Solution 7.1. Examples of affine varieties.

(1) The singular points are defined by \(f = 0 \) and the two partial derivatives \(\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0 \). We have \(\frac{\partial f}{\partial x} = 6x(x^2 + y^2)^2 - 8xy^2 = 2x \cdot (3(x^2 + y^2)^2 - 4y^2) \) and \(\frac{\partial f}{\partial y} = 6y(x^2 + y^2)^2 \cdot 2y - 8x^2y = 2y \cdot (3(x^2 + y^2)^2 - 4x^2) \). If \(x = 0 \) or \(y = 0 \), then \(f = 0 \) forces \(x = y = 0 \). The point \((0,0)\) satisfies all equations hence is a singular point. If neither \(x \) nor \(y \) is 0, then we have \(3(x^2 + y^2)^2 = 4x^2 = 4y^2 \), hence \(3(x^2 + y^2)^2 = 4x^2 \) which implies \(x^2 = \frac{1}{3} = y^2 \). But then \(f = \left(\frac{1}{3} + \frac{1}{3} \right)^3 - 4 \cdot \frac{1}{3} \cdot \frac{1}{3} \neq 0 \). Therefore the only singular point is \((0,0)\).

(2) The singular points are defined by \(f = xy - z^2 = 0 \), and \(\frac{\partial f}{\partial x} = y^2 = 0 \), \(\frac{\partial f}{\partial y} = 2xy = 0 \), \(\frac{\partial f}{\partial z} = -2z = 0 \). From the second and fourth equations we have \(y = z = 0 \). No matter what value \(x \) takes, \((x,y,z) = (x,0,0)\) always satisfies all the four equations. Therefore the singular points of \(\mathbb{V}(f) \) are all points of the form \((x,0,0)\).

(3) The singular points are given by \(f = xy + x^3 + y^3 = 0 \), and \(\frac{\partial f}{\partial x} = y + 3x^2 = 0 \), \(\frac{\partial f}{\partial y} = x + 3y^2 = 0 \), \(\frac{\partial f}{\partial z} = 0 \). From \(\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0 \) we get \(x = -3y^2 = -27x^4 \), hence \(x = 0 \) or \(x^3 = -\frac{1}{27} \). If \(x = 0 \), then \(f = 0 \) forces \(y = 0 \). It is clear that every point of the form \((x,y,z) = (0,0,z)\) is a solution to all the required equations hence is a singular point on \(\mathbb{V}(f) \). If \(x \neq 0 \), then \(x^3 = -\frac{1}{27} \). Then we have \(f = xy + x^3 + y^3 = x(-3x^2) + x^3 + (-3x^2)^3 = -3x^3 + x^3 - 27x^6 = \frac{1}{9} - \frac{1}{27} - \frac{1}{27} = \frac{1}{27} \neq 0 \). Contradiction. Therefore \((x,y,z) = (0,0,z)\) are the only singular points of \(\mathbb{V}(f) \).

(4) At every point \(p = (x,y,z) \in X \), we consider the matrix \(M_p \) given by the partial derivatives

\[
M_p = \begin{pmatrix} -2x & 1 & 0 \\ -3x^2 & 0 & 1 \end{pmatrix}.
\]

It is clear that the two rows of \(M_p \) are linearly independent, therefore \(\text{rank} \ M_p = 2 \) for every \(p \in X \). It follows that \(\dim T_pX = 3 - \text{rank} \ M_p = 1 \) for every \(p \in X \). Therefore \(\dim X = 1 \) and \(\dim T_pX = \dim X \) for every \(p \in X \). By Definition 7.13, \(X \) is non-singular at every point \(p \in X \).

Solution 7.2. Example of projective varieties.

(1) The standard affine piece \(X_0 = X \cap U_0 \) is given by setting \(x = 1 \) in \(f \). Hence \(X_0 = \mathbb{V}(f_0) \) where \(f_0 = y - z^2 \). For any point \((y,z) \in X_0 \), \(\frac{\partial f_0}{\partial y} = 1 \) which never vanishes. Therefore \(X_0 \) does not have any singular point, hence is non-singular.

