Solutions to Exercise Sheet 10

Solution 10.1. Infinitely many lines on planes.

- (1) Since z_0 and $az_1 + bz_2 + cz_3$ are both homogeneous polynomials of degree 1 and not proportional to each other, $L = \mathbb{V}(z_0, az_1 + bz_2 + cz_3)$ defines a line in \mathbb{P}^2 . To show that the line L is in P, we just need to observe that every point on L satisfies the equation $z_0 = 0$, hence is a point in P.
- (2) Let $L = \mathbb{V}(z_0, az_1 + bz_2 + cz_3)$ and $L' = \mathbb{V}(z_0, a'z_1 + b'z_2 + c'z_3)$ be two such lines, where $[a:b:c] \neq [a':b':c']$. If a point $p = [z_0:z_1:z_2:z_3]$ is an intersection point of L and L', then its coordinates satisfy the system of equations

$$z_0 = 0;$$

 $az_1 + bz_2 + cz_3 = 0;$
 $a'z_1 + b'z_2 + c'z_3 = 0.$

The first equation fixes the z_0 coordinate. For the other coordinates, we look at the second and the third equations. We look at the coefficient matrix

$$\begin{pmatrix} a & b & c \\ a' & b' & c' \end{pmatrix}.$$

Since [a : b : c] and [a' : b' : c'] represent different points in \mathbb{P}^2 , both rows are non-zero and linearly independent. Hence the matrix has rank 2. It follows that the null-space has dimension 1, which means that there is a unique solution for $[z_1 : z_2 : z_3]$ (up to scaling). Therefore there is a unique intersection point $[z_0 : z_1 : z_2 : z_3]$ for the lines L and L'.

Solution 10.2. Infinitely many lines on non-singular quadric surfaces.

(1) It is clear that for every point $[a:b] \in \mathbb{P}^1$, the two polynomials $az_0 + bz_1$ and $az_2 + bz_3$ are non-zero and homogeneous of degree 1. They are not proportional to each other, so $\mathbb{V}(az_0 + bz_1, az_2 + bz_3)$ defines a line L in \mathbb{P}^2 . We still need to show that every point in L is a point in Q. Since $[a:b] \in \mathbb{P}^1$, we have either $a \neq 0$ or $b \neq 0$. If $a \neq 0$, then a point $p = [z_0 : z_1 : z_2 : z_3] \in L$ satisfies $z_0 = -\frac{b}{a}z_1$ and $z_2 = -\frac{b}{a}z_3$. Then

$$z_0z_3 - z_1z_2 = \left(-\frac{b}{a}\right) \cdot z_1 \cdot z_3 - z_1 \cdot \left(-\frac{b}{a}\right) \cdot z_3 = 0.$$

Hence $p \in Q$. If $b \neq 0$, a similar calculation shows that every point $p \in L$ also satisfies the equation $z_0z_3 - z_1z_2 = 0$ hence is a point in Q. We conclude that L is a line in Q.

(2) Consider two lines $L = \mathbb{V}(az_0 + bz_1, az_2 + bz_3)$ and $L' = \mathbb{V}(a'z_0 + b'z_1, a'z_2 + b'z_3)$ where [a : b] and [a' : b'] are two different points in \mathbb{P}^1 . If the two lines have a common point $[z_0 : z_1 : z_2 : z_3]$, then the system of equations

$$az_0 + bz_1 = 0,$$

 $az_2 + bz_3 = 0,$
 $a'z_0 + b'z_1 = 0,$
 $a'z_2 + b'z_3 = 0$

must have a non-zero solution. However, the coefficient matrix for the first and the third equations is $\begin{pmatrix} a & b \\ a' & b' \end{pmatrix}$. Since [a : b] and [a' : b'] are two different points in \mathbb{P}^1 , the two rows are both non-zero and linearly independent. Hence the matrix has rank 2, which means that the only solution to these two equations is $z_0 = z_1 = 0$. For the same reason the only solution to the second and fourth equations is $z_2 = z_3 = 0$. Since the system of four equations has only a zero solution, L and L' do not have any common point. In other words, they are disjoint.

(3) For any point $p = [z_0 : z_1 : z_2 : z_3] \in Q$, we first show that p lies on a certain line $L = \mathbb{V}(az_0 + bz_1, az_2 + bz_3)$. There are two cases. Case 1. If z_0 and z_1 are not simultaneously zero, then we choose $[a : b] = [z_1 : -z_0]$ for the line L. We claim that $p \in L$. Indeed, for such a choice of [a : b] we have $az_0 + bz_1 = z_1z_0 - z_0z_1 = 0$ and $az_2 + bz_3 = z_1z_2 - z_0z_3 = 0$. The claim holds. Case 2. If z_0 and z_1 are both zero, then z_2 and z_3 are not simultaneously zero. We can choose $[a : b] = [z_3 : -z_2]$ for the line L. A similar calculation shows that $p \in L$. In both cases, the point p lies on a certain line $L = \mathbb{V}(az_0 + bz_1, az_2 + bz_3)$ for a suitable choice of [a : b].

