ∈ k, the point

[w : x : y : z] = [0 : 0 : 1 : λ] would do the trick.

Solution 6.4. Geometric interpretation of the projective closure.

(1) We need to show that f(p) = 0 for every point p ∈ X. Let p = (a1, · · · , an) ∈ X,

where a1, · · · , an ∈ k are the non-homogeneous coordinates of p as a point in

An ∼= U0. Then as a point in Pn, the homogeneous coordinates of p can be given by

p = [1 : a1 : · · · : an]. Since X ⊆ W , we have p ∈ W , therefore g(p) = 0. In other

words, g(1, a1, · · · , an) = 0. Therefore we have f(a1, · · · , an) = g(1, a1, · · · , an) =

0, which proves f(p) = 0. Since p is an arbitrary point in X, we conclude that

f ∈ Ia(X).

(2) We assume g is a homogeneous polynomial with deg g = d. Assume that zk0 is the

highest power dividing g, then k is a non-negative integer, and each term in g has

a factor of zk0 . We collect terms in g which have the degree with respect to z0, so

we can write

g = zk0 · fd−k + zk+1
0 · fd−k−1 + · · ·+ zd−10 · f1 + zd0 · f0

where fi ∈ k[z1, · · · , zn] is homogeneous of degree i for i = 0, 1, · · · , d − k, and

fd−k 6= 0. Since f is the dehomogenisation of g with respect to z0, we have

f = fd−k + fd−k−1 + · · ·+ f1 + f0
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which is precisely the homogeneous decomposition of f . We observe that deg f =

d− k. Since f is the homogenisation of f with respect to z0, we have

f = fd−k + z0 · fd−k−1 + · · ·+ zd−k−10 · f1 + zd−k0 · f0.

Comparing the formula for g and f , we find out that g = zk0 · f .

Now we prove g ∈ I. Since f ∈ Ia(X) by part (1), we have f ∈ I by Definition

6.5. Since I is an ideal, we have g = zk0 · f ∈ I.

Since g is an arbitrary homogeneous polynomial in Ip(W ), we conclude that

every homogeneous polynomial in the ideal Ip(W ) is a homogeneous polynomial

in the ideal I. It follows that Vp(Ip(W )) ⊇ Vp(I). We have Vp(Ip(W )) = W by

Proposition 5.2, and Vp(I) = X by Definition 6.5. Therefore W ⊇ X.

(3) We proved in parts (1) and (2) that every projective algebraic set W that contains

X must contain X. Since X itself is also a projective algebraic set that contains

X (it is X together with points at infinity), we conclude that X is the smallest

one having this property.
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