Solutions to Exercise Sheet 10

Solution 10.1. Infinitely many lines on planes.

(1) Since z_0 and $az_1 + bz_2 + cz_3$ are both homogeneous polynomials of degree 1 and not proportional to each other, $L = \mathbb{V}(z_0, az_1 + bz_2 + cz_3)$ defines a line in \mathbb{P}^2. To show that the line L is in P, we just need to observe that every point on L satisfies the equation $z_0 = 0$, hence is a point in P.

(2) Let $L = \mathbb{V}(z_0, az_1 + bz_2 + cz_3)$ and $L' = \mathbb{V}(z_0, a'z_1 + b'z_2 + c'z_3)$ be two such lines, where $[a : b : c] \neq [a' : b' : c']$. If a point $p = [z_0 : z_1 : z_2 : z_3]$ is an intersection point of L and L', then its coordinates satisfy the system of equations

$$z_0 = 0;$$
$$az_1 + bz_2 + cz_3 = 0;$$
$$a'z_1 + b'z_2 + c'z_3 = 0.$$

The first equation fixes the z_0 coordinate. For the other coordinates, we look at the second and the third equations. We look at the coefficient matrix

$$\begin{pmatrix} a & b & c \\ a' & b' & c' \end{pmatrix}.$$

Since $[a : b : c]$ and $[a' : b' : c']$ represent different points in \mathbb{P}^2, both rows are non-zero and linearly independent. Hence the matrix has rank 2. It follows that the null-space has dimension 1, which means that there is a unique solution for $[z_1 : z_2 : z_3]$ (up to scaling). Therefore there is a unique intersection point $[z_0 : z_1 : z_2 : z_3]$ for the lines L and L'.

Solution 10.2. Infinitely many lines on non-singular quadric surfaces.

(1) It is clear that for every point $[a : b] \in \mathbb{P}^1$, the two polynomials $az_0 + bz_1$ and $az_2 + bz_3$ are non-zero and homogeneous of degree 1. They are not proportional to each other, so $\mathbb{V}(az_0 + bz_1, az_2 + bz_3)$ defines a line L in \mathbb{P}^2. We still need to show that every point in L is a point in Q. Since $[a : b] \in \mathbb{P}^1$, we have either $a \neq 0$ or $b \neq 0$. If $a \neq 0$, then a point $p = [z_0 : z_1 : z_2 : z_3] \in L$ satisfies $z_0 = -\frac{b}{a}z_1$ and $z_2 = -\frac{b}{a}z_3$. Then

$$z_0z_3 - z_1z_2 = \left(-\frac{b}{a}\right) \cdot z_1 \cdot z_3 - z_1 \cdot \left(-\frac{b}{a}\right) \cdot z_3 = 0.$$

Hence $p \in Q$. If $b \neq 0$, a similar calculation shows that every point $p \in L$ also satisfies the equation $z_0z_3 - z_1z_2 = 0$ hence is a point in Q. We conclude that L is a line in Q.

(2) Consider two lines \(L = \mathbb{V}(az_0 + bz_1, az_2 + bz_3) \) and \(L' = \mathbb{V}(a'z_0 + b'z_1, a'z_2 + b'z_3) \) where \([a : b]\) and \([a' : b']\) are two different points in \(\mathbb{P}^1 \). If the two lines have a common point \([z_0 : z_1 : z_2 : z_3]\), then the system of equations

\[
\begin{align*}
az_0 + bz_1 &= 0, \\
az_2 + bz_3 &= 0, \\
a'z_0 + b'z_1 &= 0, \\
a'z_2 + b'z_3 &= 0
\end{align*}
\]

must have a non-zero solution. However, the coefficient matrix for the first and the third equations is \(\begin{pmatrix} a & b \\ a' & b' \end{pmatrix} \). Since \([a : b]\) and \([a' : b']\) are two different points in \(\mathbb{P}^1 \), the two rows are both non-zero and linearly independent. Hence the matrix has rank 2, which means that the only solution to these two equations is \(z_0 = z_1 = 0 \). For the same reason the only solution to the second and fourth equations is \(z_2 = z_3 = 0 \). Since the system of four equations has only a zero solution, \(L \) and \(L' \) do not have any common point. In other words, they are disjoint.

