Solutions to Exercise Sheet 9

Solution 9.1. Understanding the simplified group law.
(1) We show that the point $p=[0: 1: 0]$ is an inflection point on the non-singular cubic $C=\mathbb{V}_{p}(f)$ where $f=y^{2} z-x^{3}-a x^{2} z-b x z^{2}-c z^{3}$. First of all we need to find out the tangent line $T_{p} C$, which can be computed on the standard affine piece $C_{1}=C \cap U_{1}=\mathbb{V}_{a}\left(f_{1}\right)$ where $f_{1}=z-x^{3}-a x^{2} z-b x z^{2}-c z^{3}$. The nonhomogeneous coordinates of p in U_{1} is $p=(0,0)$. Since $\frac{\partial f_{1}}{\partial x}=-3 x^{2}-2 a x z-b z^{2}$ and $\frac{\partial f_{1}}{\partial z}=1-a x^{2}-2 b x z-3 c z^{2}$, the tangent line $T_{p} C_{1}=\mathbb{V}_{a}(0(x-0)+1(z-0))=\mathbb{V}_{a}(z)$. Its projective closure is $T_{p} C=\mathbb{V}_{p}(z)$. To find the intersection points of C and $T_{p} C$, we follow the method in the proof of Theorem 8.8. A point on $T_{p} C$ is given by $[x: y: 0]$. It lies in C if and only if $f(x, y, 0)=0$, where $f(x, y, 0)=-x^{3}$ which has one solution $[x: y]=[0: 1]$ with multiplicity 3 . Therefore $T_{p} C$ and C meet at the point $[0: 1: 0]$ with multiplicity 3 , which proves $p=[0: 1: 0]$ is an inflection point on C.
(2) First of all, since O is the identity element in the group law, we always have $O+O=O$, so O is one of such point. It remains to find all such points $P \in C_{2}$. The condition $P+P=O$ can be interpreted as $P=-P$. If the non-homogeneous coordinates of P in C_{2} is given by $P=(x, y)$, then by the simplified group law 9.4, $-P=(x,-y)$. The condition $P=-P$ holds if and only if $y=0$. Therefore all points $P \in C$ satisfying $P+P=O$ are precisely the identity element $O=[0: 1: 0]$ and those points $P=(x, y) \in C_{2}$ such that $y=0$.
(3) In the standard affine piece $C_{2}=\mathbb{V}\left(y^{2}-x^{3}+4 x-1\right)$, the non-homogeneous coordinates of the two points are $A=(2,1)$ and $B=(-2,-1)$. The line $A B$ is given by $x-2 y=0$. To find its third intersection points with C_{2}, we need to solve the system

$$
\begin{array}{r}
y^{2}-x^{3}+4 x-1=0, \\
x-2 y=0 .
\end{array}
$$

We substitute x by $2 y$ in the first equation to get $y^{2}-8 y^{3}+8 y-1=0$, which can be factored as $\left(y^{2}-1\right)(1-8 y)=0$. The solutions are $y= \pm 1$ and $y=\frac{1}{8}$. Therefore the third intersection point is $\left(\frac{1}{4}, \frac{1}{8}\right)$, whose reflection across the x-axis is the sum of A and B; that is $A+B=\left(\frac{1}{4},-\frac{1}{8}\right)$, or $\left[\frac{1}{4}:-\frac{1}{8}: 1\right]$ in homogeneous coordinates (or $[2:-1: 8]$ if you prefer). The inverse $-A$ is the reflection of A across the x-axis, so $-A=(2,-1)$, or $[2:-1: 1]$ in homogeneous coordinates. The inverse $-B$ is the reflection of B across the x-axis, so $-B=(-2,1)$, or $[-2: 1: 1]$ in homogeneous coordinates.

Solution 9.2. Example of group law.
(1) For $L_{1} \cap C$, set $z=0$ in the equation defining C to obtain $x^{3}=0$, which gives solutions $[x: y]=[0: 1]$ with multiplicity 3 . Hence $[x: y: z]=[0: 1: 0]$ is the only intersection point with multiplicity 3 . For $L_{2} \cap C$, set $x=0$ in the equation defining C to obtain $y^{2} z=0$, which gives solutions $[y: z]=[0: 1]$ with multiplicity 2 and $[1: 0]$ with multiplicity 1 . Hence the line L_{2} meets C at $[0: 0: 1]$ with multiplicity 2 and $[0: 1: 0]$ with multiplicity 1 . For $L_{3} \cap C$, set $y=2 x$ to obtain $x\left(4 x z-x^{2}-4 z^{2}\right)=0$, which can be written as $-x(x-2 z)^{2}=0$. Its solutions are $[x: z]=[0: 1]$ with multiplicity 1 , and $[x: z]=[2: 1]$ with multiplicity 2. Therefore L_{3} meets C at $[x: y: z]=[0: 0: 1]$ with multiplicity 1 and $[2: 4: 1]$ with mulplicity 2 .
(2) We can use the simplified group law 9.4. The standard affine piece $C_{2}=\mathbb{V}_{a}\left(f_{2}\right) \subseteq$ \mathbb{A}^{2} where $f_{2}=y^{2}-x^{3}-4 x$. We first compute $P+P$. The non-homogeneous coordinates of P are $(2,4)$. To compute the tangent line $T_{P} C_{2}$, we find $\frac{\partial f_{2}}{\partial x}=$ $-3 x^{2}-4$ and $\frac{\partial f_{2}}{\partial y}=2 y$. Therefore $\frac{\partial f_{2}}{\partial x}(P)=-16$ and $\frac{\partial f_{2}}{\partial y}=8$. It follows that $T_{P} C_{2}=\mathbb{V}_{a}(-16(x-2)+8(y-4))=\mathbb{V}_{a}(-2(x-2)+(y-4))=\mathbb{V}_{a}(-2 x+y) \subseteq \mathbb{A}^{2}$. To find the third intersection point of $T_{P} C_{2}$ and C, we solve the system of equations

