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1 Rings

I. Definitions and basic properties

Informally the idea behind a ring is of a set equipped with a “sensible” addition and
multiplication. We would like the definition to be broad enough to include examples like
the n×n matrices over a fixed field with the usual matrix addition and multiplication, the
polynomials with coefficients in some fixed field with the usual polynomial addition and
multiplication and the integers. At the same time we want the definition to be somewhat
restricted so that we can build a general useful theory that deals with all these examples
at once. Before recalling the formal definition of a ring as well as the definition of a group,
we first introduce binary operations.

Definition. Let S be a set. A binary operation on S is a function

f : S × S → S

Remark. The binary operations that will crop up here, will usually be referred to as
an addition denoted by + or a multiplication denoted by ·. Instead of writing +(a, b) or
·(a, b) one writes then normally a+ b and a · b.

Definition. A group is a pair (G, ∗), where G is a set, ∗ is a binary operation on G
and the following axioms hold:

(a) (The associative law)

(a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.

(b) (Existence of an identity) There exist an element e ∈ G with the property that

e ∗ a = a and a ∗ e = a for all a ∈ G.

(c) (The existence of an inverse) For each a ∈ G there exists an element b ∈ G such that

a ∗ b = b ∗ a = e.

Remarks.(1) Recall that the identity e is the unique element in G with the property
given in (b). If we had another element f with this property, then

f = e ∗ f = e

where the first identity follows from the fact that e satisfies the property and the latter
from the fact that f satisfies the property.
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(2) Recall that for a given a ∈ G, the element b ∈ G as in (c) is unique. If we had
another such element c then

b = b ∗ e = b ∗ (a ∗ c) = (b ∗ a) ∗ c = e ∗ c = c.

We call this unique element b, the inverse of a. It is often denoted a−1 (or −a when the
group operation is commutative).

(3) If it is clear from the context what the group operation ∗ is, one often simply refers
to the group G rather then the pair (G, ∗).

Definition. We say that a group (G, ∗) is abelian or commutative if a ∗ b = b ∗ a for
all a, b ∈ G.

Definition. If (G, ∗) is a group then a subset H of G is said to be a subgroup of G
if the following three properties hold.

(1) a ∗ b ∈ H for all a, b ∈ H.
(2) e ∈ H where e is the group identity of G.
(3) a−1 ∈ H for all a ∈ H, where a−1 is the inverse of a in G.

Remark. It is not difficult to see that one could equivalently say that H is a sub-
group of G if and only if (H, ∗) is a group. So subgroups are groups contained within G
that inherit the multiplication from G.

Definition. A ring is a triple (R,+, ·), where we have a set R and two binary oper-
ations + (addition) and · (multiplication) on R such that the following axioms hold.

a) (R,+) is an abelian group. The additive identity is denoted 0 and the additive in-
verse of a is denoted −a. So we have

(a+ b) + c = a+ (b+ c) for all a, b, c ∈ R

a+ b = b+ a for all a, b ∈ R

a+ 0 = a for all a ∈ R

a+ (−a) = 0 for all a ∈ R.

b) (R, ·) satisfies the associative law and has a multiplicative identity denoted 1. That is
we have

(a · b) · c = a · (b · c) for all a, b, c ∈ R

a · 1 = 1 · a = a for all a ∈ R.

c) R satisfies the distributive laws:

a · (b+ c) = (a · b) + (a · c)
(b+ c) · a = (b · a) + (c · a)

for all a, b, c ∈ R.
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Remark. As (R,+) is a group we know that 0 is the unique additive identity. We
also have that 1 is the unique multiplicative identity. The same arguement as before
works. If 1̄ was another multiplicative identity, then 1̄ = 1̄ · 1 = 1.

Remark. We often omit · and write ab instead of a · b. For simplicity it is also use-
ful to avoid brackets when there is no ambiguity. Here the same conventions hold as for
real numbers and we assume that · has priority over +. For example

ab+ ac

stands for (a · b) + (a · c) and not (a · (b + a)) · c. One also writes a2 for a · a and 2a for
a+ a and so on.

Definition. A ring (R,+, ·) is said to be commutative if

a · b = b · a

for all a, b ∈ R.

Lemma 1.1 In any ring (R,+, ·), we have

a) a · 0 = 0 and 0 · a = 0 for all a ∈ R.
b) a · (−b) = −(a · b) and (−a) · b = −(a · b).

Proof a) Using the fact that 0 is an additive identity and one of the distributive laws,
we have

a · 0 + 0 = a · 0 = a · (0 + 0) = a · 0 + a · 0.