(3) For any point \(p = [z_0 : z_1 : z_2 : z_3] \in Q \), we first show that \(p \) lies on a certain line \(L = \mathbb{V}(az_0 + bz_1, az_2 + bz_3) \). There are two cases. Case 1. If \(z_0 \) and \(z_1 \) are not simultaneously zero, then we choose \([a : b] = [z_1 : -z_0]\) for the line \(L \). We claim that \(p \in L \). Indeed, for such a choice of \([a : b]\) we have \(az_0 + bz_1 = z_1z_0 - z_0z_1 = 0 \) and \(az_2 + bz_3 = z_1z_2 - z_0z_3 = 0 \). The claim holds. Case 2. If \(z_0 \) and \(z_1 \) are both zero, then \(z_2 \) and \(z_3 \) are not simultaneously zero. We can choose \([a : b] = [z_3 : -z_2]\) for the line \(L \). A similar calculation shows that \(p \in L \). In both cases, the point \(p \) lies on a certain line \(L = \mathbb{V}(az_0 + bz_1, az_2 + bz_3) \) for a suitable choice of \([a : b]\).

It remains to prove that \(p \) lies on only one of such lines. This is clear because we have seen from part (2) that two such lines are always disjoint.

(4) For every \([a : b] \in \mathbb{P}^1 \), \(\mathbb{V}(az_0 + bz_2, az_1 + bz_3) \) also defines a line. These lines are pairwisely disjoint, and every point in \(Q \) lies on exactly one of them. The proof can be obtained simply by switching \(z_1 \) and \(z_2 \) in the proof for the above three parts.

Solution 10.3. Rationality of a cubic surface.
(1) We need to verify that every point in the image of ψ satisfies the defining equation of S. Indeed, we have
\[
\begin{align*}
z_0^2z_1 + z_1^2z_2 + z_2^2z_3 + z_3^2z_0 &= -r^2t^2(r^2s + t^3) + s^2(r^2s + t^3)^2 + t^2s^2(r^2s + t^3)^2 - t^4(r^2s + t^3) + t^2(r^2s + t^3)^2 - rt(r^2s + t^3) \\
&= -(r^2t^2s + t^3) \cdot (rt + s^2) \cdot (r^2s + t^3) + (s^2t^2 + rt^3) \cdot (r^2s + t^3)^2 \cdot (rt + s^2) \\
&= -t^2(r^2s + t^3) \cdot (rt + s^2) \cdot (r^2s + t^3) + t^2(s^2 + rt) \cdot (r^2s + t^3)^2 \cdot (rt + s^2) \\
&= -t^2 \cdot (rt + s^2)^2 \cdot (r^2s + t^3)^2 + t^2 \cdot (r^2s + t^3)^2 \cdot (rt + s^2)^2 \\
&= 0.
\end{align*}
\]
Therefore the statement holds.

(2) Let $[z_0 : z_1 : z_2 : z_3]$ be a point in S. Then these coordinates satisfy
\[
z_0^2z_1 + z_1^2z_2 + z_2^2z_3 + z_3^2z_0 = 0.
\]
Then we have
\[
(\psi \circ \varphi)([z_0 : z_1 : z_2 : z_3]) = \psi([z_0z_3 : z_1z_2 : z_2z_3]) = [z_0z_2z_3^2(z_0z_2z_3^2 + z_1^2z_2^2) : -z_1z_2(z_0^2z_1z_2z_3^2 + z_3^2z_3^3) : \\
: z_2^2z_3^3(z_0z_2z_3 + z_1^2z_2^2) : -z_2z_3(z_0^2z_1z_2z_3 + z_3^2z_3^3)] = [z_0z_2z_3^2(z_3^2z_0 + z_1^2z_2^2) : -z_1z_2^2z_3(z_0^2z_1 + z_2^2z_3) : \\
: z_2^3z_3(z_3^2z_0 + z_1^2z_2) : -z_2^3z_3(z_0^2z_1 + z_2^2z_3)] = [z_0z_2z_3(z_3^2z_0 + z_1^2z_2) : z_1z_2^2z_3(z_3^2z_0 + z_1^2z_2) : \\
: z_2^3z_3(z_3^2z_0 + z_1^2z_2)] = [z_0 : z_1 : z_2 : z_3]
\]
wherever the composition $\psi \circ \varphi$ is well-defined. This shows that $\psi \circ \varphi$ is equivalent to the identity map on S.

Now let $[r : s : t]$ be a point in \mathbb{P}^2. Then we have
\[
(\varphi \circ \psi)([r : s : t]) = \varphi([rt(r^2s + t^3) : s^2(r^2s + t^3) : t^2(r^2s + t^3) : -t(r^2s + t^3)]) = [-r^2t^2(r^2s + t^3) : -s^2(r^2s + t^3) : t^2(r^2s + t^3) : -t(r^2s + t^3)] = [r : s : t]
\]
wherever the composition $\varphi \circ \psi$ is well-defined. This shows that $\varphi \circ \psi$ is equivalent to the identity map on \mathbb{P}^2.

111