
Solutions to Exercise Sheet 9

Solution 9.1. Understanding the simplified group law.

(1) We show that the point p = [0 : 1 : 0] is an inflection point on the non-singular

cubic C = Vp(f) where f = y2z − x3 − ax2z − bxz2 − cz3. First of all we need

to find out the tangent line TpC, which can be computed on the standard affine

piece C1 = C ∩ U1 = Va(f1) where f1 = z − x3 − ax2z − bxz2 − cz3. The non-

homogeneous coordinates of p in U1 is p = (0, 0). Since ∂f1
∂x

= −3x2−2axz−bz2 and
∂f1
∂z

= 1−ax2−2bxz−3cz2, the tangent line TpC1 = Va(0(x−0)+1(z−0)) = Va(z).

Its projective closure is TpC = Vp(z). To find the intersection points of C and

TpC, we follow the method in the proof of Theorem 8.8. A point on TpC is given

by [x : y : 0]. It lies in C if and only if f(x, y, 0) = 0, where f(x, y, 0) = −x3 which

has one solution [x : y] = [0 : 1] with multiplicity 3. Therefore TpC and C meet at

the point [0 : 1 : 0] with multiplicity 3, which proves p = [0 : 1 : 0] is an inflection

point on C.

(2) First of all, since O is the identity element in the group law, we always have

O + O = O, so O is one of such point. It remains to find all such points P ∈ C2.

The condition P +P = O can be interpreted as P = −P . If the non-homogeneous

coordinates of P in C2 is given by P = (x, y), then by the simplified group law 9.4,

−P = (x,−y). The condition P = −P holds if and only if y = 0. Therefore all

points P ∈ C satisfying P+P = O are precisely the identity element O = [0 : 1 : 0]

and those points P = (x, y) ∈ C2 such that y = 0.

(3) In the standard affine piece C2 = V(y2 − x3 + 4x − 1), the non-homogeneous

coordinates of the two points are A = (2, 1) and B = (−2,−1). The line AB is

given by x−2y = 0. To find its third intersection points with C2, we need to solve

the system

y2 − x3 + 4x− 1 = 0,

x− 2y = 0.

We substitute x by 2y in the first equation to get y2− 8y3 + 8y− 1 = 0, which can

be factored as (y2−1)(1−8y) = 0. The solutions are y = ±1 and y = 1
8
. Therefore

the third intersection point is (1
4
, 1
8
), whose reflection across the x-axis is the sum

of A and B; that is A + B = (1
4
,−1

8
), or [1

4
: −1

8
: 1] in homogeneous coordinates

(or [2 : −1 : 8] if you prefer). The inverse −A is the reflection of A across the

x-axis, so −A = (2,−1), or [2 : −1 : 1] in homogeneous coordinates. The inverse

−B is the reflection of B across the x-axis, so −B = (−2, 1), or [−2 : 1 : 1] in

homogeneous coordinates.

Solution 9.2. Example of group law.
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(1) For L1 ∩ C, set z = 0 in the equation defining C to obtain x3 = 0, which gives

solutions [x : y] = [0 : 1] with multiplicity 3. Hence [x : y : z] = [0 : 1 : 0]

is the only intersection point with multiplicity 3. For L2 ∩ C, set x = 0 in the

equation defining C to obtain y2z = 0, which gives solutions [y : z] = [0 : 1]

with multiplicity 2 and [1 : 0] with multiplicity 1. Hence the line L2 meets C at

[0 : 0 : 1] with multiplicity 2 and [0 : 1 : 0] with multiplicity 1. For L3 ∩ C, set

y = 2x to obtain x(4xz−x2− 4z2) = 0, which can be written as −x(x− 2z)2 = 0.

Its solutions are [x : z] = [0 : 1] with multiplicity 1, and [x : z] = [2 : 1] with

multiplicity 2. Therefore L3 meets C at [x : y : z] = [0 : 0 : 1] with multiplicity 1

and [2 : 4 : 1] with mulplicity 2.

