Solution 7.1. Examples of affine varieties.

- (1) The singular points are defined by f = 0 and the two partial derivatives $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$. We have $\frac{\partial f}{\partial x} = 6x(x^2 + y^2)^2 8xy^2 = 2x \cdot (3(x^2 + y^2)^2 4y^2)$ and $\frac{\partial f}{\partial y} = 6y(x^2 + y^2)^2 \cdot 2y 8x^2y = 2y \cdot (3(x^2 + y^2)^2 4x^2)$. If x = 0 or y = 0, then f = 0 forces x = y = 0. The point (0,0) satisfies all equations hence is a singular point. If neither x nor y is 0, then we have $3(x^2 + y^2)^2 = 4x^2 = 4y^2$, hence $3(x^2 + x^2)^2 = 4x^2$ which implies $x^2 = \frac{1}{3} = y^2$. But then $f = (\frac{1}{3} + \frac{1}{3})^3 4 \cdot \frac{1}{3} \cdot \frac{1}{3} \neq 0$. Therefore the only singular point is (0,0).
- (2) The singular points are defined by $f = xy^2 z^2 = 0$, and $\frac{\partial f}{\partial x} = y^2 = 0$, $\frac{\partial f}{\partial y} = 2xy = 0$, $\frac{\partial f}{\partial z} = -2z = 0$. From the second and fourth equations we have y = z = 0. No matter what value x takes, (x, y, z) = (x, 0, 0) always satisfies all the four equations. Therefore the singular points of $\mathbb{V}(f)$ are all points of the form (x, 0, 0).
- (3) The singular points are given by $f = xy + x^3 + y^3 = 0$, and $\frac{\partial f}{\partial x} = y + 3x^2 = 0$, $\frac{\partial f}{\partial y} = x + 3y^2 = 0$, $\frac{\partial f}{\partial z} = 0$. From $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$ we get $x = -3y^2 = -27x^4$, hence x = 0 or $x^3 = -\frac{1}{27}$. If x = 0, then f = 0 forces y = 0. It is clear that every point of the form (x, y, z) = (0, 0, z) is a solution to all the required equations hence is a singular point on $\mathbb{V}(f)$. If $x \neq 0$, then $x^3 = -\frac{1}{27}$. Then we have $f = xy + x^3 + y^3 = x(-3x^2) + x^3 + (-3x^2)^3 = -3x^3 + x^3 - 27x^6 = \frac{1}{9} - \frac{1}{27} - \frac{1}{27} = \frac{1}{27} \neq 0$. Contradiction. Therefore (x, y, z) = (0, 0, z) are the only singular points of $\mathbb{V}(f)$.
- (4) At every point $p = (x, y, z) \in X$, we consider the matrix M_p given by the partial derivatives

$$M_p = \begin{pmatrix} -2x & 1 & 0\\ -3x^2 & 0 & 1 \end{pmatrix}$$

It is clear that the two rows of M_p are linearly independent, therefore rank $M_p = 2$ for every $p \in X$. It follows that $\dim T_p X = 3 - \operatorname{rank} M_p = 1$ for every $p \in X$. Therefore $\dim X = 1$ and $\dim T_p X = \dim X$ for every $p \in X$. By Definition 7.13, X is non-singular at every point $p \in X$.

Solution 7.2. Example of projective varieties.

- (1) The standard affine piece $X_0 = X \cap U_0$ is given by setting x = 1 in f. Hence $X_0 = \mathbb{V}(f_0)$ where $f_0 = y z^2$. For any point $(y, z) \in X_0$, $\frac{\partial f_0}{\partial y} = 1$ which never vanishes. Therefore X_0 does not have any singular point, hence is non-singular.
- (2) The set of points in $X \setminus X_0$ is given by $\{[x : y : z] \in X \mid x = 0\}$. When x = 0, $f = xy - z^2 = 0$ implies z = 0. Hence the only point in $X \setminus X_0$ is p = [x : y : z] = [0 : 1 : 0]. This point is in the standard affine piece $X_1 = X \cap U_1$ because its y-coordinate is non-zero. The standard affine piece X_1 is obtained by setting

y = 1 hence $X_1 = \mathbb{V}_a(f_1)$ where $f_1 = x - z^2$. The point p = [0 : 1 : 0] has non-homogeneous coordinates p = (0, 0) in the standard affine piece X_1 . To check whether X_1 is singular at p = (0, 0), we need to compute the partial derivatives of the defining equation f_1 . Notice that $\frac{\partial f_1}{\partial x} = 1$ which does not vanish at p. We conclude that p is a non-singular point of X_1 , hence by Definition 7.8, p is a non-singular point of X.

Parts (1) and (2) together show that $X = \mathbb{V}(xy - z^2) \subseteq \mathbb{P}^2$ is non-singular.

