Solutions to Exercise Sheet 8

Solution 8.1. Examples of rational curves.
(1) We claim that $\varphi: \mathbb{P}^{1} \longrightarrow L ;[x: y] \longmapsto[x: y: 0]$ is a morphism. It is given by homogeneous polynomials of the same degree, and is everywhere defined, since x and y cannot be both zero. The image of any point under φ lies in L because the last coordinate is zero. This justifies the claim. Similarly we claim that $\psi: L \longrightarrow \mathbb{P}^{1} ;[x: y: z] \longmapsto[x: y]$ is a morphism. It is given by homogeneous polynomials of the same degree. Since $z=0, x$ and y cannot be both zero, hence it is defined for every point in L. The image of any point in L under φ is clearly in \mathbb{P}^{1}. This justifies the claim. Finally we check φ and ψ are inverse to each other. For any point $[x: y] \in \mathbb{P}^{1},(\psi \circ \varphi)([x: y])=\psi([x: y: 0])=[x: y]$. For any point $[x: y: z] \in L,(\varphi \circ \psi)([x: y: z])=\varphi([x: y])=[x: y: 0]=[x: y: z]$ since $z=0$. Therefore L is isomorphic to \mathbb{P}^{1}. In particular, they are birational, hence L is rational.
(2) Define rational maps $\varphi_{2}: \mathbb{P}^{1} \rightarrow C_{2}$ by $\varphi_{2}([u: v])=\left[u v^{2}: v^{3}: u^{3}\right]$ and $\psi_{2}: C_{2} \rightarrow$ \mathbb{P}^{1} by $\psi_{2}([x: y: z])=[x: y]$. To show φ_{2} is a rational map, we observe: all components are homogeneous of degree $3 ; \varphi_{2}$ is defined at every point $[u: v] \in \mathbb{P}^{1}$ since either u^{3} or v^{3} is non-zero; the image $\left[u v^{2}: v^{3}: u^{3}\right]$ is a point in C_{2} since it satisfies the defining equation of C_{2}. To show ψ_{2} is a rational map, we observe: all components are homogeneous of degree $1 ; \psi_{2}$ is well-defined at every point on C_{2} except $[0: 0: 1]$; image of ψ_{2} is clearly in \mathbb{P}^{1}. It remains to show φ_{2} and ψ_{2} are mutually inverse to each other. For every $[u: v] \in \mathbb{P}^{1}$ where $\psi_{2} \circ \varphi_{2}$ is defined, we have $\left(\psi_{2} \circ \varphi_{2}\right)([u: v])=\psi_{2}\left(\left[u v^{2}: v^{3}: u^{3}\right]\right)=\left[u v^{2}: v^{3}\right]=[u: v]$. For every $[x: y: z] \in C$ where $\varphi_{2} \circ \psi_{2}$ is defined, we have $\left(\varphi_{2} \circ \psi_{2}\right)([x: y: z])=\varphi_{2}([x:$ $y])=\left[x y^{2}: y^{3}: x^{3}\right]=\left[x y^{2}: y^{3}: y^{2} z\right]=[x: y: z]$. Therefore C_{2} is birational to \mathbb{P}^{1}, hence is rational.

Solution 8.2. Example: Fermat cubic.
(1) We consider the standard affine piece $C_{0}=C \cap U_{0}=\mathbb{V}_{a}\left(f_{0}\right) \subseteq \mathbb{A}^{2}$ where $f_{0}=$ $1+y^{3}+z^{3}$. Since $\frac{\partial f_{0}}{\partial y}=3 y^{2}$ and $\frac{\partial f_{0}}{\partial z}=3 z^{2}$, the two derivatives vanish if and only if $y=z=0$. But then $f_{0}=1 \neq 0$. Therefore $f_{0}=\frac{\partial f_{0}}{\partial y}=\frac{\partial f_{0}}{\partial z}=0$ have no common solution, which means C_{0} is non-singular. Since the equation of C is symmetric with respect to the variables, the same calculation shows that all other standard affine pieces are also non-singular. Therefore C is non-singular.
(2) A point on the line L can be given by $p=[x: y: 0]$. If $p \in C$, then we have $x^{3}+y^{3}=0$, hence $y=-x$ or $-\omega x$ or $-\omega^{2} x$ where $\omega=e^{\frac{2 \pi \sqrt{ }-1}{3}}$ is a primitive third root of unity. So the three points in $L \cap C$ are $p_{1}=[1:-1: 0], p_{2}=[1:-\omega: 0]$ and $p_{3}=\left[1:-\omega^{2}: 0\right]$.
(3) At least one of the three coordinates is non-zero. Without loss of generality, we can assume $a \neq 0$. Then the point $p=[a: b: c] \in C_{0}=C \cap U_{0}=\mathbb{V}_{a}\left(f_{0}\right) \subseteq \mathbb{A}^{2}$, in which its non-homogeneous coordinates are given by $p=\left(\frac{b}{a}, \frac{c}{a}\right)$. The tangent space of p in the standard affine piece C_{0} is given by

