
Solutions to Exercise Sheet 10

Solution 10.1. Infinitely many lines on planes.

(1) Since z0 and az1 + bz2 + cz3 are both homogeneous polynomials of degree 1 and

not proportional to each other, L = V(z0, az1 + bz2 + cz3) defines a line in P2. To

show that the line L is in P , we just need to observe that every point on L satisfies

the equation z0 = 0, hence is a point in P .

(2) Let L = V(z0, az1 + bz2 + cz3) and L′ = V(z0, a
′z1 + b′z2 + c′z3) be two such lines,

where [a : b : c] 6= [a′ : b′ : c′]. If a point p = [z0 : z1 : z2 : z3] is an intersection

point of L and L′, then its coordinates satisfy the system of equations

z0 = 0;

az1 + bz2 + cz3 = 0;

a′z1 + b′z2 + c′z3 = 0.

The first equation fixes the z0 coordinate. For the other coordinates, we look at

the second and the third equations. We look at the coefficient matrix(
a b c

a′ b′ c′

)
.

Since [a : b : c] and [a′ : b′ : c′] represent different points in P2, both rows

are non-zero and linearly independent. Hence the matrix has rank 2. It follows

that the null-space has dimension 1, which means that there is a unique solution

for [z1 : z2 : z3] (up to scaling). Therefore there is a unique intersection point

[z0 : z1 : z2 : z3] for the lines L and L′.

Solution 10.2. Infinitely many lines on non-singular quadric surfaces.

(1) It is clear that for every point [a : b] ∈ P1, the two polynomials az0 + bz1 and

az2 + bz3 are non-zero and homogeneous of degree 1. They are not propotional to

each other, so V(az0 + bz1, az2 + bz3) defines a line L in P2. We still need to show

that every point in L is a point in Q. Since [a : b] ∈ P1, we have either a 6= 0 or

b 6= 0. If a 6= 0, then a point p = [z0 : z1 : z2 : z3] ∈ L satisfies z0 = − b
a
z1 and

z2 = − b
a
z3. Then

z0z3 − z1z2 =

(
− b
a

)
· z1 · z3 − z1 ·

(
− b
a

)
· z3 = 0.

Hence p ∈ Q. If b 6= 0, a similar calculation shows that every point p ∈ L also

satisfies the equation z0z3 − z1z2 = 0 hence is a point in Q. We conclude that L

is a line in Q.
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(2) Consider two lines L = V(az0 + bz1, az2 + bz3) and L′ = V(a′z0 + b′z1, a
′z2 + b′z3)

where [a : b] and [a′ : b′] are two different points in P1. If the two lines have a

common point [z0 : z1 : z2 : z3], then the system of equations

az0 + bz1 = 0,

az2 + bz3 = 0,

a′z0 + b′z1 = 0,

a′z2 + b′z3 = 0

must have a non-zero solution. However, the coefficient matrix for the first and

the third equations is

(
a b

a′ b′

)
. Since [a : b] and [a′ : b′] are two different points

in P1, the two rows are both non-zero and linearly independent. Hence the matrix

has rank 2, which means that the only solution to these two equations is z0 =

z1 = 0. For the same reason the only solution to the second and fourth equations

is z2 = z3 = 0. Since the system of four equations has only a zero solution, L and

L′ do not have any common point. In other words, they are disjoint.

(3) For any point p = [z0 : z1 : z2 : z3] ∈ Q, we first show that p lies on a certain line

L = V(az0 + bz1, az2 + bz3). There are two cases. Case 1. If z0 and z1 are not

simultaneously zero, then we choose [a : b] = [z1 : −z0] for the line L. We claim

that p ∈ L. Indeed, for such a choice of [a : b] we have az0 + bz1 = z1z0− z0z1 = 0

and az2 + bz3 = z1z2 − z0z3 = 0. The claim holds. Case 2. If z0 and z1 are both

zero, then z2 and z3 are not simultaneously zero. We can choose [a : b] = [z3 : −z2]
for the line L. A similar calculation shows that p ∈ L. In both cases, the point p

lies on a certain line L = V(az0 + bz1, az2 + bz3) for a suitable choice of [a : b].

It remains to prove that p lies on only one of such lines. This is clear because

we have seen from part (2) that two such lines are always disjoint.

(4) For every [a : b] ∈ P1, V(az0 + bz2, az1 + bz3) also defines a line. These lines are

pairwisely disjoint, and every point in Q lies on exactly one of them. The proof

can be obtained simply by switching z1 and z2 in the proof for the above three

parts.

Solution 10.3. Rationality of a cubic surface.
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(1) We need to verify that every point in the image of ψ satisfies the defining equation

of S. Indeed, we have

z20z1 + z21z2 + z22z3 + z23z0

= −r2t2(rt+ s2)2 · s(r2s+ t3) + s2(r2s+ t3)2 · t2(rt+ s2)

− t4(rt+ s2)2 · t(r2s+ t3) + t2(r2s+ t3)2 · rt(rt+ s2)

= −(r2t2s+ t5) · (rt+ s2)2 · (r2s+ t3) + (s2t2 + rt3) · (r2s+ t3)2 · (rt+ s2)

= −t2(r2s+ t3) · (rt+ s2)2 · (r2s+ t3) + t2(s2 + rt) · (r2s+ t3)2 · (rt+ s2)

= −t2 · (rt+ s2)2 · (r2s+ t3)2 + t2 · (r2s+ t3)2 · (rt+ s2)2

= 0.

Therefore the statement holds.

(2) Let [z0 : z1 : z2 : z3] be a point in S. Then these coordinates satisfy

z20z1 + z21z2 + z22z3 + z23z0 = 0.

Then we have

(ψ ◦ ϕ)([z0 : z1 : z2 : z3])

= ψ([z0z3 : z1z2 : z2z3])

= [z0z2z
2
3(z0z2z

2
3 + z21z

2
2) : −z1z2(z20z1z2z23 + z32z

3
3) :

: z22z
2
3(z0z2z

2
3 + z21z

2
2) : −z2z3(z20z1z2z23 + z32z

3
3)]

= [z0z
2
2z

2
3(z23z0 + z21z2) : −z1z22z23(z20z1 + z22z3) :

: z32z
2
3(z23z0 + z21z2) : −z22z33(z20z1 + z22z3)]

= [z0z
2
2z

2
3(z23z0 + z21z2) : z1z

2
2z

2
3(z23z0 + z21z2) :

: z32z
2
3(z23z0 + z21z2) : z22z

3
3(z23z0 + z21z2)]

= [z0 : z1 : z2 : z3]

wherever the composition ψ ◦ϕ is well-defined. This shows that ψ ◦ϕ is equivalent

to the identity map on S.

Now let [r : s : t] be a point in P2. Then we have

(ϕ ◦ ψ)([r : s : t])

= ϕ([rt(rt+ s2) : −s(r2s+ t3) : t2(rt+ s2) : −t(r2s+ t3)])

= [−rt2(rt+ s2)(r2s+ t3) : −st2(r2s+ t3)(rt+ s2) : −t3(rt+ s2)(r2s+ t3)]

= [r : s : t]

wherever the composition ϕ◦ψ is well-defined. This shows that ϕ◦ψ is equivalent

to the identity map on P2.
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