Solutions to Exercise Sheet 10

Solution 10.1. Infinitely many lines on planes.
(1) Since z_{0} and $a z_{1}+b z_{2}+c z_{3}$ are both homogeneous polynomials of degree 1 and not proportional to each other, $L=\mathbb{V}\left(z_{0}, a z_{1}+b z_{2}+c z_{3}\right)$ defines a line in \mathbb{P}^{2}. To show that the line L is in P, we just need to observe that every point on L satisfies the equation $z_{0}=0$, hence is a point in P.
(2) Let $L=\mathbb{V}\left(z_{0}, a z_{1}+b z_{2}+c z_{3}\right)$ and $L^{\prime}=\mathbb{V}\left(z_{0}, a^{\prime} z_{1}+b^{\prime} z_{2}+c^{\prime} z_{3}\right)$ be two such lines, where $[a: b: c] \neq\left[a^{\prime}: b^{\prime}: c^{\prime}\right]$. If a point $p=\left[z_{0}: z_{1}: z_{2}: z_{3}\right]$ is an intersection point of L and L^{\prime}, then its coordinates satisfy the system of equations

$$
\begin{aligned}
z_{0} & =0 ; \\
a z_{1}+b z_{2}+c z_{3} & =0 ; \\
a^{\prime} z_{1}+b^{\prime} z_{2}+c^{\prime} z_{3} & =0 .
\end{aligned}
$$

The first equation fixes the z_{0} coordinate. For the other coordinates, we look at the second and the third equations. We look at the coefficient matrix

$$
\left(\begin{array}{ccc}
a & b & c \\
a^{\prime} & b^{\prime} & c^{\prime}
\end{array}\right)
$$

Since $[a: b: c]$ and $\left[a^{\prime}: b^{\prime}: c^{\prime}\right]$ represent different points in \mathbb{P}^{2}, both rows are non-zero and linearly independent. Hence the matrix has rank 2. It follows that the null-space has dimension 1 , which means that there is a unique solution for $\left[z_{1}: z_{2}: z_{3}\right]$ (up to scaling). Therefore there is a unique intersection point [$\left.z_{0}: z_{1}: z_{2}: z_{3}\right]$ for the lines L and L^{\prime}.

Solution 10.2. Infinitely many lines on non-singular quadric surfaces.
(1) It is clear that for every point $[a: b] \in \mathbb{P}^{1}$, the two polynomials $a z_{0}+b z_{1}$ and $a z_{2}+b z_{3}$ are non-zero and homogeneous of degree 1. They are not propotional to each other, so $\mathbb{V}\left(a z_{0}+b z_{1}, a z_{2}+b z_{3}\right)$ defines a line L in \mathbb{P}^{2}. We still need to show that every point in L is a point in Q. Since $[a: b] \in \mathbb{P}^{1}$, we have either $a \neq 0$ or $b \neq 0$. If $a \neq 0$, then a point $p=\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \in L$ satisfies $z_{0}=-\frac{b}{a} z_{1}$ and $z_{2}=-\frac{b}{a} z_{3}$. Then

$$
z_{0} z_{3}-z_{1} z_{2}=\left(-\frac{b}{a}\right) \cdot z_{1} \cdot z_{3}-z_{1} \cdot\left(-\frac{b}{a}\right) \cdot z_{3}=0
$$

Hence $p \in Q$. If $b \neq 0$, a similar calculation shows that every point $p \in L$ also satisfies the equation $z_{0} z_{3}-z_{1} z_{2}=0$ hence is a point in Q. We conclude that L is a line in Q.
(2) Consider two lines $L=\mathbb{V}\left(a z_{0}+b z_{1}, a z_{2}+b z_{3}\right)$ and $L^{\prime}=\mathbb{V}\left(a^{\prime} z_{0}+b^{\prime} z_{1}, a^{\prime} z_{2}+b^{\prime} z_{3}\right)$ where $[a: b]$ and $\left[a^{\prime}: b^{\prime}\right]$ are two different points in \mathbb{P}^{1}. If the two lines have a common point $\left[z_{0}: z_{1}: z_{2}: z_{3}\right]$, then the system of equations

