Solutions to Exercise Sheet 7

Solution 7.1. Examples of affine varieties.
(1) The singular points are defined by $f=0$ and the two partial derivatives $\frac{\partial f}{\partial x}=$ $\frac{\partial f}{\partial y}=0$. We have $\frac{\partial f}{\partial x}=6 x\left(x^{2}+y^{2}\right)^{2}-8 x y^{2}=2 x \cdot\left(3\left(x^{2}+y^{2}\right)^{2}-4 y^{2}\right)$ and $\frac{\partial f}{\partial y}=6 y\left(x^{2}+y^{2}\right)^{2} \cdot 2 y-8 x^{2} y=2 y \cdot\left(3\left(x^{2}+y^{2}\right)^{2}-4 x^{2}\right)$. If $x=0$ or $y=0$, then $f=0$ forces $x=y=0$. The point $(0,0)$ satisfies all equations hence is a singular point. If neither x nor y is 0 , then we have $3\left(x^{2}+y^{2}\right)^{2}=4 x^{2}=4 y^{2}$, hence $3\left(x^{2}+x^{2}\right)^{2}=4 x^{2}$ which implies $x^{2}=\frac{1}{3}=y^{2}$. But then $f=\left(\frac{1}{3}+\frac{1}{3}\right)^{3}-4 \cdot \frac{1}{3} \cdot \frac{1}{3} \neq 0$. Therefore the only singular point is $(0,0)$.
(2) The singular points are defined by $f=x y^{2}-z^{2}=0$, and $\frac{\partial f}{\partial x}=y^{2}=0, \frac{\partial f}{\partial y}=2 x y=$ $0, \frac{\partial f}{\partial z}=-2 z=0$. From the second and fourth equations we have $y=z=0$. No matter what value x takes, $(x, y, z)=(x, 0,0)$ always satisfies all the four equations. Therefore the singular points of $\mathbb{V}(f)$ are all points of the form $(x, 0,0)$.
(3) The singular points are given by $f=x y+x^{3}+y^{3}=0$, and $\frac{\partial f}{\partial x}=y+3 x^{2}=0$, $\frac{\partial f}{\partial y}=x+3 y^{2}=0, \frac{\partial f}{\partial z}=0$. From $\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}=0$ we get $x=-3 y^{2}=-27 x^{4}$, hence $x=0$ or $x^{3}=-\frac{1}{27}$. If $x=0$, then $f=0$ forces $y=0$. It is clear that every point of the form $(x, y, z)=(0,0, z)$ is a solution to all the required equations hence is a singular point on $\mathbb{V}(f)$. If $x \neq 0$, then $x^{3}=-\frac{1}{27}$. Then we have $f=x y+x^{3}+y^{3}=x\left(-3 x^{2}\right)+x^{3}+\left(-3 x^{2}\right)^{3}=-3 x^{3}+x^{3}-27 x^{6}=\frac{1}{9}-\frac{1}{27}-\frac{1}{27}=\frac{1}{27} \neq 0$. Contradiction. Therefore $(x, y, z)=(0,0, z)$ are the only singular points of $\mathbb{V}(f)$.
(4) At every point $p=(x, y, z) \in X$, we consider the matrix M_{p} given by the partial derivatives

$$
M_{p}=\left(\begin{array}{ccc}
-2 x & 1 & 0 \\
-3 x^{2} & 0 & 1
\end{array}\right)
$$

It is clear that the two rows of M_{p} are linearly independent, therefore rank $M_{p}=2$ for every $p \in X$. It follows that $\operatorname{dim} T_{p} X=3-\operatorname{rank} M_{p}=1$ for every $p \in X$. Therefore $\operatorname{dim} X=1$ and $\operatorname{dim} T_{p} X=\operatorname{dim} X$ for every $p \in X$. By Definition 7.13, X is non-singular at every point $p \in X$.

