Solutions to Exercise Sheet 8

Solution 8.1. Examples of rational curves.

(1) We claim that \(\varphi : \mathbb{P}^1 \to L; [x : y] \mapsto [x : y : 0] \) is a morphism. It is given by homogeneous polynomials of the same degree, and is everywhere defined, since \(x \) and \(y \) cannot be both zero. The image of any point under \(\varphi \) lies in \(L \) because the last coordinate is zero. This justifies the claim. Similarly we claim that \(\psi : L \to \mathbb{P}^1; [x : y : z] \mapsto [x : y] \) is a morphism. It is given by homogeneous polynomials of the same degree. Since \(z = 0 \), \(x \) and \(y \) cannot be both zero, hence it is defined for every point in \(L \). The image of any point in \(L \) under \(\varphi \) is clearly in \(\mathbb{P}^1 \). This justifies the claim. Finally we check \(\varphi \) and \(\psi \) are inverse to each other. For any point \([x : y] \in \mathbb{P}^1\), \((\psi \circ \varphi)([x : y]) = \psi([x : y : 0]) = [x : y]\). For any point \([x : y : z] \in L\), \((\varphi \circ \psi)([x : y : z]) = \varphi([x : y]) = [x : y : 0] = [x : y : z]\) since \(z = 0 \). Therefore \(L \) is isomorphic to \(\mathbb{P}^1 \). In particular, they are birational, hence \(L \) is rational.

(2) Define rational maps \(\varphi_2 : \mathbb{P}^1 \to C_2 \) by \(\varphi_2([u : v]) = [uv^2 : v^3 : u^3] \) and \(\psi_2 : C_2 \to \mathbb{P}^1 \) by \(\psi_2([x : y : z]) = [x : y] \). To show \(\varphi_2 \) is a rational map, we observe: all components are homogeneous of degree 3; \(\varphi_2 \) is defined at every point \([u : v] \in \mathbb{P}^1\) since either \(u^3 \) or \(v^3 \) is non-zero; the image \([uv^2 : v^3 : u^3]\) is a point in \(C_2 \) since it satisfies the defining equation of \(C_2 \). To show \(\psi_2 \) is a rational map, we observe: all components are homogeneous of degree 1; \(\psi_2 \) is well-defined at every point on \(C_2 \) except \([0 : 0 : 1]\); image of \(\psi_2 \) is clearly in \(\mathbb{P}^1 \). It remains to show \(\varphi_2 \) and \(\psi_2 \) are mutually inverse to each other. For every \([u : v] \in \mathbb{P}^1\) where \(\psi_2 \circ \varphi_2 \) is defined, we have \((\psi_2 \circ \varphi_2)([u : v]) = \psi_2([uv^2 : v^3 : u^3]) = [uv^2 : v^3] = [u : v]\). For every \([x : y : z] \in C_2\) where \(\varphi_2 \circ \psi_2 \) is defined, we have \((\varphi_2 \circ \psi_2)([x : y : z]) = \varphi_2([x : y]) = [xy^2 : y^3 : x^3] = [xy^2 : y^3 : y^2 z] = [x : y : z]\). Therefore \(C_2 \) is birational to \(\mathbb{P}^1 \), hence is rational.

Solution 8.2. Example: Fermat cubic.

(1) We consider the standard affine piece \(C_0 = C \cap U_0 = V_a(f_0) \subseteq \mathbb{A}^2 \) where \(f_0 = 1 + y^3 + z^3 \). Since \(\frac{\partial f_0}{\partial y} = 3y^2 \) and \(\frac{\partial f_0}{\partial z} = 3z^2 \), the two derivatives vanish if and only if \(y = z = 0 \). But then \(f_0 = 1 \neq 0 \). Therefore \(f_0 = \frac{\partial f_0}{\partial y} = \frac{\partial f_0}{\partial z} = 0 \) have no common solution, which means \(C_0 \) is non-singular. Since the equation of \(C \) is symmetric with respect to the variables, the same calculation shows that all other standard affine pieces are also non-singular. Therefore \(C \) is non-singular.

