
Solutions to Exercise Sheet 7

Solution 7.1. Examples of affine varieties.

(1) The singular points are defined by f = 0 and the two partial derivatives ∂f
∂x

=
∂f
∂y

= 0. We have ∂f
∂x

= 6x(x2 + y2)2 − 8xy2 = 2x · (3(x2 + y2)2 − 4y2) and
∂f
∂y

= 6y(x2 + y2)2 · 2y − 8x2y = 2y · (3(x2 + y2)2 − 4x2). If x = 0 or y = 0,

then f = 0 forces x = y = 0. The point (0, 0) satisfies all equations hence is a

singular point. If neither x nor y is 0, then we have 3(x2 +y2)2 = 4x2 = 4y2, hence

3(x2 +x2)2 = 4x2 which implies x2 = 1
3

= y2. But then f = (1
3

+ 1
3
)3− 4 · 1

3
· 1
3
6= 0.

Therefore the only singular point is (0, 0).

(2) The singular points are defined by f = xy2−z2 = 0, and ∂f
∂x

= y2 = 0, ∂f
∂y

= 2xy =

0, ∂f
∂z

= −2z = 0. From the second and fourth equations we have y = z = 0.

No matter what value x takes, (x, y, z) = (x, 0, 0) always satisfies all the four

equations. Therefore the singular points of V(f) are all points of the form (x, 0, 0).

(3) The singular points are given by f = xy + x3 + y3 = 0, and ∂f
∂x

= y + 3x2 = 0,
∂f
∂y

= x + 3y2 = 0, ∂f
∂z

= 0. From ∂f
∂x

= ∂f
∂y

= 0 we get x = −3y2 = −27x4, hence

x = 0 or x3 = − 1
27

. If x = 0, then f = 0 forces y = 0. It is clear that every

point of the form (x, y, z) = (0, 0, z) is a solution to all the required equations

hence is a singular point on V(f). If x 6= 0, then x3 = − 1
27

. Then we have

f = xy+x3+y3 = x(−3x2)+x3+(−3x2)3 = −3x3+x3−27x6 = 1
9
− 1

27
− 1

27
= 1

27
6= 0.

Contradiction. Therefore (x, y, z) = (0, 0, z) are the only singular points of V(f).

(4) At every point p = (x, y, z) ∈ X, we consider the matrix Mp given by the partial

derivatives

Mp =

(
−2x 1 0

−3x2 0 1

)
.

It is clear that the two rows of Mp are linearly independent, therefore rankMp = 2

for every p ∈ X. It follows that dimTpX = 3 − rankMp = 1 for every p ∈ X.

Therefore dimX = 1 and dimTpX = dimX for every p ∈ X. By Definition 7.13,

X is non-singular at every point p ∈ X.

Solution 7.2. Example of projective varieties.

(1) The standard affine piece X0 = X ∩ U0 is given by setting x = 1 in f . Hence

X0 = V(f0) where f0 = y − z2. For any point (y, z) ∈ X0,
∂f0
∂y

= 1 which never

vanishes. Therefore X0 does not have any singular point, hence is non-singular.

(2) The set of points in X\X0 is given by {[x : y : z] ∈ X | x = 0}. When x = 0,

f = xy − z2 = 0 implies z = 0. Hence the only point in X\X0 is p = [x : y :

z] = [0 : 1 : 0]. This point is in the standard affine piece X1 = X ∩ U1 because

its y-coordinate is non-zero. The standard affine piece X1 is obtained by setting
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y = 1 hence X1 = Va(f1) where f1 = x − z2. The point p = [0 : 1 : 0] has

non-homogeneous coordinates p = (0, 0) in the standard affine piece X1. To check

whether X1 is singular at p = (0, 0), we need to compute the partial derivatives

of the defining equation f1. Notice that ∂f1
∂x

= 1 which does not vanish at p.