$$
T_{p} C_{0}=\mathbb{V}_{a}\left(3 \cdot \frac{b^{2}}{a^{2}} \cdot\left(y-\frac{b}{a}\right)+3 \cdot \frac{c^{2}}{a^{2}} \cdot\left(z-\frac{c}{a}\right)\right) .
$$

The tangent space $T_{p} C$ is the projective closure of $T_{p} C_{0}$, which is given by the homogenisation of the above polynomial

$$
T_{p} C=\mathbb{V}_{p}\left(3 \cdot \frac{b^{2}}{a^{2}} \cdot\left(y-\frac{b}{a} x\right)+3 \cdot \frac{c^{2}}{a^{2}} \cdot\left(z-\frac{c}{a} x\right)\right)
$$

Since we assumed $a \neq 0$, we can multiply this polynomial by $\frac{a^{3}}{3}$ without changing its vanishing locus. Then we get

$$
\begin{aligned}
T_{p} C & =\mathbb{V}_{p}\left(b^{2}(a y-b x)+c^{2}(a z-c x)\right) \\
& =\mathbb{V}_{p}\left(\left(-b^{3}-c^{3}\right) x+a b^{2} y+a c^{2} z\right) \\
& =\mathbb{V}_{p}\left(a^{3} x+a b^{2} y+a c^{2} z\right) \\
& =\mathbb{V}_{p}\left(a^{2} x+b^{2} y+c^{2} z\right) .
\end{aligned}
$$

In the last step above is valid since we assumed $a \neq 0$.
Since a, b and c are symmetric, a similar calculation will give the same equation for the tangent space $T_{p} C$ when $b \neq 0$ or $c \neq 0$.
(4) At the point $p_{1}=[1:-1: 0]$, the tangent space $T_{p_{1}} C=\mathbb{V}_{p}(x+y)$. For any point $q=[x: y: z] \in T_{p_{1}} C$, we have $x=-y$. If $q \in C$, we then have $(-y)^{3}+y^{3}+z^{3}=0$ hence $z^{3}=0$, which has one solution with multiplicity 3 . This means $T_{p_{1}} C$ meet C at one point with multiplicity 3 , hence p_{1} is an inflection point.

Similarly, at the point $p_{2}=[1:-\omega: 0]$, the tangent space $T_{p_{2}} C=\mathbb{V}_{p}\left(x+\omega^{2} y\right)$. For any point $q=[x: y: z] \in T_{p_{2}} C$, we have $x=-\omega^{2} y$. If $q \in C$, we then have $\left(-\omega^{2} y\right)^{3}+y^{3}+z^{3}=0$ hence $z^{3}=0$, which has one solution with multiplicity 3 . This means $T_{p_{2}} C$ meet C at one point with multiplicity 3 , hence p_{2} is an inflection point.

Moreover, at the point $p_{3}=\left[1:-\omega^{2}: 0\right]$, the tangent space $T_{p_{3}} C=\mathbb{V}_{p}(x+\omega y)$. For any point $q=[x: y: z] \in T_{p_{3}} C$, we have $x=-\omega y$. If $q \in C$, we then have $(-\omega y)^{3}+y^{3}+z^{3}=0$ hence $z^{3}=0$, which has one solution with multiplicity 3 . This means $T_{p_{3}} C$ meet C at one point with multiplicity 3 , hence p_{3} is an inflection point.