It remains to prove that p lies on only one of such lines. This is clear because we have seen from part (2) that two such lines are always disjoint.

(4) For every $[a:b] \in \mathbb{P}^1$, $\mathbb{V}(az_0 + bz_2, az_1 + bz_3)$ also defines a line. These lines are pairwisely disjoint, and every point in Q lies on exactly one of them. The proof can be obtained simply by switching z_1 and z_2 in the proof for the above three parts.

(1) We need to verify that every point in the image of ψ satisfies the defining equation of S. Indeed, we have

$$\begin{split} &z_0^2 z_1 + z_1^2 z_2 + z_2^2 z_3 + z_3^2 z_0 \\ &= -r^2 t^2 (rt+s^2)^2 \cdot s(r^2 s+t^3) + s^2 (r^2 s+t^3)^2 \cdot t^2 (rt+s^2) \\ &- t^4 (rt+s^2)^2 \cdot t(r^2 s+t^3) + t^2 (r^2 s+t^3)^2 \cdot rt (rt+s^2) \\ &= -(r^2 t^2 s+t^5) \cdot (rt+s^2)^2 \cdot (r^2 s+t^3) + (s^2 t^2 + rt^3) \cdot (r^2 s+t^3)^2 \cdot (rt+s^2) \\ &= -t^2 (r^2 s+t^3) \cdot (rt+s^2)^2 \cdot (r^2 s+t^3) + t^2 (s^2 + rt) \cdot (r^2 s+t^3)^2 \cdot (rt+s^2) \\ &= -t^2 \cdot (rt+s^2)^2 \cdot (r^2 s+t^3)^2 + t^2 \cdot (r^2 s+t^3)^2 \cdot (rt+s^2)^2 \\ &= 0. \end{split}$$

Therefore the statement holds.

(2) Let $[z_0 : z_1 : z_2 : z_3]$ be a point in S. Then these coordinates satisfy $z_0^2 z_1 + z_1^2 z_2 + z_2^2 z_3 + z_3^2 z_0 = 0.$

Then we have

$$\begin{split} &(\psi \circ \varphi)([z_0 : z_1 : z_2 : z_3]) \\ &= \psi([z_0 z_3 : z_1 z_2 : z_2 z_3]) \\ &= [z_0 z_2 z_3^2 (z_0 z_2 z_3^2 + z_1^2 z_2^2) : -z_1 z_2 (z_0^2 z_1 z_2 z_3^2 + z_2^3 z_3^3) : \\ &: z_2^2 z_3^2 (z_0 z_2 z_3^2 + z_1^2 z_2^2) : -z_2 z_3 (z_0^2 z_1 z_2 z_3^2 + z_2^3 z_3^3)] \\ &= [z_0 z_2^2 z_3^2 (z_3^2 z_0 + z_1^2 z_2) : -z_1 z_2^2 z_3^2 (z_0^2 z_1 + z_2^2 z_3) : \\ &: z_2^3 z_3^2 (z_3^2 z_0 + z_1^2 z_2) : -z_2^2 z_3^3 (z_0^2 z_1 + z_2^2 z_3)] \\ &= [z_0 z_2^2 z_3^2 (z_3^2 z_0 + z_1^2 z_2) : z_1 z_2^2 z_3^2 (z_3^2 z_0 + z_1^2 z_2) : \\ &: z_2^3 z_3^2 (z_3^2 z_0 + z_1^2 z_2) : z_2^2 z_3^3 (z_3^2 z_0 + z_1^2 z_2)] \\ &= [z_0 : z_1 : z_2 : z_3] \end{split}$$

wherever the composition $\psi \circ \varphi$ is well-defined. This shows that $\psi \circ \varphi$ is equivalent to the identity map on S.

Now let [r:s:t] be a point in \mathbb{P}^2 . Then we have

$$\begin{aligned} (\varphi \circ \psi)([r:s:t]) \\ &= \varphi([rt(rt+s^2):-s(r^2s+t^3):t^2(rt+s^2):-t(r^2s+t^3)]) \\ &= [-rt^2(rt+s^2)(r^2s+t^3):-st^2(r^2s+t^3)(rt+s^2):-t^3(rt+s^2)(r^2s+t^3)] \\ &= [r:s:t] \end{aligned}$$

wherever the composition $\varphi \circ \psi$ is well-defined. This shows that $\varphi \circ \psi$ is equivalent to the identity map on \mathbb{P}^2 .