$$
\begin{aligned}
a z_{0}+b z_{1} & =0, \\
a z_{2}+b z_{3} & =0, \\
a^{\prime} z_{0}+b^{\prime} z_{1} & =0, \\
a^{\prime} z_{2}+b^{\prime} z_{3} & =0
\end{aligned}
$$

must have a non-zero solution. However, the coefficient matrix for the first and the third equations is $\left(\begin{array}{cc}a & b \\ a^{\prime} & b^{\prime}\end{array}\right)$. Since $[a: b]$ and $\left[a^{\prime}: b^{\prime}\right]$ are two different points in \mathbb{P}^{1}, the two rows are both non-zero and linearly independent. Hence the matrix has rank 2, which means that the only solution to these two equations is $z_{0}=$ $z_{1}=0$. For the same reason the only solution to the second and fourth equations is $z_{2}=z_{3}=0$. Since the system of four equations has only a zero solution, L and L^{\prime} do not have any common point. In other words, they are disjoint.
(3) For any point $p=\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \in Q$, we first show that p lies on a certain line $L=\mathbb{V}\left(a z_{0}+b z_{1}, a z_{2}+b z_{3}\right)$. There are two cases. Case 1. If z_{0} and z_{1} are not simultaneously zero, then we choose $[a: b]=\left[z_{1}:-z_{0}\right]$ for the line L. We claim that $p \in L$. Indeed, for such a choice of $[a: b]$ we have $a z_{0}+b z_{1}=z_{1} z_{0}-z_{0} z_{1}=0$ and $a z_{2}+b z_{3}=z_{1} z_{2}-z_{0} z_{3}=0$. The claim holds. Case 2. If z_{0} and z_{1} are both zero, then z_{2} and z_{3} are not simultaneously zero. We can choose $[a: b]=\left[z_{3}:-z_{2}\right]$ for the line L. A similar calculation shows that $p \in L$. In both cases, the point p lies on a certain line $L=\mathbb{V}\left(a z_{0}+b z_{1}, a z_{2}+b z_{3}\right)$ for a suitable choice of $[a: b]$.

It remains to prove that p lies on only one of such lines. This is clear because we have seen from part (2) that two such lines are always disjoint.
(4) For every $[a: b] \in \mathbb{P}^{1}, \mathbb{V}\left(a z_{0}+b z_{2}, a z_{1}+b z_{3}\right)$ also defines a line. These lines are pairwisely disjoint, and every point in Q lies on exactly one of them. The proof can be obtained simply by switching z_{1} and z_{2} in the proof for the above three parts.

Solution 10.3. Rationality of a cubic surface.
(1) We need to verify that every point in the image of ψ satisfies the defining equation of S. Indeed, we have

$$
\begin{aligned}
& z_{0}^{2} z_{1}+z_{1}^{2} z_{2}+z_{2}^{2} z_{3}+z_{3}^{2} z_{0} \\
= & -r^{2} t^{2}\left(r t+s^{2}\right)^{2} \cdot s\left(r^{2} s+t^{3}\right)+s^{2}\left(r^{2} s+t^{3}\right)^{2} \cdot t^{2}\left(r t+s^{2}\right) \\
& -t^{4}\left(r t+s^{2}\right)^{2} \cdot t\left(r^{2} s+t^{3}\right)+t^{2}\left(r^{2} s+t^{3}\right)^{2} \cdot r t\left(r t+s^{2}\right) \\
= & -\left(r^{2} t^{2} s+t^{5}\right) \cdot\left(r t+s^{2}\right)^{2} \cdot\left(r^{2} s+t^{3}\right)+\left(s^{2} t^{2}+r t^{3}\right) \cdot\left(r^{2} s+t^{3}\right)^{2} \cdot\left(r t+s^{2}\right) \\
= & -t^{2}\left(r^{2} s+t^{3}\right) \cdot\left(r t+s^{2}\right)^{2} \cdot\left(r^{2} s+t^{3}\right)+t^{2}\left(s^{2}+r t\right) \cdot\left(r^{2} s+t^{3}\right)^{2} \cdot\left(r t+s^{2}\right) \\
= & -t^{2} \cdot\left(r t+s^{2}\right)^{2} \cdot\left(r^{2} s+t^{3}\right)^{2}+t^{2} \cdot\left(r^{2} s+t^{3}\right)^{2} \cdot\left(r t+s^{2}\right)^{2} \\
= & 0 .
\end{aligned}
$$