(2) The set of points in \(X \setminus X_0 \) is given by \(\{ [x : y : z] \in X \mid x = 0 \} \). When \(x = 0 \), \(f = xy - z^2 = 0 \) implies \(z = 0 \). Hence the only point in \(X \setminus X_0 \) is \(p = [x : y : z] = [0 : 1 : 0] \). This point is in the standard affine piece \(X_1 = X \cap U_1 \) because its \(y \)-coordinate is non-zero. The standard affine piece \(X_1 \) is obtained by setting
\[y = 1 \] hence \(X_1 = \mathbb{V}_a(f_1) \) where \(f_1 = x - z^2 \). The point \(p = [0 : 1 : 0] \) has non-homogeneous coordinates \(p = (0,0) \) in the standard affine piece \(X_1 \). To check whether \(X_1 \) is singular at \(p = (0,0) \), we need to compute the partial derivatives of the defining equation \(f_1 \). Notice that \(\frac{\partial f_1}{\partial x} = 1 \) which does not vanish at \(p \).

We conclude that \(p \) is a non-singular point of \(X_1 \), hence by Definition 7.8, \(p \) is a non-singular point of \(X \).

Parts (1) and (2) together show that \(X = \mathbb{V}(xy - z^2) \subseteq \mathbb{P}^2 \) is non-singular.

(3) We first consider the standard affine piece \(X_0 = X \cap U_0 \). By setting \(x = 1 \), we get \(X_0 = \mathbb{V}(f_0) \subseteq \mathbb{A}^2 \) where \(f_0 = z + yz + y^3z + 1 + y^4 \). To find singular points in \(X_0 \), we need to consider the equations

\[
\begin{align*}
f_0 &= z + yz + y^3z + 1 + y^4 = 0; \\
\frac{\partial f_0}{\partial y} &= z + 3y^2z + 4y^3 = 0; \\
\frac{\partial f_0}{\partial z} &= 1 + y + y^3 = 0.
\end{align*}
\]

We now solve the system. From the first equation we observe that \(f_0 = z(1 + y + y^3) + (1 + y^4) = 0 \). Together with the third equation we find that \(1 + y^4 = 0 \). I claim that the two equations \(1 + y + y^3 = 0 \) and \(1 + y^4 = 0 \) do not have a common solution for \(y \). There are many ways to prove the claim. One possible way is to use the Euclidean division. We divide \(y^4 + 1 \) by \(y^3 + y + 1 \) to get

\[y^4 + 1 = y(y^3 + y + 1) - (y^2 + y - 1), \]

which implies \(y^2 + y - 1 = 0 \). We further divide \(y^3 + y + 1 \) by \(y^2 + y - 1 \) to get

\[y^3 + y + 1 = (y - 1)(y^2 + y - 1) + 3y, \]

which implies \(3y = 0 \) hence \(y = 0 \). Therefore if the two equations have a common solution for \(y \) then we must have \(y = 0 \), which is not a solution. This proves the claim, which implies that \(X_0 \) is non-singular.

Finally we need to check whether the points in \(X \setminus X_0 \) are singular points. To find all points in \(X \setminus X_0 \), we set \(x = 0 \) in \(f = 0 \). Then we get \(y^3z + y^4 = 0 \), which implies \(y = 0 \) or \(y + z = 0 \). Therefore there are two points in \(X \setminus X_0 \), given by \(p_1 = [0 : 0 : 1] \) and \(p_2 = [0 : -1 : 1] \) respectively. To check whether they are singular points, we need to find a standard affine piece which contain them. Since the \(z \)-coordinates of \(p_1 \) and \(p_2 \) are non-zero, we can choose \(X_2 = X \cap U_2 \). The standard affine piece \(X_2 = \mathbb{V}(f_2) \) where \(f_2 = x^3 + x^2y + y^3 + x^4 + y^4 \). The non-homogeneous coordinates of \(p_1 \) and \(p_2 \) are given by \(p_1 = (0,0) \) and \(p_2 = (0,-1) \).
respectively. The partial derivatives of \(f \) are

\[
\frac{\partial f_2}{\partial x} = 3x^2 + 2xy + 4x^3; \\
\frac{\partial f_2}{\partial y} = x^2 + 3y^2 + 4y^3.
\]

