
Solutions to Exercise Sheet 8

Solution 8.1. Examples of rational curves.

(1) We claim that ϕ : P1 −→ L; [x : y] 7−→ [x : y : 0] is a morphism. It is given

by homogeneous polynomials of the same degree, and is everywhere defined, since

x and y cannot be both zero. The image of any point under ϕ lies in L because

the last coordinate is zero. This justifies the claim. Similarly we claim that

ψ : L −→ P1; [x : y : z] 7−→ [x : y] is a morphism. It is given by homogeneous

polynomials of the same degree. Since z = 0, x and y cannot be both zero, hence

it is defined for every point in L. The image of any point in L under ϕ is clearly

in P1. This justifies the claim. Finally we check ϕ and ψ are inverse to each other.

For any point [x : y] ∈ P1, (ψ ◦ ϕ)([x : y]) = ψ([x : y : 0]) = [x : y]. For any point

[x : y : z] ∈ L, (ϕ ◦ ψ)([x : y : z]) = ϕ([x : y]) = [x : y : 0] = [x : y : z] since

z = 0. Therefore L is isomorphic to P1. In particular, they are birational, hence

L is rational.

(2) Define rational maps ϕ2 : P1 99K C2 by ϕ2([u : v]) = [uv2 : v3 : u3] and ψ2 : C2 99K
P1 by ψ2([x : y : z]) = [x : y]. To show ϕ2 is a rational map, we observe: all

components are homogeneous of degree 3; ϕ2 is defined at every point [u : v] ∈ P1

since either u3 or v3 is non-zero; the image [uv2 : v3 : u3] is a point in C2 since it

satisfies the defining equation of C2. To show ψ2 is a rational map, we observe:

all components are homogeneous of degree 1; ψ2 is well-defined at every point on

C2 except [0 : 0 : 1]; image of ψ2 is clearly in P1. It remains to show ϕ2 and ψ2

are mutually inverse to each other. For every [u : v] ∈ P1 where ψ2 ◦ϕ2 is defined,

we have (ψ2 ◦ ϕ2)([u : v]) = ψ2([uv
2 : v3 : u3]) = [uv2 : v3] = [u : v]. For every

[x : y : z] ∈ C where ϕ2 ◦ ψ2 is defined, we have (ϕ2 ◦ ψ2)([x : y : z]) = ϕ2([x :

y]) = [xy2 : y3 : x3] = [xy2 : y3 : y2z] = [x : y : z]. Therefore C2 is birational to P1,

hence is rational.

Solution 8.2. Example: Fermat cubic.

(1) We consider the standard affine piece C0 = C ∩ U0 = Va(f0) ⊆ A2 where f0 =

1 + y3 + z3. Since ∂f0
∂y

= 3y2 and ∂f0
∂z

= 3z2, the two derivatives vanish if and only

if y = z = 0. But then f0 = 1 6= 0. Therefore f0 = ∂f0
∂y

= ∂f0
∂z

= 0 have no common

solution, which means C0 is non-singular. Since the equation of C is symmetric

with respect to the variables, the same calculation shows that all other standard

affine pieces are also non-singular. Therefore C is non-singular.

(2) A point on the line L can be given by p = [x : y : 0]. If p ∈ C, then we have

x3 + y3 = 0, hence y = −x or −ωx or −ω2x where ω = e
2π
√
−1

3 is a primitive third

root of unity. So the three points in L ∩ C are p1 = [1 : −1 : 0], p2 = [1 : −ω : 0]

and p3 = [1 : −ω2 : 0].
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(3) At least one of the three coordinates is non-zero. Without loss of generality, we

can assume a 6= 0. Then the point p = [a : b : c] ∈ C0 = C ∩ U0 = Va(f0) ⊆ A2,

in which its non-homogeneous coordinates are given by p = ( b
a
, c
a
). The tangent

space of p in the standard affine piece C0 is given by

TpC0 = Va

(
3 · b

2

a2
· (y − b

a
) + 3 · c

2

a2
· (z − c

a
)

)
.

The tangent space TpC is the projective closure of TpC0, which is given by the

homogenisation of the above polynomial

TpC = Vp

(
3 · b

2

a2
· (y − b

a
x) + 3 · c

2

a2
· (z − c

a
x)

)
.

Since we assumed a 6= 0, we can multiply this polynomial by a3

3
without changing

its vanishing locus. Then we get

TpC = Vp(b
2(ay − bx) + c2(az − cx))

= Vp((−b3 − c3)x+ ab2y + ac2z)

= Vp(a
3x+ ab2y + ac2z)

= Vp(a
2x+ b2y + c2z).

In the last step above is valid since we assumed a 6= 0.

Since a, b and c are symmetric, a similar calculation will give the same equation

for the tangent space TpC when b 6= 0 or c 6= 0.