Therefore the statement holds.
(2) Let $\left[z_{0}: z_{1}: z_{2}: z_{3}\right]$ be a point in S. Then these coordinates satisfy

$$
z_{0}^{2} z_{1}+z_{1}^{2} z_{2}+z_{2}^{2} z_{3}+z_{3}^{2} z_{0}=0
$$

Then we have

$$
\begin{aligned}
&(\psi \circ \varphi)\left(\left[z_{0}: z_{1}: z_{2}: z_{3}\right]\right) \\
&= \psi\left(\left[z_{0} z_{3}: z_{1} z_{2}: z_{2} z_{3}\right]\right) \\
&= {\left[z_{0} z_{2} z_{3}^{2}\left(z_{0} z_{2} z_{3}^{2}+z_{1}^{2} z_{2}^{2}\right):-z_{1} z_{2}\left(z_{0}^{2} z_{1} z_{2} z_{3}^{2}+z_{2}^{3} z_{3}^{3}\right):\right.} \\
& \quad\left.: z_{2}^{2} z_{3}^{2}\left(z_{0} z_{2} z_{3}^{2}+z_{1}^{2} z_{2}^{2}\right):-z_{2} z_{3}\left(z_{0}^{2} z_{1} z_{2} z_{3}^{2}+z_{2}^{3} z_{3}^{3}\right)\right] \\
&= {\left[z_{0} z_{2}^{2} z_{3}^{2}\left(z_{3}^{2} z_{0}+z_{1}^{2} z_{2}\right):-z_{1}^{2} z_{2}^{2} z_{3}^{2}\left(z_{0}^{2} z_{1}+z_{2}^{2} z_{3}\right):\right.} \\
&\left.\quad: z_{2}^{3} z_{3}^{2}\left(z_{3}^{2} z_{0}+z_{1}^{2} z_{2}\right):-z_{2}^{2} z_{3}^{3}\left(z_{0}^{2} z_{1}+z_{2}^{2} z_{3}\right)\right] \\
&= {\left[z_{0}^{2} z_{2}^{2} z_{3}^{2}\left(z_{3}^{2} z_{0}+z_{1}^{2} z_{2}\right): z_{1} z_{2}^{2} z_{3}^{2}\left(z_{3}^{2} z_{0}+z_{1}^{2} z_{2}\right):\right.} \\
&\left.\quad: z_{2}^{3} z_{3}^{2}\left(z_{3}^{2} z_{0}+z_{1}^{2} z_{2}\right): z_{2}^{2} z_{3}^{3}\left(z_{3}^{2} z_{0}+z_{1}^{2} z_{2}\right)\right] \\
&= {\left[z_{0}: z_{1}: z_{2}: z_{3}\right] }
\end{aligned}
$$

wherever the composition $\psi \circ \varphi$ is well-defined. This shows that $\psi \circ \varphi$ is equivalent to the identity map on S.

Now let $[r: s: t]$ be a point in \mathbb{P}^{2}. Then we have

$$
\begin{aligned}
& (\varphi \circ \psi)([r: s: t]) \\
= & \varphi\left(\left[r t\left(r t+s^{2}\right):-s\left(r^{2} s+t^{3}\right): t^{2}\left(r t+s^{2}\right):-t\left(r^{2} s+t^{3}\right)\right]\right) \\
= & {\left[-r t^{2}\left(r t+s^{2}\right)\left(r^{2} s+t^{3}\right):-s t^{2}\left(r^{2} s+t^{3}\right)\left(r t+s^{2}\right):-t^{3}\left(r t+s^{2}\right)\left(r^{2} s+t^{3}\right)\right] } \\
= & {[r: s: t] }
\end{aligned}
$$

wherever the composition $\varphi \circ \psi$ is well-defined. This shows that $\varphi \circ \psi$ is equivalent to the identity map on \mathbb{P}^{2}.