Adding −(a · 0) on the left on both sides gives

−(a · 0) + (a · 0 + 0) = −(a · 0) + (a · 0 + a · 0).

Because of the associative law, this implies that

(−(a · 0) + a · 0) + 0 = ((−a · 0) + a · 0) + a · 0

and thus 0 + 0 = 0 + a · 0 or 0 = a · 0. The second identity is proved similarly.

b) We have a · b + a · (−b) = a · (b + (−b)) = a · 0 = 0. Hence a · (−b) is the addi-
tive inverse of ab. In other words a · (−b) = −(a · b). Similarly for the second identity. 2

Definition. An element a ∈ R is called a unit if it has a multiplicative inverse. That is,
if there exists b ∈ R such that a · b = b · a = 1.

Remark. The inverse b of a, if it exists, is unqiue. If c were another inverse then
c = 1 · c = (b · a) · c = b · (a · c) = b · 1 = b. We will denote the inverse by a−1.

Definition. Let R be a ring. The set R∗ consisting of all the units of R is called
the group of units.

3



Lemma 1.2 R∗ is a group with respect to the ring multiplication.

Proof. See exercise 3 on sheet 1.

Examples. (1) R∗ = R \ {0}.
(2) Z∗ = {1,−1}.

Remark. If 0 is a unit then
1 = 0 · 0−1 L 1.1

= 0

and so for all a ∈ R, we have a = a · 1 = a · 0 = 0. Hence we must have R = {0}. We
usually try to avoid this ring.

Definition. We say that a commutative ring R is a field if R 6= {0} and every 0 6= a ∈ R
has a multiplicative inverse. (In other words if R is commutative and R∗ = R \ {0}).

II. Examples of rings.

By definition, every field is an commutative ring. In particular we have that Q,R and C
are all rings with respect to the usual addition and multiplication.

An example of a commutative ring that is not a field is Z, the ring of integers. Let
K be a field then the set, Mn(K), of all n × n matrices over K is a ring with respect
to the usual matrix addition and multiplication (see exercise 2 on sheet 1). This ring is
usually not commutative.

The ring End(V ). Let V be a finite dimensional vector space over a field K. Let
End(V ) be the set of all linear operators α : V → V (also called endomorphisms on V ).
We associate with End(V ) an addition and a multiplication as follows. For α, β ∈ End(V )
we let [α + β] : V → V be the map that takes v to α(v) + β(v). Notcie that this map is
linear as

[α + β](v + w) = α(v + w) + β(v + w)

= α(v) + α(w) + β(v) + β(w)

= (α(v) + β(v)) + (α(w) + β(w))

= [α + β](v) + [α + β](w).

and

[α + β](λv) = α(λv) + β(λv) = λα(v) + λβ(v) = λ(α(v) + β(v)) = λ[α + β](b).

We also define the multiplication · on End(V ) to be the composition of maps. Thus if
α, β ∈ End(V ), then

α · β(v) = α(β(v).

We know from a previous algebra courses that α ·β is then also linear and thus in End(V ).

On exercise 1 on sheet 1 we show that End(V ) is a ring with respect to this addition
and multiplication. This ring is usually not commutative.
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Remark. Let R be a ring an z ∈ R an element that commutes with all the elements of
R. Let

a0, a1, a2, . . . , b0, b1, b2, . . .

be two sequences of elements in R, where all but finitely many elements are equal to 0.

Using the distributive laws, commutative law for the addition, and the associative laws
for addition and multiplication, we see that

(
∞∑
r=0

arz
r) · (

∞∑
s=0

bsz
s) =

∞∑
r=0

∞∑
s=0

arz
rbsz

s

=
∞∑
r=0

∞∑
s=0

arbsz
r+s

=
∞∑
n=0

(
∑
r+s=n

arbs)z
n

The ring R[x] of polynomials with coefficients in R. Let R be a ring and let x be
a variable. A polynomial f over R is a formal expression

f =
∞∑
k=0

akx
k

with ak ∈ R and all but finitely many elments in the sequence (ak) equal to 0. The degree
of a polynomial p is the largest n such that an 6= 0. (If there is no such n, that is if all
the coefficients are 0 then the degree is −∞). We then often write

f = a0 + a1x+ a2x
2 + · · ·+ anx

n

(and f = 0 if all the coefficents are 0). We define addition and multiplication on R[x] in
the usual way by setting

