SOLUTIONS TO EXERCISE SHEET 7

Solution 7.1. Examples of affine varieties.

(1)

(4)

The singular points are defined by f = 0 and the two partial derivatives % =
8f = 0. We have 2 = 6z(2® + y?)? — 8zy? = 2z - (3(2® + y?)? — 49?) and
8f = 6y(x? + y*)? - 2y—8x2y =2y (3(x* +y*)? —42?). Ifz =0ory = 0,
then f =0 forces x = y = 0. The point (0,0) satisfies all equations hence is a
singular point. If neither z nor y is 0, then we have 3(z%+?)? = 42% = 4y?, hence
3(x? + ?)? = 42 which implies 2* = 3 = ¢ But then f = (3+3)*—4-3-5 #0.
Therefore the only singular point is (0, 0).

The singular points are defined by f = zy? — 22 = 0, and % —y2 =0, =2y =

» Dy
0, % = —2z = 0. From the second and fourth equations we have y = z = 0.
No matter what value x takes, (z,y,z) = (x,0,0) always satisfies all the four

equations. Therefore the singular points of V( f) are all points of the form (z, 0, 0).
The singular points are given by f = zy + 2® + y* = 0, and 6f =y + 322 =0,

g—g =x+3y> =0, 8f = 0. From % 8f =0 we get © = —3y = —272*, hence

r=0or a2 = 2—17 If x =0, then f = 0 forces y = 0. It is clear that every

point of the form (z,y,z) = (0,0, 2) is a solution to all the required equations
. . . . 1

hence is a singular point on V(f). If 2 # 0, then #* = —Z%. Then we have

[ =ay+ad+y? = 2(—32?)+ad+(—32?)3 = =30+ 2720 = —5-—F = & #0.

Contradiction. Therefore (z,y,z) = (0,0, z) are the only singular points of V(f).
At every point p = (z,y, z) € X, we consider the matrix M, given by the partial

2z 1 0
M, = .
b (—39&2 0 1)

It is clear that the two rows of M, are linearly independent, therefore rank M, = 2
for every p € X. It follows that dim7,X = 3 — rank M,, = 1 for every p € X.
Therefore dim X = 1 and dim7,X = dim X for every p € X. By Definition 7.13,
X is non-singular at every point p € X.

derivatives

Solution 7.2. Fxample of projective varieties.

(1)

(2)

The standard affine piece Xy = X N Uy is given by setting a: = 11in f. Hence
Xo = V(fy) where fy = y — 2. For any point (y,z) € X,, 2 —y = 1 which never
vanishes. Therefore X, does not have any singular point, hence is non-singular.

The set of points in X\ X is given by {[z : y : 2] € X | z = 0}. When z = 0,
f = ay — 2% = 0 implies 2 = 0. Hence the only point in X\ Xy isp = [z : y :
z] = 1[0 :1:0]. This point is in the standard affine piece X; = X N U; because

its y-coordinate is non-zero. The standard affine piece X; is obtained by setting
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y = 1 hence X; = V,(f1) where f; = z — 2%. The point p = [0 : 1 : 0] has
non-homogeneous coordinates p = (0, 0) in the standard affine piece X;. To check
whether X7 is singular at p = (0,0), we need to compute the partial derivatives
of the defining equation f;. Notice that % = 1 which does not vanish at p.
We conclude that p is a non-singular point of X, hence by Definition 7.8, p is a
non-singular point of X.

Parts (1) and (2) together show that X = V(zy — z?) C P? is non-singular.

(3) We first consider the standard affine piece Xy = X NUp. By setting x = 1, we get
Xo=V(fo) € A% where fo = 2 +yz+y32+ 1+ y*. To find singular points in X,
we need to consider the equations

fo=z+yz+ v’z + 14y =0;

0
ﬁ:z+3y2z+4y3:0;
Ay
0
ﬁ:1—|—y+y3:O.
0z

We now solve the system. From the first equation we observe that fo = z(1+y +
v3) + (1 +y*) = 0. Together with the third equation we find that 1+ y* = 0. I
claim that the two equations 1+ vy +y® = 0 and 1+ y* = 0 do not have a common
solution for y. There are many ways to prove the claim. One possible way is to
use the Euclidean division. We divide y* + 1 by y* +y + 1 to get

vy 1=y’ +y+1) - @ +y - 1),
which implies y? +y — 1 = 0. We further divide 3® +y + 1 by y?> +vy — 1 to get
v +y+l=(y—1y* +y—1)+3y,

which implies 3y = 0 hence y = 0. Therefore if the two equations have a common
solution for y then we must have y = 0, which is not a solution. This proves the
claim, which implies that X is non-singular.

Finally we need to check whether the points in X\ Xy are singular points. To
find all points in X\ X, we set z = 0 in f = 0. Then we get y3z + y* = 0, which
implies y = 0 or y + z = 0. Therefore there are two points in X\ Xy, given by
pr=100:0:1] and py = [0 : —1 : 1] respectively. To check whether they are
singular points, we need to find a standard affine piece which contain them. Since
the z-coordinates of p; and ps are non-zero, we can choose Xy = X N U,. The
standard affine piece Xy = V(fy) where fo = 2 + 2%y + y* + 2* + y*. The non-

homogeneous coordinates of p; and py are given by p; = (0,0) and py = (0,—1)
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respectively. The partial derivatives of f, are

0

ﬁ = 327 + 2xy + 42,
ox

0

—f2 = 2% + 3% + 495
dy

It is easy to see that at the point p; = (0,0), we have fo(p;) = %(pl) = %—];2(]91) =

0. Therefore p; is a singular point on X,. At the point po = (0,—1), we have
%—f;(pg) = —1 # 0. Therefore ps is a non-singular point on X5. By Definition 7.8,
the only singular point of X is p; =[0:0: 1].

