
MA40238 NUMBER THEORY (2014/15 SEMESTER 1)
BRIEF SOLUTIONS TO 2012/13 EXAM

CHRISTMAS EDITION

Brief solutions to some problems in 2012/13 exams are provided. The numbers to defi-

nitions, propositions, theorems and exercises refer to the lecture notes posted on the unit

webpage.

Problem 1.

(a) Omitted.

(b) See Definition 1.6.

(c) See Definition 1.20.

(d) See Proposition 1.21.

(e) See Theorem 1.26.

(f) We prove the first equation. For each element h
n

in the left-hand side, we can cancel

the highest common factor in the numerator and denominator to get a fraction a
d
. It is

clear that d � n. Since a and d has no common factor larger than 1, we get hcfpa, dq � 1.

The condition 1 ¤ h ¤ n implies 0   h
n
¤ 1, which can also be written as 0   a

d
¤ 1,

hence 1 ¤ a ¤ d. Therefore a
d

is an element in the right-hand side.

Conversely, for each element a
d

in the right-hand side, since d � n, we can write n � md for

some positive integer m. We write h � ma, then a
d
� ma

md
� h

n
. The condition 1 ¤ a ¤ d

implies 0   a
d
¤ 1, which can also be written as 0   h

n
¤ 1, hence 1 ¤ h ¤ n. Therefore

h
n

is an element in the left-hand side.

To prove the second equation, we notice that the left-hand side is the sum of values of the

function F at the numbers in the set
 
h
n
| 1 ¤ h ¤ n

(
, while the right-hand side is the sum

of values of the same function F at the numbers in the set
�
d�n

 
a
d
| 1 ¤ a ¤ d, hcfpa, dq � 1

(
.

Since the two sets are equal, the two sides are sums of values of F at the same points,

therefore are also equal.

(g) To apply the formula

¸
1¤h¤n

F

�
h

n



�

¸
d�n

¸
1¤a¤d

hcfpa,dq�1

F
�a
d
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provided in part (f), we need to compute both sides. We start with the right-hand side.

Since F pxq � e2πimx, we know from the definition of cnpmq that

cnpmq �
¸

1¤h¤n
hcfph,nq�1

F

�
h

n



.

We replace h and n by a and d respectively, then we get

cdpmq �
¸

1¤a¤d
hcfpa,dq�1

F
�a
d

	
.

Therefore we have ¸
d�n

¸
1¤a¤d

hcfpa,dq�1

F
�a
d

	
�

¸
d�n

cdpmq.

We then compute
°

1¤h¤n F
�
h
n

�
. For simplicity, we write this expression as fpnq. We

consider two cases separately as follows.

If n � m, then for each h, mh
n

is an integer. Hence

fpnq �
¸

1¤h¤n

F

�
h

n



�

¸
1¤h¤n

e
2πimh
n �

¸
1¤h¤n

1 � n.

If n � m, using the formula for the sum of geometric series, we have

fpnq �
¸

1¤h¤n

F

�
h

n



�

¸
1¤h¤n

e
2πimh
n � e

2πim
n � 1 � e2πim

1 � e
2πim
n

� 0.

By the formula proved in part (f), we get

fpnq �
¸
d�n

cdpmq.

By Möbius Inversion Theorem, we have

cnpmq �
¸
d�n

µ
�n
d

	
fpdq.

Since fpdq � d when d � m and fpdq � 0 when d � m, we get

cnpmq �
¸
d�n
d�m

µ
�n
d

	
d,

as required.

Problem 2.

(a) See Definition 4.2.
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(b) See Proposition 4.4 (1) and Proposition 4.5 (1).

(c) See Lemma 5.1.

(d) See Exercise 5.1 (2).

(e) See Definition 4.9. Please be noted that our definition of the Jacobi symbol requires

slightly different assumptions on a and b. This issue is due to the inconsistency in litera-

tures. Please stick to our definition (the one given in lecture notes.)

(f) See Proposition 4.14.

(g) Since 441 � 1 pmod 4q, by quadratic reciprocity, we have p 441
1003

q � p 1003
441

q � p 121
441

q �
p 441
121

q � p 78
121

q � p 2
121

qp 39
121

q � p 39
121

q where the last equality is due to 121 � 1 pmod 8q.
Realising 121 � 1 pmod 4q, by quadratic reciprocity, we have p 39

121
q � p 121

39
q � p 4

39
q � 1.

Therefore the original Legendre symbol p 441
1003

q � 1.

Problem 3.

(a) See Definition 9.10. Please be noted that we defined these notions only for subsets of

R2, but the same definition applies to subsets of Rn for any n.

(b) See Theorem 9.11.

(c) See Exercise 10.2.

(d) See Definition 7.12, Definition 9.1, Definition 9.3, Proposition 7.14.

(e) For the first question, see Proposition 10.3.

For the quadratic field K � Qp?�7q, we have the discriminant ∆K � �7 and the

Minkowski bound MK � 2
π

?
7   2. Hence each ideal class contains an ideal of norm 1.

Since the only ideal in OK of norm 1 is OK itself, we conclude that there is only one ideal

class; i.e. hK � 1. We proved in lectures that hK � 1 iff OK is a PID, hence OK is a

PID. We also proved in lectures that every PID is a UFD, hence OK is also a UFD; i.e.

the ring of integers in Qp?�7q is a unique factorisation domain.

Problem 4.

Omitted.
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