Solution 7.2. Example of projective varieties.
(1) The standard affine piece $X_{0}=X \cap U_{0}$ is given by setting $x=1$ in f. Hence $X_{0}=\mathbb{V}\left(f_{0}\right)$ where $f_{0}=y-z^{2}$. For any point $(y, z) \in X_{0}, \frac{\partial f_{0}}{\partial y}=1$ which never vanishes. Therefore X_{0} does not have any singular point, hence is non-singular.
(2) The set of points in $X \backslash X_{0}$ is given by $\{[x: y: z] \in X \mid x=0\}$. When $x=0$, $f=x y-z^{2}=0$ implies $z=0$. Hence the only point in $X \backslash X_{0}$ is $p=[x: y:$ $z]=[0: 1: 0]$. This point is in the standard affine piece $X_{1}=X \cap U_{1}$ because its y-coordinate is non-zero. The standard affine piece X_{1} is obtained by setting
$y=1$ hence $X_{1}=\mathbb{V}_{a}\left(f_{1}\right)$ where $f_{1}=x-z^{2}$. The point $p=[0: 1: 0]$ has non-homogeneous coordinates $p=(0,0)$ in the standard affine piece X_{1}. To check whether X_{1} is singular at $p=(0,0)$, we need to compute the partial derivatives of the defining equation f_{1}. Notice that $\frac{\partial f_{1}}{\partial x}=1$ which does not vanish at p. We conclude that p is a non-singular point of X_{1}, hence by Definition 7.8, p is a non-singular point of X.

Parts (1) and (2) together show that $X=\mathbb{V}\left(x y-z^{2}\right) \subseteq \mathbb{P}^{2}$ is non-singular.
(3) We first consider the standard affine piece $X_{0}=X \cap U_{0}$. By setting $x=1$, we get $X_{0}=\mathbb{V}\left(f_{0}\right) \subseteq \mathbb{A}^{2}$ where $f_{0}=z+y z+y^{3} z+1+y^{4}$. To find singular points in X_{0}, we need to consider the equations

$$
\begin{array}{r}
f_{0}=z+y z+y^{3} z+1+y^{4}=0 \\
\frac{\partial f_{0}}{\partial y}=z+3 y^{2} z+4 y^{3}=0 ; \\
\frac{\partial f_{0}}{\partial z}=1+y+y^{3}=0 .
\end{array}
$$

We now solve the system. From the first equation we observe that $f_{0}=z(1+y+$ $\left.y^{3}\right)+\left(1+y^{4}\right)=0$. Together with the third equation we find that $1+y^{4}=0$. I claim that the two equations $1+y+y^{3}=0$ and $1+y^{4}=0$ do not have a common solution for y. There are many ways to prove the claim. One possible way is to use the Euclidean division. We divide $y^{4}+1$ by $y^{3}+y+1$ to get

$$
y^{4}+1=y\left(y^{3}+y+1\right)-\left(y^{2}+y-1\right),
$$

which implies $y^{2}+y-1=0$. We further divide $y^{3}+y+1$ by $y^{2}+y-1$ to get

$$
y^{3}+y+1=(y-1)\left(y^{2}+y-1\right)+3 y,
$$

which implies $3 y=0$ hence $y=0$. Therefore if the two equations have a common solution for y then we must have $y=0$, which is not a solution. This proves the claim, which implies that X_{0} is non-singular.

Finally we need to check whether the points in $X \backslash X_{0}$ are singular points. To find all points in $X \backslash X_{0}$, we set $x=0$ in $f=0$. Then we get $y^{3} z+y^{4}=0$, which implies $y=0$ or $y+z=0$. Therefore there are two points in $X \backslash X_{0}$, given by $p_{1}=[0: 0: 1]$ and $p_{2}=[0:-1: 1]$ respectively. To check whether they are singular points, we need to find a standard affine piece which contain them. Since the z-coordinates of p_{1} and p_{2} are non-zero, we can choose $X_{2}=X \cap U_{2}$. The standard affine piece $X_{2}=\mathbb{V}\left(f_{2}\right)$ where $f_{2}=x^{3}+x^{2} y+y^{3}+x^{4}+y^{4}$. The nonhomogeneous coordinates of p_{1} and p_{2} are given by $p_{1}=(0,0)$ and $p_{2}=(0,-1)$
respectively. The partial derivatives of f_{2} are

$$
\begin{aligned}
& \frac{\partial f_{2}}{\partial x}=3 x^{2}+2 x y+4 x^{3} \\
& \frac{\partial f_{2}}{\partial y}=x^{2}+3 y^{2}+4 y^{3} .
\end{aligned}
$$