$$
\begin{array}{r}
y^{2}-x^{3}-4 x=0, \\
-2 x+y=0 .
\end{array}
$$

We substitute y by $2 x$ in the first equation to get $4 x^{2}-x^{3}-4 x=0$, which is $-x(x-2)^{2}=0$. Therefore the system has a solution $(x, y)=(2,4)$ with multiplicity 2 and a solution $(x, y)=(0,0)$ with multiplicity 1 . The solution $(2,4)$ corresponds to the point P, hence the third intersection point is $R=(0,0)$. The sum $P+P$ is the reflection \bar{R} of R across the x-axis, which is still $(0,0)$. Hence $P+P=\bar{R}=(0,0)=R$.

Now we compute $R+R$. Since $R=(0,0)$, by the simplified group law 9.4 (2a), we immediately have $R+R=O$. Therefore $P+P+P+P=O$. It follows that the order of P must divide 4, which can only be 1 or 2 or 4 . Since $P \neq O$, the order of P is not 1 . Since $P+P=R \neq O$, the order of P is not 2 . Therefore the order of P is 4 , which means the subgroup generated by P has order 4 .
(3) To find all points $Q \in C$ such that $Q+Q=O$, we use Exercise 9.1 (2). First of all $O=[0: 1: 0]$ is such a point. It remains to find all points $Q=(x, y) \in C_{2}$ such that $y=0$. In the equation $f_{2}=y^{2}-x^{3}-4 x=0$ we set $y=0$. Then we have $-x^{3}-4 x=-x\left(x^{2}+4\right)=0$. Hence $x=0$ or $2 \sqrt{-1}$ or $-2 \sqrt{-1}$. The corresponding points are $Q=(0,0)$ or $(2 \sqrt{-1}, 0)$ or $(-2 \sqrt{-1}, 0)$. In summary, we found 4 points $Q \in C$ such that $Q+Q=O$, which are $[0: 1: 0],[0: 0: 1],[2 \sqrt{-1}: 0: 1]$ and $[-2 \sqrt{-1}: 0: 1]$.

Solution 9.3. Example: Tate's normal form.

Notice that the defining polynomial of the cubic does not meet the conditions required for using the simplified group law. So we need to use the group law 9.1.
(1) To find the inverse, we use the method in the proof of Proposition 9.8. We need to find the third intersection point \bar{O} of $T_{O} C$ and C, then find the third intersection point of $\bar{O} P$ and C, which is $-P$.

Since C is the projective closure of C_{2}, we can write down its defining equation as $C=\mathbb{V}_{p}\left(y^{2} z+s x y z-t y z^{2}-x^{3}+t x^{2} z\right) \subseteq \mathbb{P}^{2}$. It is easy to see that $O=[0: 1: 0]$ is the only point at infinity. To find the tangent line $T_{O} C$, we need to consider the standard affine piece $C_{1}=C \cap U_{1}$ which contains the point O. We have $C_{1}=\mathbb{V}_{a}\left(f_{1}\right) \subseteq \mathbb{A}^{2}$ where $f_{1}=z+s x z-t z^{2}-x^{3}+t x^{2} z$ and $O=(0,0) \in C_{1}$. Since $\frac{\partial f_{1}}{\partial x}=s z-3 x^{2}+2 t x z$ and $\frac{\partial f_{1}}{\partial z}=1+s x-2 t z+t x^{2}$, we have $\frac{\partial f_{1}}{\partial x}(O)=0$ and $\frac{\partial f_{1}}{\partial z}(O)=1$, hence $T_{O} C_{1}=\mathbb{V}_{a}(z) \subseteq \mathbb{A}^{2}$. Taking its projective closure, we get $T_{O} C=\mathbb{V}_{p}(z) \subseteq \mathbb{P}^{2}$. To find the intersection points of $T_{O} C$ and C, we consider an arbitrary point $[x: y: z]=[x: y: 0] \in T_{O} C$. If this point is also in C, then we set $z=0$ in the defining equation of C to get $-x^{3}=0$. Therefore $T_{O} C$ and C meet at the only point $[x: y: z]=[0: 1: 0]$ with multiplicity 3 , which means that the third intersection point \bar{O} of $T_{O} C$ and C is still $\bar{O}=O=[0: 1: 0]$.