(2) We can use the simplified group law 9.4. The standard affine piece C2 = Va(f2) ⊆
A2 where f2 = y2 − x3 − 4x. We first compute P + P . The non-homogeneous

coordinates of P are (2, 4). To compute the tangent line TPC2, we find ∂f2
∂x

=

−3x2 − 4 and ∂f2
∂y

= 2y. Therefore ∂f2
∂x

(P ) = −16 and ∂f2
∂y

= 8. It follows that

TPC2 = Va(−16(x−2)+8(y−4)) = Va(−2(x−2)+(y−4)) = Va(−2x+y) ⊆ A2. To

find the third intersection point of TPC2 and C, we solve the system of equations

y2 − x3 − 4x = 0,

−2x+ y = 0.

We substitute y by 2x in the first equation to get 4x2 − x3 − 4x = 0, which

is −x(x − 2)2 = 0. Therefore the system has a solution (x, y) = (2, 4) with

multiplicity 2 and a solution (x, y) = (0, 0) with multiplicity 1. The solution (2, 4)

corresponds to the point P , hence the third intersection point is R = (0, 0). The

sum P + P is the reflection R of R across the x-axis, which is still (0, 0). Hence

P + P = R = (0, 0) = R.

Now we compute R+R. Since R = (0, 0), by the simplified group law 9.4 (2a),

we immediately have R +R = O. Therefore P + P + P + P = O. It follows that

the order of P must divide 4, which can only be 1 or 2 or 4. Since P 6= O, the

order of P is not 1. Since P + P = R 6= O, the order of P is not 2. Therefore the

order of P is 4, which means the subgroup generated by P has order 4.

(3) To find all points Q ∈ C such that Q+Q = O, we use Exercise 9.1 (2). First of all

O = [0 : 1 : 0] is such a point. It remains to find all points Q = (x, y) ∈ C2 such

that y = 0. In the equation f2 = y2 − x3 − 4x = 0 we set y = 0. Then we have

−x3−4x = −x(x2 +4) = 0. Hence x = 0 or 2
√
−1 or −2

√
−1. The corresponding

points are Q = (0, 0) or (2
√
−1, 0) or (−2

√
−1, 0). In summary, we found 4 points

Q ∈ C such that Q + Q = O, which are [0 : 1 : 0], [0 : 0 : 1], [2
√
−1 : 0 : 1] and

[−2
√
−1 : 0 : 1].

Solution 9.3. Example: Tate’s normal form.
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Notice that the defining polynomial of the cubic does not meet the conditions required

for using the simplified group law. So we need to use the group law 9.1.

(1) To find the inverse, we use the method in the proof of Proposition 9.8. We need to

find the third intersection point O of TOC and C, then find the third intersection

point of OP and C, which is −P .

Since C is the projective closure of C2, we can write down its defining equation

as C = Vp(y
2z+sxyz− tyz2−x3 + tx2z) ⊆ P2. It is easy to see that O = [0 : 1 : 0]

is the only point at infinity. To find the tangent line TOC, we need to consider

the standard affine piece C1 = C ∩ U1 which contains the point O. We have

C1 = Va(f1) ⊆ A2 where f1 = z + sxz − tz2 − x3 + tx2z and O = (0, 0) ∈ C1.

Since ∂f1
∂x

= sz − 3x2 + 2txz and ∂f1
∂z

= 1 + sx − 2tz + tx2, we have ∂f1
∂x

(O) = 0

and ∂f1
∂z

(O) = 1, hence TOC1 = Va(z) ⊆ A2. Taking its projective closure, we get

TOC = Vp(z) ⊆ P2. To find the intersection points of TOC and C, we consider an

arbitrary point [x : y : z] = [x : y : 0] ∈ TOC. If this point is also in C, then we set

z = 0 in the defining equation of C to get −x3 = 0. Therefore TOC and C meet

at the only point [x : y : z] = [0 : 1 : 0] with multiplicity 3, which means that the

third intersection point O of TOC and C is still O = O = [0 : 1 : 0].

To find −P , we need to write down the line OP . We first make an observation.