It is easy to see that at the point \(p_1 = (0, 0) \), we have \(f_2(p_1) = \frac{\partial f_2}{\partial x}(p_1) = \frac{\partial f_2}{\partial y}(p_1) = 0 \). Therefore \(p_1 \) is a singular point on \(X_2 \). At the point \(p_2 = (0, -1) \), we have \(\frac{\partial f_2}{\partial y}(p_2) = -1 \neq 0 \). Therefore \(p_2 \) is a non-singular point on \(X_2 \). By Definition 7.8, the only singular point of \(X \) is \(p_1 = [0 : 0 : 1] \).

Solution 7.3. Example: plane cubics. There are three cases to deal with in this question. Most of the calculations are the same in all the three cases. First of all we look at a standard affine piece of \(X = \mathbb{V}(f) \subseteq \mathbb{P}^2 \). You can choose any standard affine piece of \(X \) to start with. For example, we choose the standard affine piece \(X_2 = X \cap U_2 \), which is given by setting \(z = 1 \) in \(f \). Therefore we have

\[
X_2 = \mathbb{V}(y^2 - (x - \lambda_1)(x - \lambda_2)(x - \lambda_3)) \subseteq \mathbb{A}^2.
\]

To find the singular points on \(X_2 \), we need to solve the system

\[
y^2 - (x - \lambda_1)(x - \lambda_2)(x - \lambda_3) = 0; \\
-(x - \lambda_2)(x - \lambda_3) - (x - \lambda_1)(x - \lambda_3) - (x - \lambda_1)(x - \lambda_3) = 0; \\
2y = 0.
\]

The third equation implies \(y = 0 \), then the first equation implies \(x = \lambda_1 \) or \(\lambda_2 \) or \(\lambda_3 \). Now there is some difference in the three cases.

1. If \(\lambda_1, \lambda_2 \) and \(\lambda_3 \) are distinct, then it is clear that none of them is a solution to the second equation. Therefore \(X_2 \) is non-singular in this case.

2. If two of the three are equal, say, \(\lambda_1 = \lambda_2 \neq \lambda_3 \), then it is clear that \(x = \lambda_1 \) (or \(\lambda_2 \)) is a solution to the second equation while \(x = \lambda_3 \) is not a solution. Therefore \(X_2 \) has a singular point \((\lambda_1, 0) \), which has homogeneous coordinates \([\lambda_1 : 0 : 1] \) as a point in \(X \).

3. If all the three are equal, then \(x = \lambda_1 \) (or \(\lambda_2 \) or \(\lambda_3 \)) is a solution to the second equation. Therefore \(X_2 \) has a singular point \((\lambda_1, 0) \), which has homogeneous coordinates \([\lambda_1 : 0 : 1] \) as a point in \(X \).