It is easy to see that at the point $p_{1}=(0,0)$, we have $f_{2}\left(p_{1}\right)=\frac{\partial f_{2}}{\partial x}\left(p_{1}\right)=\frac{\partial f_{2}}{\partial y}\left(p_{1}\right)=$ 0 . Therefore p_{1} is a singular point on X_{2}. At the point $p_{2}=(0,-1)$, we have $\frac{\partial f_{2}}{\partial y}\left(p_{2}\right)=-1 \neq 0$. Therefore p_{2} is a non-singular point on X_{2}. By Definition 7.8, the only singular point of X is $p_{1}=[0: 0: 1]$.

Solution 7.3. Example: plane cubics. There are three cases to deal with in this question. Most of the calculations are the same in all the three cases. First of all we look at a standard affine piece of $X=\mathbb{V}(f) \subseteq \mathbb{P}^{2}$. You can choose any standard affine piece of X to start with. For example, we choose the standard affine pice $X_{2}=X \cap U_{2}$, which is given by setting $z=1$ in f. Therefore we have

$$
X_{2}=\mathbb{V}\left(y^{2}-\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right)\right) \subseteq \mathbb{A}^{2} .
$$

To find the singular points on X_{2}, we need to solve the system

$$
\begin{aligned}
y^{2}-\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right) & =0 ; \\
-\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right)-\left(x-\lambda_{1}\right)\left(x-\lambda_{3}\right)-\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) & =0 ; \\
2 y & =0 .
\end{aligned}
$$

The third equation implies $y=0$, then the first equation implies $x=\lambda_{1}$ or λ_{2} or λ_{3}. Now there is some difference in the three cases.
(1) If λ_{1}, λ_{2} and λ_{3} are distinct, then it is clear that none of them is a solution to the second equation. Therefore X_{2} is non-singular in this case.
(2) If two of the three are equal, say, $\lambda_{1}=\lambda_{2} \neq \lambda_{3}$, then it is clear that $x=\lambda_{1}$ (or λ_{2}) is a solution to the second equation while $x=\lambda_{3}$ is not a solution. Therefore X_{2} has a singular point $\left(\lambda_{1}, 0\right)$, which has homogeneous coordinates $\left[\lambda_{1}: 0: 1\right]$ as a point in X.
(3) If all the three are equal, then $x=\lambda_{1}$ (or λ_{2} or λ_{3}) is a solution to the second equation. Therefore X_{2} has a singular point $\left(\lambda_{1}, 0\right)$, which has homogeneous coordinates $\left[\lambda_{1}: 0: 1\right]$ as a point in X.

It remains to consider the points in $X \backslash X_{2}$. To find these points we set $z=0$ in the equation $f=0$. We get $-x^{3}=0$ hence $x=0$. Therefore the only point in $X \backslash X_{2}$ is $p=[x: y: z]=[0: 1: 0]$. Since the y-coordinate of p is non-zero, it is a point in the standard affine piece $X_{1}=X \cap U_{1}$, given by the non-homogeneous coordinates $p=(0,0)$.

To write down the defining polynomial for X_{1} we set $y=1$ and get $X_{1}=\mathbb{V}\left(f_{1}\right) \subseteq \mathbb{A}^{2}$ where

$$
f_{1}=z-\left(x-\lambda_{1} z\right)\left(x-\lambda_{2} z\right)\left(x-\lambda_{3} z\right) .
$$

Its partial derivative with respect to z is given by

$$
\frac{\partial f_{1}}{\partial z}=1+\lambda_{1}\left(x-\lambda_{2} z\right)\left(x-\lambda_{3} z\right)+\lambda_{2}\left(x-\lambda_{1} z\right)\left(x-\lambda_{3} z\right)+\lambda_{3}\left(x-\lambda_{1} z\right)\left(x-\lambda_{2} z\right)
$$