∞∑
k=0

akx
k +

∞∑
k=0

bkx
k =

∞∑
k=0

(ak + bk)x
k

and

(
∞∑
k=0

akx
k) · (

∞∑
k=0

bkx
k) =

∞∑
k=0

ckx
k

where
cn =

∑
i+j=n

aibj

(Notice that the remark above motivates the definition of the multiplication). Clearly
the polynomials 0 and 1 are the additive and multiplicative identities respectively. As
R is an abelian group with respect to the ring addition it follows readily that (R[x],+)
is an abelian group. To see that R[x] is a ring with respect to this polynomial addition
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and multiplication it remains to see that the multiplication is associative and that the
distributive laws hold. Let

f =
∞∑
k=0

akx
k, g =

∞∑
k=0

bkx
k, h =

∞∑
k=0

ckx
k

be polynomials in R[x]. The reason why the multiplication is associative is that the nth
coefficent of (fg)h is ∑

i+j+k=n

(aibj)ck

which (as the field multiplication is associative) is the same as∑
i+j+k=n

ai(bjck),

the nth coefficient of f(gh). Finally we check the distributive laws. The nth coefficent of
f(g + h) is ∑

i+j=n

ai(bj + cj) =
∑
i+j=n

aibj +
∑
i+j=n

aicj

which is the nth coefficient of fg + fh. Hence f(g + h) = fg + fh. Similary one proves
that (g + h)f = gf + hf .

Remark. For a given polynomial f =
∑∞

k=0 akx
k ∈ R[x] one can assocate a function

f̄ : R→ R that maps z to f(z) =
∑∞

k=0 akz
k. One should be warned however to confuse

the two together. For example if R is a finite then there are only finitely many functions
from R to R but infintely many polynomials in R[x]. So different polynomials will give
rise to the same function.

Remark. The variable x is really superfluous. The polynomial
∑∞

k=0 akx
k depends only

on the sequence (ak) and two polynomials
∑∞

k=0 akx
k and

∑∞
k=0 bkx

k are the same if and
only if (ak) = (bk). One could just as well have defined the polynomial to be the sequence
(and this is sometimes done). However it is convenient to introduce the variable x as we
use polynomials often to define functions.

III. Subrings and quotient rings

In this section we consider two important ways of deriving other ring structures from
a given ring that are in some sense dual to each other.

A. Subrings

Notation. We will use the following standard short hand notation for iterated sums:

na = a+ · · ·+ a︸ ︷︷ ︸
n

(−n)a = −(na)

0a = 0R.
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for any positive integer n and the integer 0. Here oR is the additive identity of R.

Remark. This is just a notation and has nothing to do with the ring multiplication.
Notice hat 0R · a = 0R is a fact that we can prove but 0a = 0R is just a natural notation
when 0 is the zero integer.

Definition (Subring). A subset S of a ring R is said to be a subring, if the following holds

a) 1 ∈ S;
b) If a, b ∈ S then a+ b, a · b,−a ∈ S.

Remarks. (1) Let S be a subring of R. Then 0R = 1R + (−1R) ∈ S. Hence S al-
ways contains 0R.
(2) Every subring S of a ring R must contain the multiplicative identity 1R. As S is
closed under addition and taking additive inverses it is clear that S must then contain
Z1R = {n1R : n ∈ Z}. Also Z1R is a subring of R. This is the case since 1R = 11R ∈ Z1R,

n1R +m1R = (n+m)1R, (n1R) · (m1R) = nm1R

which shows that Z1R is closed under addition and multiplication, and −n1R = (−n)1R
which shows that Z1R is also closed under taking additive inverses. From this discussion
it is clear that Z1R is the smallest subring of R.
(3) R is a subring of R.
(4) Notice that {0} is usually not a subring of the ring R. Although {0} is a ring it does
not have the same multiplicative identity as R (except if R = {0}).

It is not difficult to see (exercise sheet 2), that S is a subring of R if and only if (S,+, ·)
is a ring with the same multiplicative identity as R.

Examples. (1) Z is a subring of Q.
(2) Z + Zi is a subring of C (see sheet 2).

B. Congruences and quotient rings

Definition Let R be a ring and let ' be an equivalence relation on R. We say that
' is a congruence if

a ' b and c ' d ⇒ a+ c ' b+ d

a ' b and c ' d ⇒ a · c ' b · d.

For each a ∈ R, we let [a] be the equivalence class containing a.