It remains to consider the points in \(X \setminus X_2 \). To find these points we set \(z = 0 \) in the equation \(f = 0 \). We get \(-x^3 = 0 \) hence \(x = 0 \). Therefore the only point in \(X \setminus X_2 \) is \(p = [x : y : z] = [0 : 1 : 0] \). Since the \(y \)-coordinate of \(p \) is non-zero, it is a point in the standard affine piece \(X_1 = X \cap U_1 \), given by the non-homogeneous coordinates \(p = (0, 0) \).
To write down the defining polynomial for X_1 we set $y = 1$ and get $X_1 = \mathbb{V}(f_1) \subseteq \mathbb{A}^2$ where
\[f_1 = z - (x - \lambda_1 z)(x - \lambda_2 z)(x - \lambda_3 z). \]
Its partial derivative with respect to z is given by
\[\frac{\partial f_1}{\partial z} = 1 + \lambda_1(x - \lambda_2 z)(x - \lambda_3 z) + \lambda_2(x - \lambda_1 z)(x - \lambda_3 z) + \lambda_3(x - \lambda_1 z)(x - \lambda_2 z). \]
It is clear that at the point $p = (0, 0)$, we have $\frac{\partial f_1}{\partial z}(p) = 1 \neq 0$. Therefore $p = (0, 0)$ is a non-singular point of X_1, hence $p = [0 : 1 : 0]$ is a non-singular point of X. This holds in all the three cases. We have the following conclusion:

1. If λ_1, λ_2 and λ_3 are distinct, X is non-singular.
2. If two of the three are equal, say, $\lambda_1 = \lambda_2 \neq \lambda_3$, then X has a unique singular point $[\lambda_1 : 0 : 1]$.
3. If all the three are equal, then X has a unique singular point $[\lambda_1 : 0 : 1]$.

Solution 7.4. Example: projective twisted cubic. We first consider the standard affine piece $Y_0 = Y \cap U_0$. By setting $z_0 = 1$ we get
\[Y_0 = \mathbb{V}_a(y_2 - y_1^2, y_1 y_3 - y_2^2, y_3 - y_1 y_2). \]
To find the dimension of the tangent space at any point $p = (y_1, y_2, y_3)$, we consider the matrix of partial derivatives:
\[M_p = \begin{pmatrix} -2y_1 & 1 & 0 \\ y_3 & -2y_2 & y_1 \\ -y_2 & -y_1 & 1 \end{pmatrix}. \]
We need to find rank M_p. First we compute the determinant of M_p:
\[\det M_p = 4y_1 y_2 - y_1 y_2 - y_3 - 2y_1^3 = 4y_1 y_2 - y_1 y_2 - 2y_1 y_2 = 0. \]
Therefore rank $M_p \leq 2$. Notice that the first and third rows of M_p are linearly independent (or the second and third columns). Therefore rank $M_p = 2$, which implies $\dim T_p Y_0 = 1$ at every $p \in Y_0$. It follows that Y_0 is non-singular and $\dim Y = \dim Y_0 = 1$.

Now we consider the points in $Y \setminus Y_0$. Let $p = [y_0 : y_1 : y_2 : y_3]$ be such a point, then $y_0 = 0$, which implies $y_1^2 = y_0 y_2 = 0$ and $y_2^2 = y_1 y_3 = 0$. Therefore the only point $p \in Y \setminus Y_0$ is given by $p = [0 : 0 : 0 : 1]$. To determine whether p is a singular point, we need to look at the standard affine piece $Y_3 = Y \cap U_3$. We could perform a similar calculation as above to show that Y_3 is non-singular. More precisely, we have
\[Y_3 = \mathbb{V}_a(y_0 y_2 - y_1^2, y_1 y_2^2, y_0 - y_1 y_2). \]
For any point $q = (y_0, y_1, y_2) \in Y_3$, the matrix

$$M_q = \begin{pmatrix} y_2 & -2y_1 & y_0 \\ 0 & 1 & -2y_2 \\ 1 & -y_2 & -y_1 \end{pmatrix}.$$

We notice that

$$\det M_q = -y_1 y_2 + 4y_1 y_2 - y_0 - 2y_2^3 = -y_1 y_2 + 4y_1 y_2 - y_1 y_2 - 2y_1 y_2 = 0.$$

Therefore rank $M_q \leq 2$. Moreover the second and the third rows are linearly independent, hence rank $M_q = 2$ for every $q \in Y_3$. It follows that Y_3 is non-singular. To summarise, Y is non-singular and has dimension 1.