We conclude that p is a non-singular point of X1, hence by Definition 7.8, p is a

non-singular point of X.

Parts (1) and (2) together show that X = V(xy − z2) ⊆ P2 is non-singular.

(3) We first consider the standard affine piece X0 = X ∩U0. By setting x = 1, we get

X0 = V(f0) ⊆ A2 where f0 = z + yz + y3z + 1 + y4. To find singular points in X0,

we need to consider the equations

f0 = z + yz + y3z + 1 + y4 = 0;

∂f0
∂y

= z + 3y2z + 4y3 = 0;

∂f0
∂z

= 1 + y + y3 = 0.

We now solve the system. From the first equation we observe that f0 = z(1 + y +

y3) + (1 + y4) = 0. Together with the third equation we find that 1 + y4 = 0. I

claim that the two equations 1 + y+ y3 = 0 and 1 + y4 = 0 do not have a common

solution for y. There are many ways to prove the claim. One possible way is to

use the Euclidean division. We divide y4 + 1 by y3 + y + 1 to get

y4 + 1 = y(y3 + y + 1)− (y2 + y − 1),

which implies y2 + y − 1 = 0. We further divide y3 + y + 1 by y2 + y − 1 to get

y3 + y + 1 = (y − 1)(y2 + y − 1) + 3y,

which implies 3y = 0 hence y = 0. Therefore if the two equations have a common

solution for y then we must have y = 0, which is not a solution. This proves the

claim, which implies that X0 is non-singular.

Finally we need to check whether the points in X\X0 are singular points. To

find all points in X\X0, we set x = 0 in f = 0. Then we get y3z + y4 = 0, which

implies y = 0 or y + z = 0. Therefore there are two points in X\X0, given by

p1 = [0 : 0 : 1] and p2 = [0 : −1 : 1] respectively. To check whether they are

singular points, we need to find a standard affine piece which contain them. Since

the z-coordinates of p1 and p2 are non-zero, we can choose X2 = X ∩ U2. The

standard affine piece X2 = V(f2) where f2 = x3 + x2y + y3 + x4 + y4. The non-

homogeneous coordinates of p1 and p2 are given by p1 = (0, 0) and p2 = (0,−1)
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respectively. The partial derivatives of f2 are

∂f2
∂x

= 3x2 + 2xy + 4x3;

∂f2
∂y

= x2 + 3y2 + 4y3.

It is easy to see that at the point p1 = (0, 0), we have f2(p1) = ∂f2
∂x

(p1) = ∂f2
∂y

(p1) =

0. Therefore p1 is a singular point on X2. At the point p2 = (0,−1), we have
∂f2
∂y

(p2) = −1 6= 0. Therefore p2 is a non-singular point on X2. By Definition 7.8,

the only singular point of X is p1 = [0 : 0 : 1].

Solution 7.3. Example: plane cubics. There are three cases to deal with in this question.

Most of the calculations are the same in all the three cases. First of all we look at a

standard affine piece of X = V(f) ⊆ P2. You can choose any standard affine piece of X

to start with. For example, we choose the standard affine pice X2 = X ∩ U2, which is

given by setting z = 1 in f . Therefore we have

X2 = V(y2 − (x− λ1)(x− λ2)(x− λ3)) ⊆ A2.

To find the singular points on X2, we need to solve the system

y2 − (x− λ1)(x− λ2)(x− λ3) = 0;

−(x− λ2)(x− λ3)− (x− λ1)(x− λ3)− (x− λ1)(x− λ2) = 0;

2y = 0.

The third equation implies y = 0, then the first equation implies x = λ1 or λ2 or λ3. Now

there is some difference in the three cases.

(1) If λ1, λ2 and λ3 are distinct, then it is clear that none of them is a solution to the

second equation. Therefore X2 is non-singular in this case.