Solution 8.3. Bézout's theorem for conics.
(1) If $C=L_{1} \cup L_{2}$, then every common point of C and D must be either a common point of L_{1} and D, or a common point of L_{2} and D. We know by Theorem
8.8 that $L_{1} \cap D$ comprises at most d points, or precisely d points when counting with multiplicities; $L_{2} \cap D$ comprises at most d points, or precisely d points when counting with multiplicities. Therefore $C \cap D$ comprises at most $2 d$ points, or precisely $2 d$ points when counting with multiplicities.
(2) We have proved in Example 5.23 that C is isomorphic to \mathbb{P}^{1}. In particular, every point in C can be given by $\left[p^{2}: p q: q^{2}\right]$ for some $[p: q] \in \mathbb{P}^{1}$. Let $D=\mathbb{V}(f)$ for some homogeneous polynomial $f(x, y, z)$ of degree d. Then $\left[p^{2}: p q: q^{2}\right] \in \mathbb{V}(f)$ if and only if $f\left(p^{2}, p q, q^{2}\right)=0$. The left-hand side is a homogeneous polynomial of degree $2 d$ in p and q. By Exercise 4.4 (2), it can be completely factored into $2 d$ homogeneous factors of degree 1 as

$$
f\left(p^{2}, p q, q^{2}\right)=\left(a_{1} p+b_{1} q\right) \cdots\left(a_{2 d} p+b_{2 d} q\right)=0
$$

Each factor $a_{i} p+b_{i} q$ determines a point $[p: q]=\left[b_{i}:-a_{i}\right] \in \mathbb{P}^{1}$, hence $f=0$ has at most $2 d$ solutions $[p: q]=\left[b_{i}:-a_{i}\right] \in \mathbb{P}^{1}$, which give at most $2 d$ points $\left[p^{2}: p q: q^{2}\right]=\left[b_{i}^{2}:-a_{i} b_{i}: a_{i}^{2}\right] \in(C \cap D)$. When counting the number of times each point occurs as a solution, we get precisely $2 d$ points.

Solution 8.4. An interesting application of Bézout's theorem.
(1) By Example 8.3, every conic C is given by a homogeneous polynomial $g(x, y, z)=0$ of degree 2 with 6 coefficients a, b, c, d, e and f. For each i, since $p_{i}=\left[x_{i}: y_{i}: z_{i}\right] \in$ C, we can plug in $x=x_{i}, y=y_{i}$ and $z=z_{i}$ to get an equation $g\left(x_{i}, y_{i}, z_{i}\right)=0$, which is a homogeneous linear equation in a, b, c, d, e and f. In this way the 5 points give a system of 5 linear equations. Since there are 5 equations and 6 indeterminants, by the theorem of rank-nullity, there is a solution for a, b, c, d, e and f such that they are not simultaneously zero. This solution determines the homogeneous polynomial $g(x, y, z)$ of degree 2 . We claim that g has no repeated factors. If g has repeated factors, then g is the square of a linear polynomial hence gives a double line which passes through all the 5 given points. This is a contradiction since no 4 of the given points are allowed to be on the same line. Hence we conclude that g defines a conic.
(2) Assume that there are two distinct conics C_{1} and C_{2}, both of which pass through the 5 points. By Theorem 8.12, if they do not have any common component, then they can meet in at most 4 common points. Hence they must have a common component.
(3) If either C_{1} or C_{2} is an irreducible conic, which has only one component, then the other must be the same conic. Under the assumption that C_{1} and C_{2} are distinct conics, both of them must be the unions of two lines. Since they have a common component, the other component in the two conics must be distinct. Hence we can assume $C_{1}=L_{0} \cup L_{1}$ and $C_{2}=L_{0} \cup L_{2}$, where L_{0}, L_{1} and L_{2} are distinct lines.

We know the 5 points p_{1}, \cdots, p_{5} are on both conics. For each p_{i}, there are two possibilities: $p_{i} \in L_{0}$, or $p_{i} \notin L_{0}$. If the second possibility happens, then $p_{i} \in L_{1}$ since $p_{i} \in C_{1}$, and $p_{i} \in L_{2}$ since $p_{i} \in C_{2}$. This implies p_{i} is a common point of L_{1} and L_{2}. Since L_{1} and L_{2} are distinct lines, by Theorem 8.8, they have only 1 common point. It follows that among the 5 points p_{1}, \cdots, p_{5}, at most one of them is not on L_{0}; in other words, at least 4 of them are on the line L_{0}. This is a contradiction because no 4 of them are allowed to be on the same line.