It is clear that at the point $p=(0,0)$, we have $\frac{\partial f_{1}}{\partial z}(p)=1 \neq 0$. Therefore $p=(0,0)$ is a non-singular point of X_{1}, hence $p=[0: 1: 0]$ is a non-singular point of X. This holds in all the three cases. We have the following conclusion:
(1) If λ_{1}, λ_{2} and λ_{3} are distinct, X is non-singular.
(2) If two of the three are equal, say, $\lambda_{1}=\lambda_{2} \neq \lambda_{3}$, then X has a unique singular point $\left[\lambda_{1}: 0: 1\right]$.
(3) If all the three are equal, then X has a unique singular point $\left[\lambda_{1}: 0: 1\right]$.

Solution 7.4. Example: projective twisted cubic. We first consider the standard affine piece $Y_{0}=Y \cap U_{0}$. By settin $z_{0}=1$ we get

$$
Y_{0}=\mathbb{V}_{a}\left(y_{2}-y_{1}^{2}, y_{1} y_{3}-y_{2}^{2}, y_{3}-y_{1} y_{2}\right)
$$

To find the dimension of the tangent space at any point $p=\left(y_{1}, y_{2}, y_{3}\right)$, we consider the matrix of partial derivatives:

$$
M_{p}=\left(\begin{array}{ccc}
-2 y_{1} & 1 & 0 \\
y_{3} & -2 y_{2} & y_{1} \\
-y_{2} & -y_{1} & 1
\end{array}\right) .
$$

We need to find rank M_{p}. First we compute the determinant of M_{p} :

$$
\operatorname{det} M_{p}=4 y_{1} y_{2}-y_{1} y_{2}-y_{3}-2 y_{1}^{3}=4 y_{1} y_{2}-y_{1} y_{2}-y_{1} y_{2}-2 y_{1} y_{2}=0 .
$$

Therefore rank $M_{p} \leqslant 2$. Notice that the first and third rows of M_{p} are linearly independent (or the second and third columns). Therefore $\operatorname{rank} M_{p}=2$, which implies $\operatorname{dim} T_{p} Y_{0}=1$ at every $p \in Y_{0}$. It follows that Y_{0} is non-singular and $\operatorname{dim} Y=\operatorname{dim} Y_{0}=1$.

Now we consider the points in $Y \backslash Y_{0}$. Let $p=\left[y_{0}: y_{1}: y_{2}: y_{3}\right]$ be such a point, then $y_{0}=0$, which implies $y_{1}^{2}=y_{0} y_{2}=0$ and $y_{2}^{2}=y_{1} y_{3}=0$. Therefore the only point $p \in Y \backslash Y_{0}$ is given by $p=[0: 0: 0: 1]$. To determine whether p is a singular point, we need to look at the standard affine piece $Y_{3}=Y \cap U_{3}$. We could perform a similar calculation as above to show that Y_{3} is non-singular. More precisely, we have

$$
\begin{gathered}
Y_{3}=\mathbb{V}_{a}\left(y_{0} y_{2}-y_{1}^{2}, y_{1}-y_{2}^{2}, y_{0}-y_{1} y_{2}\right) .
\end{gathered}
$$

For any point $q=\left(y_{0}, y_{1}, y_{2}\right) \in Y_{3}$, the matrix

$$
M_{q}=\left(\begin{array}{ccc}
y_{2} & -2 y_{1} & y_{0} \\
0 & 1 & -2 y_{2} \\
1 & -y_{2} & -y_{1}
\end{array}\right) .
$$

We notice that

$$
\operatorname{det} M_{q}=-y_{1} y_{2}+4 y_{1} y_{2}-y_{0}-2 y_{2}^{3}=-y_{1} y_{2}+4 y_{1} y_{2}-y_{1} y_{2}-2 y_{1} y_{2}=0 .
$$

Therefore $\operatorname{rank} M_{q} \leqslant 2$. Moreover the second and the third rows are linearly independent, hence $\operatorname{rank} M_{q}=2$ for every $q \in Y_{3}$. It follows that Y_{3} is non-singular. To summarise, Y is non-singular and has dimension 1 .