(2) If two of the three are equal, say, λ1 = λ2 6= λ3, then it is clear that x = λ1 (or

λ2) is a solution to the second equation while x = λ3 is not a solution. Therefore

X2 has a singular point (λ1, 0), which has homogeneous coordinates [λ1 : 0 : 1] as

a point in X.

(3) If all the three are equal, then x = λ1 (or λ2 or λ3) is a solution to the sec-

ond equation. Therefore X2 has a singular point (λ1, 0), which has homogeneous

coordinates [λ1 : 0 : 1] as a point in X.

It remains to consider the points in X\X2. To find these points we set z = 0 in the

equation f = 0. We get −x3 = 0 hence x = 0. Therefore the only point in X\X2 is

p = [x : y : z] = [0 : 1 : 0]. Since the y-coordinate of p is non-zero, it is a point in the

standard affine piece X1 = X ∩U1, given by the non-homogeneous coordinates p = (0, 0).
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To write down the defining polynomial for X1 we set y = 1 and get X1 = V(f1) ⊆ A2

where

f1 = z − (x− λ1z)(x− λ2z)(x− λ3z).

Its partial derivative with respect to z is given by

∂f1
∂z

= 1 + λ1(x− λ2z)(x− λ3z) + λ2(x− λ1z)(x− λ3z) + λ3(x− λ1z)(x− λ2z).

It is clear that at the point p = (0, 0), we have ∂f1
∂z

(p) = 1 6= 0. Therefore p = (0, 0) is a

non-singular point of X1, hence p = [0 : 1 : 0] is a non-singular point of X. This holds in

all the three cases. We have the following conclusion:

(1) If λ1, λ2 and λ3 are distinct, X is non-singular.

(2) If two of the three are equal, say, λ1 = λ2 6= λ3, then X has a unique singular

point [λ1 : 0 : 1].

(3) If all the three are equal, then X has a unique singular point [λ1 : 0 : 1].

Solution 7.4. Example: projective twisted cubic. We first consider the standard affine

piece Y0 = Y ∩ U0. By settin z0 = 1 we get

Y0 = Va(y2 − y21, y1y3 − y22, y3 − y1y2).

To find the dimension of the tangent space at any point p = (y1, y2, y3), we consider the

matrix of partial derivatives:

Mp =

−2y1 1 0

y3 −2y2 y1
−y2 −y1 1

 .

We need to find rankMp. First we compute the determinant of Mp:

detMp = 4y1y2 − y1y2 − y3 − 2y31 = 4y1y2 − y1y2 − y1y2 − 2y1y2 = 0.

Therefore rankMp 6 2. Notice that the first and third rows of Mp are linearly independent

(or the second and third columns). Therefore rankMp = 2, which implies dimTpY0 = 1

at every p ∈ Y0. It follows that Y0 is non-singular and dimY = dimY0 = 1.

Now we consider the points in Y \Y0. Let p = [y0 : y1 : y2 : y3] be such a point, then y0 = 0,

which implies y21 = y0y2 = 0 and y22 = y1y3 = 0. Therefore the only point p ∈ Y \Y0 is

given by p = [0 : 0 : 0 : 1]. To determine whether p is a singular point, we need to look at

the standard affine piece Y3 = Y ∩ U3. We could perform a similar calculation as above

to show that Y3 is non-singular. More precisely, we have

Y3 = Va(y0y2 − y21, y1 − y22, y0 − y1y2).
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For any point q = (y0, y1, y2) ∈ Y3, the matrix

Mq =

y2 −2y1 y0
0 1 −2y2
1 −y2 −y1

 .

We notice that

detMq = −y1y2 + 4y1y2 − y0 − 2y32 = −y1y2 + 4y1y2 − y1y2 − 2y1y2 = 0.

Therefore rankMq 6 2. Moreover the second and the third rows are linearly independent,

hence rankMq = 2 for every q ∈ Y3. It follows that Y3 is non-singular. To summarise, Y

is non-singular and has dimension 1.
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