(4) At the point p1 = [1 : −1 : 0], the tangent space Tp1C = Vp(x+ y). For any point

q = [x : y : z] ∈ Tp1C, we have x = −y. If q ∈ C, we then have (−y)3 +y3 +z3 = 0

hence z3 = 0, which has one solution with multiplicity 3. This means Tp1C meet

C at one point with multiplicity 3, hence p1 is an inflection point.

Similarly, at the point p2 = [1 : −ω : 0], the tangent space Tp2C = Vp(x+ ω2y).

For any point q = [x : y : z] ∈ Tp2C, we have x = −ω2y. If q ∈ C, we then have

(−ω2y)3 + y3 + z3 = 0 hence z3 = 0, which has one solution with multiplicity 3.

This means Tp2C meet C at one point with multiplicity 3, hence p2 is an inflection

point.

Moreover, at the point p3 = [1 : −ω2 : 0], the tangent space Tp3C = Vp(x+ωy).

For any point q = [x : y : z] ∈ Tp3C, we have x = −ωy. If q ∈ C, we then have

(−ωy)3 + y3 + z3 = 0 hence z3 = 0, which has one solution with multiplicity 3.

This means Tp3C meet C at one point with multiplicity 3, hence p3 is an inflection

point.

Solution 8.3. Bézout’s theorem for conics.

(1) If C = L1 ∪ L2, then every common point of C and D must be either a common

point of L1 and D, or a common point of L2 and D. We know by Theorem
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8.8 that L1 ∩D comprises at most d points, or precisely d points when counting

with multiplicities; L2 ∩D comprises at most d points, or precisely d points when

counting with multiplicities. Therefore C ∩ D comprises at most 2d points, or

precisely 2d points when counting with multiplicities.

(2) We have proved in Example 5.23 that C is isomorphic to P1. In particular, every

point in C can be given by [p2 : pq : q2] for some [p : q] ∈ P1. Let D = V(f) for

some homogeneous polynomial f(x, y, z) of degree d. Then [p2 : pq : q2] ∈ V(f) if

and only if f(p2, pq, q2) = 0. The left-hand side is a homogeneous polynomial of

degree 2d in p and q. By Exercise 4.4 (2), it can be completely factored into 2d

homogeneous factors of degree 1 as

f(p2, pq, q2) = (a1p+ b1q) · · · (a2dp+ b2dq) = 0.

Each factor aip + biq determines a point [p : q] = [bi : −ai] ∈ P1, hence f = 0

has at most 2d solutions [p : q] = [bi : −ai] ∈ P1, which give at most 2d points

[p2 : pq : q2] = [b2i : −aibi : a2i ] ∈ (C ∩ D). When counting the number of times

each point occurs as a solution, we get precisely 2d points.

Solution 8.4. An interesting application of Bézout’s theorem.

(1) By Example 8.3, every conic C is given by a homogeneous polynomial g(x, y, z) = 0

of degree 2 with 6 coefficients a, b, c, d, e and f . For each i, since pi = [xi : yi : zi] ∈
C, we can plug in x = xi, y = yi and z = zi to get an equation g(xi, yi, zi) = 0,

which is a homogeneous linear equation in a, b, c, d, e and f . In this way the 5

points give a system of 5 linear equations. Since there are 5 equations and 6

indeterminants, by the theorem of rank-nullity, there is a solution for a, b, c, d, e

and f such that they are not simultaneously zero. This solution determines the

homogeneous polynomial g(x, y, z) of degree 2. We claim that g has no repeated

factors. If g has repeated factors, then g is the square of a linear polynomial

hence gives a double line which passes through all the 5 given points. This is a

contradiction since no 4 of the given points are allowed to be on the same line.

Hence we conclude that g defines a conic.

(2) Assume that there are two distinct conics C1 and C2, both of which pass through

the 5 points. By Theorem 8.12, if they do not have any common component, then

they can meet in at most 4 common points. Hence they must have a common

component.

(3) If either C1 or C2 is an irreducible conic, which has only one component, then the

other must be the same conic. Under the assumption that C1 and C2 are distinct

conics, both of them must be the unions of two lines. Since they have a common

component, the other component in the two conics must be distinct. Hence we

can assume C1 = L0∪L1 and C2 = L0∪L2, where L0, L1 and L2 are distinct lines.
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We know the 5 points p1, · · · , p5 are on both conics. For each pi, there are two

possibilities: pi ∈ L0, or pi /∈ L0. If the second possibility happens, then pi ∈ L1

since pi ∈ C1, and pi ∈ L2 since pi ∈ C2. This implies pi is a common point of

L1 and L2. Since L1 and L2 are distinct lines, by Theorem 8.8, they have only

1 common point. It follows that among the 5 points p1, · · · , p5, at most one of

them is not on L0; in other words, at least 4 of them are on the line L0. This is a

contradiction because no 4 of them are allowed to be on the same line.
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