(3) We first consider the standard affine piece $X_0 = X \cap U_0$. By setting x = 1, we get $X_0 = \mathbb{V}(f_0) \subseteq \mathbb{A}^2$ where $f_0 = z + yz + y^3z + 1 + y^4$. To find singular points in X_0 , we need to consider the equations

$$f_{0} = z + yz + y^{3}z + 1 + y^{4} = 0;$$

$$\frac{\partial f_{0}}{\partial y} = z + 3y^{2}z + 4y^{3} = 0;$$

$$\frac{\partial f_{0}}{\partial z} = 1 + y + y^{3} = 0.$$

We now solve the system. From the first equation we observe that $f_0 = z(1 + y + y^3) + (1 + y^4) = 0$. Together with the third equation we find that $1 + y^4 = 0$. I claim that the two equations $1 + y + y^3 = 0$ and $1 + y^4 = 0$ do not have a common solution for y. There are many ways to prove the claim. One possible way is to use the Euclidean division. We divide $y^4 + 1$ by $y^3 + y + 1$ to get

$$y^{4} + 1 = y(y^{3} + y + 1) - (y^{2} + y - 1),$$

which implies $y^2 + y - 1 = 0$. We further divide $y^3 + y + 1$ by $y^2 + y - 1$ to get

$$y^{3} + y + 1 = (y - 1)(y^{2} + y - 1) + 3y,$$

which implies 3y = 0 hence y = 0. Therefore if the two equations have a common solution for y then we must have y = 0, which is not a solution. This proves the claim, which implies that X_0 is non-singular.

Finally we need to check whether the points in $X \setminus X_0$ are singular points. To find all points in $X \setminus X_0$, we set x = 0 in f = 0. Then we get $y^3 z + y^4 = 0$, which implies y = 0 or y + z = 0. Therefore there are two points in $X \setminus X_0$, given by $p_1 = [0:0:1]$ and $p_2 = [0:-1:1]$ respectively. To check whether they are singular points, we need to find a standard affine piece which contain them. Since the z-coordinates of p_1 and p_2 are non-zero, we can choose $X_2 = X \cap U_2$. The standard affine piece $X_2 = \mathbb{V}(f_2)$ where $f_2 = x^3 + x^2y + y^3 + x^4 + y^4$. The nonhomogeneous coordinates of p_1 and p_2 are given by $p_1 = (0,0)$ and $p_2 = (0,-1)$ respectively. The partial derivatives of f_2 are

$$\frac{\partial f_2}{\partial x} = 3x^2 + 2xy + 4x^3;$$
$$\frac{\partial f_2}{\partial y} = x^2 + 3y^2 + 4y^3.$$

It is easy to see that at the point $p_1 = (0,0)$, we have $f_2(p_1) = \frac{\partial f_2}{\partial x}(p_1) = \frac{\partial f_2}{\partial y}(p_1) = 0$. O. Therefore p_1 is a singular point on X_2 . At the point $p_2 = (0,-1)$, we have $\frac{\partial f_2}{\partial y}(p_2) = -1 \neq 0$. Therefore p_2 is a non-singular point on X_2 . By Definition 7.8, the only singular point of X is $p_1 = [0:0:1]$.

Solution 7.3. Example: plane cubics. There are three cases to deal with in this question. Most of the calculations are the same in all the three cases. First of all we look at a standard affine piece of $X = \mathbb{V}(f) \subseteq \mathbb{P}^2$. You can choose any standard affine piece of X to start with. For example, we choose the standard affine piece $X_2 = X \cap U_2$, which is given by setting z = 1 in f. Therefore we have

$$X_2 = \mathbb{V}(y^2 - (x - \lambda_1)(x - \lambda_2)(x - \lambda_3)) \subseteq \mathbb{A}^2.$$

To find the singular points on X_2 , we need to solve the system

$$y^{2} - (x - \lambda_{1})(x - \lambda_{2})(x - \lambda_{3}) = 0;$$

-(x - \lambda_{2})(x - \lambda_{3}) - (x - \lambda_{1})(x - \lambda_{3}) - (x - \lambda_{1})(x - \lambda_{2}) = 0;
2y = 0.

The third equation implies y = 0, then the first equation implies $x = \lambda_1$ or λ_2 or λ_3 . Now there is some difference in the three cases.

- (1) If λ_1 , λ_2 and λ_3 are distinct, then it is clear that none of them is a solution to the second equation. Therefore X_2 is non-singular in this case.
- (2) If two of the three are equal, say, $\lambda_1 = \lambda_2 \neq \lambda_3$, then it is clear that $x = \lambda_1$ (or λ_2) is a solution to the second equation while $x = \lambda_3$ is not a solution. Therefore X_2 has a singular point $(\lambda_1, 0)$, which has homogeneous coordinates $[\lambda_1 : 0 : 1]$ as a point in X.
- (3) If all the three are equal, then $x = \lambda_1$ (or λ_2 or λ_3) is a solution to the second equation. Therefore X_2 has a singular point $(\lambda_1, 0)$, which has homogeneous coordinates $[\lambda_1 : 0 : 1]$ as a point in X.