(2) A point on the line \(L \) can be given by \(p = [x : y : 0] \). If \(p \in C \), then we have \(x^3 + y^3 = 0 \), hence \(y = -x \) or \(-\omega x \) or \(-\omega^2 x \) where \(\omega = e^{\frac{2\pi i}{3}} \) is a primitive third root of unity. So the three points in \(L \cap C \) are \(p_1 = [1 : -1 : 0], p_2 = [1 : -\omega : 0] \) and \(p_3 = [1 : -\omega^2 : 0] \).
(3) At least one of the three coordinates is non-zero. Without loss of generality, we can assume $a \neq 0$. Then the point $p = [a : b : c] \in C_0 = C \cap U_0 = \mathbb{V}_a(f_0) \subseteq \mathbb{A}^2$, in which its non-homogeneous coordinates are given by $p = (\frac{b}{a}, \frac{c}{a})$. The tangent space of p in the standard affine piece C_0 is given by

$$T_pC_0 = \mathbb{V}_a \left(3 \cdot \frac{b^2}{a^2} \cdot (y - \frac{b}{a}) + 3 \cdot \frac{c^2}{a^2} \cdot (z - \frac{c}{a}) \right).$$

The tangent space T_pC is the projective closure of T_pC_0, which is given by the homogenisation of the above polynomial

$$T_pC = \mathbb{V}_p \left(3 \cdot \frac{b^2}{a^2} \cdot (y - \frac{b}{a} x) + 3 \cdot \frac{c^2}{a^2} \cdot (z - \frac{c}{a} x) \right).$$

Since we assumed $a \neq 0$, we can multiply this polynomial by $\frac{a^3}{3}$ without changing its vanishing locus. Then we get

$$T_pC = \mathbb{V}_p \left(b^2 (ay - bx) + c^2 (az - cx) \right)$$

$$= \mathbb{V}_p \left((-b^3 - c^3)x + ab^2 y + ac^2 z \right)$$

$$= \mathbb{V}_p \left(a^2 x + b^2 y + c^2 z \right).$$

In the last step above is valid since we assumed $a \neq 0$.

Since a, b and c are symmetric, a similar calculation will give the same equation for the tangent space T_bC when $b \neq 0$ or $c \neq 0$.

(4) At the point $p_1 = [1 : -1 : 0]$, the tangent space $T_{p_1}C = \mathbb{V}_p(x + y)$. For any point $q = [x : y : z] \in T_{p_1}C$, we have $x = -y$. If $q \in C$, we then have $(-y)^3 + y^3 + z^3 = 0$ hence $z^3 = 0$, which has one solution with multiplicity 3. This means $T_{p_1}C$ meet C at one point with multiplicity 3, hence p_1 is an inflection point.

Similarly, at the point $p_2 = [1 : \omega : 0]$, the tangent space $T_{p_2}C = \mathbb{V}_p(x + \omega^2 y)$. For any point $q = [x : y : z] \in T_{p_2}C$, we have $x = -\omega^2 y$. If $q \in C$, we then have $(-\omega^2 y)^3 + y^3 + z^3 = 0$ hence $z^3 = 0$, which has one solution with multiplicity 3. This means $T_{p_2}C$ meet C at one point with multiplicity 3, hence p_2 is an inflection point.

Moreover, at the point $p_3 = [1 : -\omega^2 : 0]$, the tangent space $T_{p_3}C = \mathbb{V}_p(x + \omega y)$. For any point $q = [x : y : z] \in T_{p_3}C$, we have $x = -\omega y$. If $q \in C$, we then have $(-\omega y)^3 + y^3 + z^3 = 0$ hence $z^3 = 0$, which has one solution with multiplicity 3. This means $T_{p_3}C$ meet C at one point with multiplicity 3, hence p_3 is an inflection point.

Solution 8.3. Bézout’s theorem for conics.

(1) If $C = L_1 \cup L_2$, then every common point of C and D must be either a common point of L_1 and D, or a common point of L_2 and D. We know by Theorem
8.8 that \(L_1 \cap D \) comprises at most \(d \) points, or precisely \(d \) points when counting with multiplicities; \(L_2 \cap D \) comprises at most \(d \) points, or precisely \(d \) points when counting with multiplicities. Therefore \(C \cap D \) comprises at most \(2d \) points, or precisely \(2d \) points when counting with multiplicities.

