Solutions to Exercise Sheet 8

Solution 8.1. Examples of rational curves.

- (1) We claim that φ : P¹ → L; [x : y] → [x : y : 0] is a morphism. It is given by homogeneous polynomials of the same degree, and is everywhere defined, since x and y cannot be both zero. The image of any point under φ lies in L because the last coordinate is zero. This justifies the claim. Similarly we claim that ψ : L → P¹; [x : y : z] → [x : y] is a morphism. It is given by homogeneous polynomials of the same degree. Since z = 0, x and y cannot be both zero, hence it is defined for every point in L. The image of any point in L under φ is clearly in P¹. This justifies the claim. Finally we check φ and ψ are inverse to each other. For any point [x : y] ∈ P¹, (ψ ∘ φ)([x : y]) = ψ([x : y : 0]) = [x : y]. For any point [x : y : z] ∈ L, (φ ∘ ψ)([x : y : z]) = φ([x : y]) = [x : y : z] since z = 0. Therefore L is isomorphic to P¹. In particular, they are birational, hence L is rational.
- (2) Define rational maps $\varphi_2 : \mathbb{P}^1 \dashrightarrow C_2$ by $\varphi_2([u:v]) = [uv^2 : v^3 : u^3]$ and $\psi_2 : C_2 \dashrightarrow \mathbb{P}^1$ by $\psi_2([x:y:z]) = [x:y]$. To show φ_2 is a rational map, we observe: all components are homogeneous of degree 3; φ_2 is defined at every point $[u:v] \in \mathbb{P}^1$ since either u^3 or v^3 is non-zero; the image $[uv^2 : v^3 : u^3]$ is a point in C_2 since it satisfies the defining equation of C_2 . To show ψ_2 is a rational map, we observe: all components are homogeneous of degree 1; ψ_2 is well-defined at every point on C_2 except [0:0:1]; image of ψ_2 is clearly in \mathbb{P}^1 . It remains to show φ_2 and ψ_2 are mutually inverse to each other. For every $[u:v] \in \mathbb{P}^1$ where $\psi_2 \circ \varphi_2$ is defined, we have $(\psi_2 \circ \varphi_2)([u:v]) = \psi_2([uv^2 : v^3 : u^3]) = [uv^2 : v^3] = [u:v]$. For every $[x:y:z] \in C$ where $\varphi_2 \circ \psi_2$ is defined, we have $(\varphi_2 \circ \psi_2)([x:y:z]) = \varphi_2([x:y]) = [xy^2 : y^3 : x^3] = [xy^2 : y^3 : y^2z] = [x:y:z]$. Therefore C_2 is birational to \mathbb{P}^1 , hence is rational.

Solution 8.2. Example: Fermat cubic.

- (1) We consider the standard affine piece $C_0 = C \cap U_0 = \mathbb{V}_a(f_0) \subseteq \mathbb{A}^2$ where $f_0 = 1 + y^3 + z^3$. Since $\frac{\partial f_0}{\partial y} = 3y^2$ and $\frac{\partial f_0}{\partial z} = 3z^2$, the two derivatives vanish if and only if y = z = 0. But then $f_0 = 1 \neq 0$. Therefore $f_0 = \frac{\partial f_0}{\partial y} = \frac{\partial f_0}{\partial z} = 0$ have no common solution, which means C_0 is non-singular. Since the equation of C is symmetric with respect to the variables, the same calculation shows that all other standard affine pieces are also non-singular. Therefore C is non-singular.
- (2) A point on the line L can be given by p = [x : y : 0]. If $p \in C$, then we have $x^3 + y^3 = 0$, hence y = -x or $-\omega x$ or $-\omega^2 x$ where $\omega = e^{\frac{2\pi\sqrt{-1}}{3}}$ is a primitive third root of unity. So the three points in $L \cap C$ are $p_1 = [1 : -1 : 0]$, $p_2 = [1 : -\omega : 0]$ and $p_3 = [1 : -\omega^2 : 0]$.

(3) At least one of the three coordinates is non-zero. Without loss of generality, we can assume $a \neq 0$. Then the point $p = [a : b : c] \in C_0 = C \cap U_0 = \mathbb{V}_a(f_0) \subseteq \mathbb{A}^2$, in which its non-homogeneous coordinates are given by $p = (\frac{b}{a}, \frac{c}{a})$. The tangent space of p in the standard affine piece C_0 is given by

$$T_p C_0 = \mathbb{V}_a \left(3 \cdot \frac{b^2}{a^2} \cdot (y - \frac{b}{a}) + 3 \cdot \frac{c^2}{a^2} \cdot (z - \frac{c}{a}) \right)$$

The tangent space T_pC is the projective closure of T_pC_0 , which is given by the homogenisation of the above polynomial

$$T_p C = \mathbb{V}_p \left(3 \cdot \frac{b^2}{a^2} \cdot (y - \frac{b}{a}x) + 3 \cdot \frac{c^2}{a^2} \cdot (z - \frac{c}{a}x) \right).$$

Since we assumed $a \neq 0$, we can multiply this polynomial by $\frac{a^3}{3}$ without changing its vanishing locus. Then we get

$$\begin{split} & \Pi_p C = \mathbb{V}_p (b^2 (ay - bx) + c^2 (az - cx)) \\ &= \mathbb{V}_p ((-b^3 - c^3)x + ab^2y + ac^2z) \\ &= \mathbb{V}_p (a^3x + ab^2y + ac^2z) \\ &= \mathbb{V}_p (a^2x + b^2y + c^2z). \end{split}$$

In the last step above is valid since we assumed $a \neq 0$.