It remains to consider the points in $X \setminus X_2$. To find these points we set z = 0 in the equation f = 0. We get $-x^3 = 0$ hence x = 0. Therefore the only point in $X \setminus X_2$ is p = [x : y : z] = [0 : 1 : 0]. Since the y-coordinate of p is non-zero, it is a point in the standard affine piece $X_1 = X \cap U_1$, given by the non-homogeneous coordinates p = (0, 0).

To write down the defining polynomial for X_1 we set y = 1 and get $X_1 = \mathbb{V}(f_1) \subseteq \mathbb{A}^2$ where

$$f_1 = z - (x - \lambda_1 z)(x - \lambda_2 z)(x - \lambda_3 z).$$

Its partial derivative with respect to z is given by

$$\frac{\partial f_1}{\partial z} = 1 + \lambda_1 (x - \lambda_2 z)(x - \lambda_3 z) + \lambda_2 (x - \lambda_1 z)(x - \lambda_3 z) + \lambda_3 (x - \lambda_1 z)(x - \lambda_2 z).$$

It is clear that at the point p = (0,0), we have $\frac{\partial f_1}{\partial z}(p) = 1 \neq 0$. Therefore p = (0,0) is a non-singular point of X_1 , hence p = [0:1:0] is a non-singular point of X. This holds in all the three cases. We have the following conclusion:

- (1) If λ_1 , λ_2 and λ_3 are distinct, X is non-singular.
- (2) If two of the three are equal, say, $\lambda_1 = \lambda_2 \neq \lambda_3$, then X has a unique singular point $[\lambda_1 : 0 : 1]$.
- (3) If all the three are equal, then X has a unique singular point $[\lambda_1 : 0 : 1]$.

Solution 7.4. Example: projective twisted cubic. We first consider the standard affine piece $Y_0 = Y \cap U_0$. By settin $z_0 = 1$ we get

$$Y_0 = \mathbb{V}_a(y_2 - y_1^2, y_1y_3 - y_2^2, y_3 - y_1y_2).$$

To find the dimension of the tangent space at any point $p = (y_1, y_2, y_3)$, we consider the matrix of partial derivatives:

$$M_p = \begin{pmatrix} -2y_1 & 1 & 0\\ y_3 & -2y_2 & y_1\\ -y_2 & -y_1 & 1 \end{pmatrix}.$$

We need to find rank M_p . First we compute the determinant of M_p :

$$\det M_p = 4y_1y_2 - y_1y_2 - y_3 - 2y_1^3 = 4y_1y_2 - y_1y_2 - y_1y_2 - 2y_1y_2 = 0.$$

Therefore rank $M_p \leq 2$. Notice that the first and third rows of M_p are linearly independent (or the second and third columns). Therefore rank $M_p = 2$, which implies dim $T_pY_0 = 1$ at every $p \in Y_0$. It follows that Y_0 is non-singular and dim $Y = \dim Y_0 = 1$.

Now we consider the points in $Y \setminus Y_0$. Let $p = [y_0 : y_1 : y_2 : y_3]$ be such a point, then $y_0 = 0$, which implies $y_1^2 = y_0 y_2 = 0$ and $y_2^2 = y_1 y_3 = 0$. Therefore the only point $p \in Y \setminus Y_0$ is given by p = [0 : 0 : 0 : 1]. To determine whether p is a singular point, we need to look at the standard affine piece $Y_3 = Y \cap U_3$. We could perform a similar calculation as above to show that Y_3 is non-singular. More precisely, we have

$$Y_3 = \mathbb{V}_a(y_0y_2 - y_1^2, y_1 - y_2^2, y_0 - y_1y_2).$$

For any point $q = (y_0, y_1, y_2) \in Y_3$, the matrix

$$M_q = \begin{pmatrix} y_2 & -2y_1 & y_0 \\ 0 & 1 & -2y_2 \\ 1 & -y_2 & -y_1 \end{pmatrix}.$$

We notice that

$$\det M_q = -y_1y_2 + 4y_1y_2 - y_0 - 2y_2^3 = -y_1y_2 + 4y_1y_2 - y_1y_2 - 2y_1y_2 = 0.$$

Therefore rank $M_q \leq 2$. Moreover the second and the third rows are linearly independent, hence rank $M_q = 2$ for every $q \in Y_3$. It follows that Y_3 is non-singular. To summarise, Y is non-singular and has dimension 1.