SOLUTIONS TO EXERCISE SHEET 10

Solution 10.1. Infinitely many lines on planes.

(1)

Since zy and az; + bzy + cz3 are both homogeneous polynomials of degree 1 and
not proportional to each other, L = V(zy, az; + bz + c23) defines a line in P2. To
show that the line L is in P, we just need to observe that every point on L satisfies
the equation zy = 0, hence is a point in P.

Let L = V(zg,az1 + bzy + cz3) and L' = V(zp,a’z; + b' 25 + ¢ z3) be two such lines,
where [a : b :¢c] # [d 1V : d]. If a point p = [z : 21 : 22 : 23] is an intersection
point of L and L', then its coordinates satisfy the system of equations

20 = 0;
az1 + bZQ + czg = 0;
a'z; + 02+ 25 =0.

The first equation fixes the zy coordinate. For the other coordinates, we look at
the second and the third equations. We look at the coefficient matrix

a b ¢
a v ]’

Since [a : b : ] and [a' : ¥ : (/] represent different points in P? both rows
are non-zero and linearly independent. Hence the matrix has rank 2. It follows
that the null-space has dimension 1, which means that there is a unique solution
for [z1 : 23 : 23] (up to scaling). Therefore there is a unique intersection point
[20 : 21 @ 29 : 23] for the lines L and L'.

Solution 10.2. Infinitely many lines on non-singular quadric surfaces.

(1)

It is clear that for every point [a : b] € P!, the two polynomials azy + bz; and
azs 4 bzz are non-zero and homogeneous of degree 1. They are not propotional to
each other, so V(azy + bz1, azy + bz3) defines a line L in P?. We still need to show
that every point in L is a point in Q. Since [a : b] € P!, we have either a # 0 or
b#0. If a # 0, then a point p = [zo : 21 : 22 : 23] € L satisfies zy = —gzl and
2y = —gzg. Then

b b
ZQR3 — R1R2 — —a X1 k3 — 21 —a '2’3:0.

Hence p € Q. If b # 0, a similar calculation shows that every point p € L also
satisfies the equation zpz3 — 2129 = 0 hence is a point in ). We conclude that L

is a line in Q).
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(2) Consider two lines L = V(azg + bz1,azy + bz3) and L' = V(a'zg + 0'z1,a 20 + b'23)
where [a : 0] and [@’ : V] are two different points in P*. If the two lines have a
common point [zg : 27 : 22 : 23, then the system of equations

azg+ bz =0,
azy + bzz =0,
a'zg+ bz =0,

a'zg+b23=0

must have a non-zero solution. However, the coefficient matrix for the first and

a b

in P!, the two rows are both non-zero and linearly independent. Hence the matrix

the third equations is (a b,) Since [a : b] and [a' : U] are two different points

has rank 2, which means that the only solution to these two equations is zy =
z1 = 0. For the same reason the only solution to the second and fourth equations
is zo = 23 = 0. Since the system of four equations has only a zero solution, L and
L' do not have any common point. In other words, they are disjoint.

(3) For any point p = [z : 21 : 22 : 23] € @, we first show that p lies on a certain line
L = V(azp + bz1,azg + bzz). There are two cases. Case 1. If zy and z; are not
simultaneously zero, then we choose [a : b] = [z1 : —%| for the line L. We claim
that p € L. Indeed, for such a choice of [a : b] we have azg+ bz = 2120 — 2021 =0
and azy + bzz = 2129 — 2923 = 0. The claim holds. Case 2. If 2z, and z; are both
zero, then zo and z3 are not simultaneously zero. We can choose [a : b] = [z5 1 —22]
for the line L. A similar calculation shows that p € L. In both cases, the point p
lies on a certain line L = V(azg + bzy, azy + bzg) for a suitable choice of [a : b].

It remains to prove that p lies on only one of such lines. This is clear because
we have seen from part (2) that two such lines are always disjoint.

(4) For every [a : b] € P', V(azg + bza,az; + bz3) also defines a line. These lines are
pairwisely disjoint, and every point in () lies on exactly one of them. The proof
can be obtained simply by switching z; and z, in the proof for the above three
parts.

Solution 10.3. Rationality of a cubic surface.
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(1)

We need to verify that every point in the image of 1) satisfies the defining equation
of S. Indeed, we have

zgzl + Z%ZQ + 2323 + zgzo
= —r* 2 (rt + 5%)% - s(r?s + %) + s (r?s + t3)2 - 3 (rt + 5?)
—t4(rt 4+ 82?2 - t(r?s + 1) + 2 (r%s + 13)* - rt(rt + s?)
= —(r*t*s +t°) - (rt + s2)* - (r¥s + 3) + (22 +rt?) - (r’s + 13)% - (rt + 5%)
= —t2(r’s + %) - (rt + 5*)% - (rPs + 13) + 3(s* +rt) - (rPs + 17 - (rt + 57)
=12 (rt+ 532 (rPs + 2+ 12 (rPs + 7)Y (rt + 5%)?
= 0.
Therefore the statement holds.
Let [0 : 21 @ 22 : 23] be a point in S. Then these coordinates satisfy
221+ 2z + 2azs + 252 = 0.
Then we have
(vop)([z0:21: 22 23])
= ([2023 : 2122 : 2223])
= (202223 (202025 + 2323) 1 —2120(25 212028 + 2523)
L 2225 (202025 + 2322) 1 —2023(28 212025 + 2523)]

= [zozgzg(zgzo + zfzg) : —zlzgzg(zgzl + zgzg) :

L2525 (2520 + 21 20) T —23 28 (Zgm + 25%s))]
= [zozgzg(z?,ZO + zfzz) : zlzgzg(zgzo + zsz) :

: zg’zg(zgzo + Z%Zz) : z%zg’(zgzo + zsz)]

=20 21 29 23]
wherever the composition ¢ o ¢ is well-defined. This shows that 1o ¢ is equivalent

to the identity map on S.
Now let [r: s : ] be a point in P2 Then we have

(po)([r:s:1)
= o([rt(rt +8%) : —s(r’s + %) : 2 (rt + s*) : —t(r*s +t3)])
= [—rt(rt + $*)(r*s + 7)1 —st*(r’s + £?)(rt + s*) : =3 (rt + $*)(r*s + t°)]
=[r:s:t

wherever the composition ¢ o) is well-defined. This shows that o1 is equivalent
to the identity map on P2
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