Lemma 1.3 Let R be a ring with a congruence ' and let I = [0]. Then I has the
following properties

a, b ∈ I ⇒ a+ b ∈ I
a ∈ I, r ∈ R ⇒ r · a, a · r ∈ I.
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Furthermore b ' a if and only if b+ (−a) ∈ I and [a] = a+ I for all a ∈ R.

Proof We have a ' 0 and b ' 0. As ' is a congruence it follows that a+ b ' 0 + 0 = 0,
r · a ' r · 0 = 0 and a · r ' 0 · r = 0. Hence a + b, ra, ar ∈ I = [0]. Again, as ' is a
congruence, we have that if b ' a then b + (−a) ' a + (−a) = 0 and thus b + (−a) ∈ I.
Conversely if b + (−a) ∈ I then b + (−a) ' 0 and thus b = b + (−a) + a ' 0 + a = a
which shows that b ' a. Finally b ∈ [a] if and only if b ' a if and only if b + (−a) ∈ I if
and only if b ∈ a+ I. Hence [a] = a+ I. 2

Definition. Let R be a ring. A non-emtpy subset I of R is called an ideal if it sat-
isfies the following properties:

a, b ∈ I ⇒ a+ b ∈ I
a ∈ I, r ∈ R ⇒ r · a, a · r ∈ I.

The sets a+ I where a runs through R are called the cosets of I in R.

Remarks. (1) Let I be an ideal of R. As I is non-emtpy, it contains some element
a. But then I contains 0R = 0R · a. This shows that all ideals contain 0R.
(2) Let R be a ring. The subsets {0} and R are always ideals of R.
(3) Let R be a commutative ring and a ∈ R. Then Ra is an ideal of R. To see this notice
first that 0 = 0 · a ∈ I and thus I 6= ∅. It remains to see that I is closed under addition
and multiplication from R. But this follows from r·a+s·a = (r+s)·a and s·(r·a) = (rs)·a.

The next lemma can be seen as a converse to Lemma 1.3.

Lemma 1.4 Let R be a ring with an ideal I. Define a relation ' on R by letting

b ' a if and only if b+ (−a) ∈ I.

Then ' is a congruence and [a] = a+ I. In particular [0] = I.

Proof We first show that ' is an equivalence relation. As 0 ∈ I we have a + (−a) ∈ I
and thus a ' a. Hence ' is reflexive. Next, if a ' b then a + (−b) ∈ I. But then the
additive inverse of this, namely b+ (−a) = (−1R · (a+ (−b)) is also in I and thus b ' a.
This shows that ' is symmetric. Finally if a ' b and b ' c then a + (−b), b + (−c) ∈ I.
As I is closed under addition, it follows that a + (−b) + b + (−c) = a + (−c) is in I and
thus a ' c. Hence' is transitive and thus we have shown that' is an equivalence relation.

We show next that his equivalence relation is a congruence. Suppose a ' b and that
c ' d. Then a+ (−b), c+ (−d) ∈ I. As I is an ideal we then have

(a+ c) + (−(b+ d)) = a+ (−b) + c+ (−d) ∈ I

and

ac+ (−bd) = ac+ (−ad) + ad+ (−bd) = a(c+ (−d)) + (a+ (−b))d ∈ I.

Hence a+ c ' b+ d and ac ' bd.
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Finally b ∈ [a] if and only if b + (−a) ∈ I if and only if b ∈ a + I. This shows that
[a] = a+ I. 2

Remark. Let R be a ring. According to Lemmas 1.3 and 1.4, there is a one-to-one
correspondence between congruences ' on R and ideals I of R.

The quotient ring R/I. Let R be a ring with an ideal I and corresponding congruence
'. Let

R/I = {[a] = a+ I : a ∈ R}
be the collection of all the congruence classes (that is the cosets of I in R). We define
addition and multiplication on R/I as follows:

[a] + [b] = [a+ b]

[a] · [b] = [ab].

(The addition and multiplication do not depend on which elements a, b we pick from these
two equivalence classes and thus these two operations are well defined. To see this suppose
ã ' a and b̃ ' b. Since ' is a congruence we have ã + b̃ ' a + b and ã · b̃ = a · b. Thus
[ã+ b̃] = [a+ b] and [ã · b̃] = [a · b]).

We next show that (R/I,+, ·) is a ring with an additive identity [0] and a multiplica-
tive identity [1]. We need to check that all the axioms hold.