Since P = (a, b) ∈ C2, its coordinates have to satisfy the defining polynomial of

C2, namely

b2 + sab− tb− a3 + ta2 = 0,

or equivalently

−a3 + ta2 = −b(b+ sa− t).

The homogeneous coordinates of P are given by P = [a : b : 1]. By Lemma 9.2

the line is given by

det

x 0 a

y 1 b

z 0 1

 = x− az = 0.

To find the third intersection point of OP and C, we consider an arbitrary point

[x : y : z] = [az : y : z] ∈ OP . Since this point is also in C, we get

y2z + sayz2 − tyz2 − a3z3 + ta2z3 = 0.

Using the observation above, we get

y2z + (sa− t)yz2 − b(b+ sa− t)z3 = 0

which can be factored into

z(y − bz)(y + (b+ sa− t)z) = 0.
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The three solutions are [y : z] = [1 : 0], [b : 1] and [−b − sa + t : 1]. Since

x = az, the three intersection points of OP and C are [x : y : z] = [0 : 1 : 0],

[a : b : 1] and [a : −b − sa + t : 1]. The first two points are O and P , hence

−P = [a : −b− sa+ t : 1]. The non-homogeneous coordinates of −P with respect

to C2 is −P = (a,−b− sa+ t).

(2) To compute Q + Q, we need to find the tangent line TQC. We know that Q ∈
C2 = Va(f2) ⊆ A2 where f2 = y2 + sxy− ty−x3 + tx2. The partial derivatives are

given by ∂f2
∂x

= sy− 3x2 + 2tx and ∂f2
∂y

= 2y+ sx− t. At the point Q = (0, 0), their

values are ∂f2
∂x

(Q) = 0 and ∂f2
∂y

(Q) = −t. Since t 6= 0, we have TQC2 = Va(−ty) =

Va(y) ⊆ A2, hence TQC = Vp(y) ⊆ P2. To find the third intersection point R of

the line TQC and C, we consider an arbitrary point [x : y : z] = [x : 0 : z] ∈ TQC.

When this point is also on C, we can set y = 0 in the defining equation of C to

get −x3 + tx2z = 0. It has solutions [x : z] = [0 : 1] with multiplicity 2 and [t : 1]

with multiplicity 1. Therefore the intersection points of TQC and C are given by

[x : y : z] = [0 : 0 : 1] with multiplicity 2 and [t : 0 : 1] with multiplicity 1. Hence

third intersection point R of TQC and C is R = [t : 0 : 1].

It remains to find the third intersection point of OR and C, which is the sum

Q + Q. Fortunately we have done the computation in part (1). Indeed, we have

seen that, given a point P = [a : b : 1] ∈ C, the line OP (= OP ) meets C at a

third point [a : −sa+ t− b : 1]. Let a = t and b = 0, then OR meets C at a third

point [t : −st + t : 1], or in non-homogeneous coordinates (t,−st + t). Therefore

Q+Q = (t,−st+ t) = (t, t(1− s)).

Solution 9.4. Pascal’s mystic hexagon.

(1) A picture has been given in the exercise class. You can also find the same picture

in [Section 2.11, Reid, Undergraduate Algebraic Geometry].

(2) From the picture we can see that C1 and C2 meet at 9 distinct points, i.e.

C1 ∩ C2 = {A,B,C,D,E, F, P,Q,R}.

Indeed, the first six points are distinct by the assumption. None of the last three

points is on X (otherwise a certain line meets X in 3 points), so none of them

can coincide with any of the first six points. The last three points must also be

distinct (otherwise two certain lines meet each other in 2 points).

(3) By assumption, the cubic curve C3 passes through 8 of the above 9 points with

the point R being the only possible exception. By Lemma 9.12, R must be on C3

as well. Therefore R is either on the conic X or the line PQ. We claim that R is

not on X. Otherwise, the line BCR and the conic X meet at three distinct points

B, C and R, which violates Bézout’s theorem 8.8. Therefore R is on the line PQ,

which means that the points P,Q,R are colinear.
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