1

Since a, b and c are symmetric, a similar calculation will give the same equation for the tangent space T_pC when $b \neq 0$ or $c \neq 0$.

(4) At the point $p_1 = [1:-1:0]$, the tangent space $T_{p_1}C = \mathbb{V}_p(x+y)$. For any point $q = [x:y:z] \in T_{p_1}C$, we have x = -y. If $q \in C$, we then have $(-y)^3 + y^3 + z^3 = 0$ hence $z^3 = 0$, which has one solution with multiplicity 3. This means $T_{p_1}C$ meet C at one point with multiplicity 3, hence p_1 is an inflection point.

Similarly, at the point $p_2 = [1 : -\omega : 0]$, the tangent space $T_{p_2}C = \mathbb{V}_p(x + \omega^2 y)$. For any point $q = [x : y : z] \in T_{p_2}C$, we have $x = -\omega^2 y$. If $q \in C$, we then have $(-\omega^2 y)^3 + y^3 + z^3 = 0$ hence $z^3 = 0$, which has one solution with multiplicity 3. This means $T_{p_2}C$ meet C at one point with multiplicity 3, hence p_2 is an inflection point.

Moreover, at the point $p_3 = [1 : -\omega^2 : 0]$, the tangent space $T_{p_3}C = \mathbb{V}_p(x + \omega y)$. For any point $q = [x : y : z] \in T_{p_3}C$, we have $x = -\omega y$. If $q \in C$, we then have $(-\omega y)^3 + y^3 + z^3 = 0$ hence $z^3 = 0$, which has one solution with multiplicity 3. This means $T_{p_3}C$ meet C at one point with multiplicity 3, hence p_3 is an inflection point.

Solution 8.3. Bézout's theorem for conics.

(1) If $C = L_1 \cup L_2$, then every common point of C and D must be either a common point of L_1 and D, or a common point of L_2 and D. We know by Theorem

8.8 that $L_1 \cap D$ comprises at most d points, or precisely d points when counting with multiplicities; $L_2 \cap D$ comprises at most d points, or precisely d points when counting with multiplicities. Therefore $C \cap D$ comprises at most 2d points, or precisely 2d points when counting with multiplicities.

(2) We have proved in Example 5.23 that C is isomorphic to \mathbb{P}^1 . In particular, every point in C can be given by $[p^2 : pq : q^2]$ for some $[p : q] \in \mathbb{P}^1$. Let $D = \mathbb{V}(f)$ for some homogeneous polynomial f(x, y, z) of degree d. Then $[p^2 : pq : q^2] \in \mathbb{V}(f)$ if and only if $f(p^2, pq, q^2) = 0$. The left-hand side is a homogeneous polynomial of degree 2d in p and q. By Exercise 4.4 (2), it can be completely factored into 2dhomogeneous factors of degree 1 as

$$f(p^2, pq, q^2) = (a_1p + b_1q) \cdots (a_{2d}p + b_{2d}q) = 0.$$

Each factor $a_i p + b_i q$ determines a point $[p:q] = [b_i: -a_i] \in \mathbb{P}^1$, hence f = 0 has at most 2d solutions $[p:q] = [b_i: -a_i] \in \mathbb{P}^1$, which give at most 2d points $[p^2:pq:q^2] = [b_i^2: -a_i b_i: a_i^2] \in (C \cap D)$. When counting the number of times each point occurs as a solution, we get precisely 2d points.

Solution 8.4. An interesting application of Bézout's theorem.

- (1) By Example 8.3, every conic C is given by a homogeneous polynomial g(x, y, z) = 0of degree 2 with 6 coefficients a, b, c, d, e and f. For each i, since $p_i = [x_i : y_i : z_i] \in$ C, we can plug in $x = x_i$, $y = y_i$ and $z = z_i$ to get an equation $g(x_i, y_i, z_i) = 0$, which is a homogeneous linear equation in a, b, c, d, e and f. In this way the 5 points give a system of 5 linear equations. Since there are 5 equations and 6 indeterminants, by the theorem of rank-nullity, there is a solution for a, b, c, d, eand f such that they are not simultaneously zero. This solution determines the homogeneous polynomial g(x, y, z) of degree 2. We claim that g has no repeated factors. If g has repeated factors, then g is the square of a linear polynomial hence gives a double line which passes through all the 5 given points. This is a contradiction since no 4 of the given points are allowed to be on the same line. Hence we conclude that g defines a conic.
- (2) Assume that there are two distinct conics C_1 and C_2 , both of which pass through the 5 points. By Theorem 8.12, if they do not have any common component, then they can meet in at most 4 common points. Hence they must have a common component.
- (3) If either C_1 or C_2 is an irreducible conic, which has only one component, then the other must be the same conic. Under the assumption that C_1 and C_2 are distinct conics, both of them must be the unions of two lines. Since they have a common component, the other component in the two conics must be distinct. Hence we can assume $C_1 = L_0 \cup L_1$ and $C_2 = L_0 \cup L_2$, where L_0 , L_1 and L_2 are distinct lines.

We know the 5 points p_1, \dots, p_5 are on both conics. For each p_i , there are two possibilities: $p_i \in L_0$, or $p_i \notin L_0$. If the second possibility happens, then $p_i \in L_1$ since $p_i \in C_1$, and $p_i \in L_2$ since $p_i \in C_2$. This implies p_i is a common point of L_1 and L_2 . Since L_1 and L_2 are distinct lines, by Theorem 8.8, they have only 1 common point. It follows that among the 5 points p_1, \dots, p_5 , at most one of them is not on L_0 ; in other words, at least 4 of them are on the line L_0 . This is a contradiction because no 4 of them are allowed to be on the same line.