Solution 7.3. Ezample: plane cubics. There are three cases to deal with in this question.
Most of the calculations are the same in all the three cases. First of all we look at a
standard affine piece of X = V(f) C P2. You can choose any standard affine piece of X
to start with. For example, we choose the standard affine pice Xy = X N U,, which is
given by setting z = 1 in f. Therefore we have

X2 = V(yQ — (37 — /\1)(1’ — )\2)(1‘ — )\3)) g AQ.
To find the singular points on X5, we need to solve the system
v = (2= M) (@ = Aa) (@ — )

—(ZE — )\2)(1‘ — )\3) — (l‘ — )\1)(ZE — )\3) — (l’ — /\1)(?E — )\2)
2y =

0;
0;
0.

The third equation implies y = 0, then the first equation implies £ = Ay or Ay or A3. Now
there is some difference in the three cases.

(1) If Ay, A2 and A3 are distinct, then it is clear that none of them is a solution to the
second equation. Therefore X5 is non-singular in this case.

(2) If two of the three are equal, say, \; = Ay # A3, then it is clear that = A\; (or
A2) is a solution to the second equation while x = A3 is not a solution. Therefore
X5 has a singular point (A1, 0), which has homogeneous coordinates [A; : 0 : 1] as
a point in X.

(3) If all the three are equal, then z = A\; (or Ay or A3) is a solution to the sec-
ond equation. Therefore X5 has a singular point (A1, 0), which has homogeneous
coordinates [A; : 0 : 1] as a point in X.

It remains to consider the points in X\ X5. To find these points we set z = 0 in the
equation f = 0. We get —z® = 0 hence # = 0. Therefore the only point in X\Xj is
p=lr:y:z=[0:1:0]. Since the y-coordinate of p is non-zero, it is a point in the

standard affine piece X; = X NUj, given by the non-homogeneous coordinates p = (0, 0).
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To write down the defining polynomial for X; we set y = 1 and get X; = V(f;) C A?
where

fi=z2z—(z—Mz2)(x — X2)(x — A32).
Its partial derivative with respect to z is given by

% =1+ M(x — Xa2)(x — A32) + Aoz — A 2)(2 — A32) + A3(x — M\i2)(x — No2).

It is clear that at the point p = (0,0), we have 92 (p) = 1 # 0. Therefore p = (0,0) is a
non-singular point of X, hence p = [0: 1 : 0] is a non-singular point of X. This holds in
all the three cases. We have the following conclusion:

(1) If A, Ay and A3 are distinct, X is non-singular.

(2) If two of the three are equal, say, Ay = Ay # A3, then X has a unique singular
point [A; : 0 : 1.

(3) If all the three are equal, then X has a unique singular point [A\; : 0 : 1].

Solution 7.4. Ezample: projective twisted cubic. We first consider the standard affine
piece Yy = Y NUy. By settin 25 = 1 we get

Yo = Va(yQ - ?/%7 Y1ys — yi, Ys — ylyQ)-

To find the dimension of the tangent space at any point p = (y1, y2,y3), we consider the
matrix of partial derivatives:

Mp = Ys —2ys N
Y2  —y1 1

We need to find rank M,. First we compute the determinant of M,:

det M, = 4y1y2 — y1y2 — Y3 — Qyi’ = dy1y2 — y1y2 — y1y2 — 2y1y2 = 0.

Therefore rank M, < 2. Notice that the first and third rows of M, are linearly independent
(or the second and third columns). Therefore rank M, = 2, which implies dim7,Yy = 1
at every p € Yy. It follows that Y} is non-singular and dimY = dim Y, = 1.

Now we consider the points in Y\ Yy. Let p = [yo : y1 : y2 : y3] be such a point, then yo = 0,
which implies y = yoy> = 0 and y3 = y;y3 = 0. Therefore the only point p € Y'Y is
given by p=1[0:0:0:1]. To determine whether p is a singular point, we need to look at
the standard affine piece Y3 = Y N Us. We could perform a similar calculation as above
to show that Y3 is non-singular. More precisely, we have

Ys = Va(Yola2 — U3, U1 — Ya, Yo — Y1V2)-
78



For any point ¢ = (yo,y1,y2) € Y3, the matrix

Y2 —2y1 Yo
My=|0 1 —24
1 =y —wn

We notice that

det My = —y1ys + 4y1y2 — Yo — 2y5 = —y1ys + 4y1y2 — v1y2 — 21y2 = 0.

Therefore rank M, < 2. Moreover the second and the third rows are linearly independent,
hence rank M, = 2 for every ¢ € Y3. It follows that Y3 is non-singular. To summarise, Y’
is non-singular and has dimension 1.
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