To find $-P$, we need to write down the line $\bar{O} P$. We first make an observation. Since $P=(a, b) \in C_{2}$, its coordinates have to satisfy the defining polynomial of C_{2}, namely

$$
b^{2}+s a b-t b-a^{3}+t a^{2}=0,
$$

or equivalently

$$
-a^{3}+t a^{2}=-b(b+s a-t)
$$

The homogeneous coordinates of P are given by $P=[a: b: 1]$. By Lemma 9.2 the line is given by

$$
\operatorname{det}\left(\begin{array}{lll}
x & 0 & a \\
y & 1 & b \\
z & 0 & 1
\end{array}\right)=x-a z=0
$$

To find the third intersection point of $\bar{O} P$ and C, we consider an arbitrary point $[x: y: z]=[a z: y: z] \in \bar{O} P$. Since this point is also in C, we get

$$
y^{2} z+s a y z^{2}-t y z^{2}-a^{3} z^{3}+t a^{2} z^{3}=0 .
$$

Using the observation above, we get

$$
y^{2} z+(s a-t) y z^{2}-b(b+s a-t) z^{3}=0
$$

which can be factored into

$$
z(y-b z)(y+(b+s a-t) z)=0
$$

The three solutions are $[y: z]=[1: 0],[b: 1]$ and $[-b-s a+t: 1]$. Since $x=a z$, the three intersection points of $\bar{O} P$ and C are $[x: y: z]=[0: 1: 0]$, $[a: b: 1]$ and $[a:-b-s a+t: 1]$. The first two points are \bar{O} and P, hence $-P=[a:-b-s a+t: 1]$. The non-homogeneous coordinates of $-P$ with respect to C_{2} is $-P=(a,-b-s a+t)$.
(2) To compute $Q+Q$, we need to find the tangent line $T_{Q} C$. We know that $Q \in$ $C_{2}=\mathbb{V}_{a}\left(f_{2}\right) \subseteq \mathbb{A}^{2}$ where $f_{2}=y^{2}+s x y-t y-x^{3}+t x^{2}$. The partial derivatives are given by $\frac{\partial f_{2}}{\partial x}=s y-3 x^{2}+2 t x$ and $\frac{\partial f_{2}}{\partial y}=2 y+s x-t$. At the point $Q=(0,0)$, their values are $\frac{\partial f_{2}}{\partial x}(Q)=0$ and $\frac{\partial f_{2}}{\partial y}(Q)=-t$. Since $t \neq 0$, we have $T_{Q} C_{2}=\mathbb{V}_{a}(-t y)=$ $\mathbb{V}_{a}(y) \subseteq \mathbb{A}^{2}$, hence $T_{Q} C=\mathbb{V}_{p}(y) \subseteq \mathbb{P}^{2}$. To find the third intersection point R of the line $T_{Q} C$ and C, we consider an arbitrary point $[x: y: z]=[x: 0: z] \in T_{Q} C$. When this point is also on C, we can set $y=0$ in the defining equation of C to get $-x^{3}+t x^{2} z=0$. It has solutions $[x: z]=[0: 1]$ with multiplicity 2 and $[t: 1]$ with multiplicity 1 . Therefore the intersection points of $T_{Q} C$ and C are given by $[x: y: z]=[0: 0: 1]$ with multiplicity 2 and $[t: 0: 1]$ with multiplicity 1 . Hence third intersection point R of $T_{Q} C$ and C is $R=[t: 0: 1]$.

It remains to find the third intersection point of $O R$ and C, which is the sum $Q+Q$. Fortunately we have done the computation in part (1). Indeed, we have seen that, given a point $P=[a: b: 1] \in C$, the line $O P(=\bar{O} P)$ meets C at a third point $[a:-s a+t-b: 1]$. Let $a=t$ and $b=0$, then $O R$ meets C at a third point $[t:-s t+t: 1]$, or in non-homogeneous coordinates $(t,-s t+t)$. Therefore $Q+Q=(t,-s t+t)=(t, t(1-s))$.

Solution 9.4. Pascal's mystic hexagon.
(1) A picture has been given in the exercise class. You can also find the same picture in [Section 2.11, Reid, Undergraduate Algebraic Geometry].
(2) From the picture we can see that C_{1} and C_{2} meet at 9 distinct points, i.e.

$$
C_{1} \cap C_{2}=\{A, B, C, D, E, F, P, Q, R\} .
$$

Indeed, the first six points are distinct by the assumption. None of the last three points is on X (otherwise a certain line meets X in 3 points), so none of them can coincide with any of the first six points. The last three points must also be distinct (otherwise two certain lines meet each other in 2 points).
(3) By assumption, the cubic curve C_{3} passes through 8 of the above 9 points with the point R being the only possible exception. By Lemma $9.12, R$ must be on C_{3} as well. Therefore R is either on the conic X or the line $P Q$. We claim that R is not on X. Otherwise, the line $B C R$ and the conic X meet at three distinct points B, C and R, which violates Bézout's theorem 8.8. Therefore R is on the line $P Q$, which means that the points P, Q, R are colinear.