(2) We have proved in Example 5.23 that \(C \) is isomorphic to \(\mathbb{P}^1 \). In particular, every point in \(C \) can be given by \([p^2 : pq : q^2]\) for some \([p : q] \in \mathbb{P}^1\). Let \(D = \mathbb{V}(f) \) for some homogeneous polynomial \(f(x, y, z) \) of degree \(d \). Then \([p^2 : pq : q^2] \in \mathbb{V}(f)\) if and only if \(f(p^2, pq, q^2) = 0\). The left-hand side is a homogeneous polynomial of degree \(2d \) in \(p \) and \(q \). By Exercise 4.4 (2), it can be completely factored into \(2d \) homogeneous factors of degree 1 as

\[
f(p^2, pq, q^2) = (a_1p + b_1q) \cdots (a_{2d}p + b_{2d}q) = 0.
\]

Each factor \(a_ip + b_iq \) determines a point \([p : q] = [b_i : -a_i] \in \mathbb{P}^1\), hence \(f = 0 \) has at most \(2d \) solutions \([p : q] = [b_i : -a_i] \in \mathbb{P}^1\), which give at most \(2d \) points \([p^2 : pq : q^2] = [b_i^2 : -a_ib_i : a_i^2] \in (C \cap D)\). When counting the number of times each point occurs as a solution, we get precisely \(2d \) points.

Solution 8.4. An interesting application of Bézout’s theorem.

(1) By Example 8.3, every conic \(C \) is given by a homogeneous polynomial \(g(x, y, z) = 0 \) of degree 2 with 6 coefficients \(a, b, c, d, e \) and \(f \). For each \(i \), since \(p_i = [x_i : y_i : z_i] \in C \), we can plug in \(x = x_i \), \(y = y_i \) and \(z = z_i \) to get an equation \(g(x_i, y_i, z_i) = 0 \), which is a homogeneous linear equation in \(a, b, c, d, e \) and \(f \). In this way the 5 points give a system of 5 linear equations. Since there are 5 equations and 6 indeterminants, by the theorem of rank-nullity, there is a solution for \(a, b, c, d, e \) and \(f \) such that they are not simultaneously zero. This solution determines the homogeneous polynomial \(g(x, y, z) \) of degree 2. We claim that \(g \) has no repeated factors. If \(g \) has repeated factors, then \(g \) is the square of a linear polynomial hence gives a double line which passes through all the 5 given points. This is a contradiction since no 4 of the given points are allowed to be on the same line. Hence we conclude that \(g \) defines a conic.

(2) Assume that there are two distinct conics \(C_1 \) and \(C_2 \), both of which pass through the 5 points. By Theorem 8.12, if they do not have any common component, then they can meet in at most 4 common points. Hence they must have a common component.

(3) If either \(C_1 \) or \(C_2 \) is an irreducible conic, which has only one component, then the other must be the same conic. Under the assumption that \(C_1 \) and \(C_2 \) are distinct conics, both of them must be the unions of two lines. Since they have a common component, the other component in the two conics must be distinct. Hence we can assume \(C_1 = L_0 \cup L_1 \) and \(C_2 = L_0 \cup L_2 \), where \(L_0, L_1 \) and \(L_2 \) are distinct lines.
We know the 5 points \(p_1, \cdots, p_5 \) are on both conics. For each \(p_i \), there are two possibilities: \(p_i \in L_0 \), or \(p_i \notin L_0 \). If the second possibility happens, then \(p_i \in L_1 \) since \(p_i \in C_1 \), and \(p_i \in L_2 \) since \(p_i \in C_2 \). This implies \(p_i \) is a common point of \(L_1 \) and \(L_2 \). Since \(L_1 \) and \(L_2 \) are distinct lines, by Theorem 8.8, they have only 1 common point. It follows that among the 5 points \(p_1, \cdots, p_5 \), at most one of them is not on \(L_0 \); in other words, at least 4 of them are on the line \(L_0 \). This is a contradiction because no 4 of them are allowed to be on the same line.