Addition. We have

([a] + [b]) + [c] = [a+ b] + [c] = [(a+ b) + c] = [a+ (b+ c)] = [a] + [b+ c] = [a] + ([b] + [c]),

[a] + [b] = [a+ b] = [b+ a] = [b] + [a],

and [a] + [0] = [a + 0] = [a]. Also as [a] + [−a] = [a + (−a)] = [0], we have that [−a] is
the additive identity of [a].

Multiplication. We have

([a] · [b]) · [c] = [ab] · [c] = [(ab)c] = [a(bc)] = [a] · [bc] = [a] · ([b] · [c]),

and [a] · [1] = [a · 1] = [a] and [1] · [a] = [1 · a] = [a].

Distributive laws. We have

[c] · ([a] + [b]) = [c] · [a+ b]

= [c(a+ b)]

= [ca+ cb]

= [ca] + [cb]

= [c] · [a] + [c] · [b]

and

([a] + [b]) · [c] = [a+ b] · [c]
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= [(a+ b)c]

= [ac+ bc]

= [ac] + [bc]

= [a] · [c] + [b] · [a].

So we have shown that R/I is a ring.

Examples.

(1) The ring of integers modulo n, Zn = Z/Zn, where n is a positive integer.

Notice that a ' b if and only if b + (−a) ∈ Zn if and only if n divides b − a. Any
integer m can be written of the form

m = nr + s, 0 ≤ s < n

for a unique s. Thus [m] = [s] for a unique s such that 0 ≤ s < n. It follows that

Zn = {[0], [1], . . . , [n− 1]}.

As an example we have that Z/Z3 has three elements [0], [1] and [2]. The addition and
multiplication tables are

+ [0] [1] [2]
[0] [0] [1] [2]
[1] [1] [2] [0]
[2] [2] [0] [1]

· [0] [1] [2]
[0] [0] [0] [0]
[1] [0] [1] [2]
[2] [0] [2] [1]

Notice that any element a 6= [0] has a multiplicative inverse so this is a field. As you
have probably seen before (and we will see again later), Zn is a field if and only if n is a
prime.

(2) The ring R[x]/R[x]x2.

Here we have that f ' g if and only if f − g ∈ R[x]x2 if and only if x2 divides f − g. Any
polynomial f can be written of the form

f = gx2 + ax+ b

for some unique a, b ∈ R. Thus [f ] = [ax+ b] for some unique a, b ∈ R. We thus have

R[x]/R[x]x2 = {[ax+ b] : a, b ∈ R}.

Here

[ax+ b] + [cx+ d] = [(a+ c)x+ (b+ d)]

and
[ax+ b] · [cx+ d] = [acx2 + (ad+ bc)x+ bd] = [(ad+ bc)x+ bd].
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Remark. Notice that informally the situation is as follows. In example (1) we add and
multiply like we were adding and multiplying integers and then modify the result using
the fact that [3] = [0]. In example (2) we similarly add and multiply like we were adding
and multiplying polynomials and then modify the result using the fact that [x2] = [0].

C. The characteristic of a ring.

Definition. Let R be a ring. The characteristic of R, denoted char(R), is a non-negative
integer defined as follows. If there is a positive integer m such that m1R = 0R then
char(R) is the smallest such positive integer. If there is on the other hand no such posi-
tive integer we say that char(R) = 0.

Examples. (1) R = {0} is the only ring where char(R) = 1.
(2) For any positive integer n, we have that char(Zn) = n.
(3) We have that char(Z) = 0.

Remarks. (1) Suppose char(R) = 0. Then

Z1r = {· · · , (−2)1R,−1r, 0R, 1R, 2R, · · ·}.

Notice also that the elements are distinct, that is n1R 6= m1R if n 6= m. To see this, we
argue by contradiction and suppose that n1R = m1R where n > m. But then (n−m)1R =
0R that contradicts the assumption that char(R) = 0. In fact the subring Z1R is just like
the ring of integers Z. We have

n1R +m1R = (n+m)1R

n1R ·m1R = nm1R

−n1R = (−n)1R.

(2) Suppose char(R) = n. Let m be any integer and suppose m = nr+ s with 0 ≤ s < n.
Then

m1R = rn1R + s1R = s1R.

If follows that
Z1R = {0R, 1R, 21R, . . . , (n− 1)1R}.

Notice that the elements that are written down are distinct. To see this we argue by
contradiction and suppose that r1R = s1R where 0 ≤ s < r ≤ n− 1. Then (r− s)1R = 0r
and 0 < r − s < n. But this contradicts the fact that n (the characteristic of R) is the
smallest positive integer such that n1R = 0R. In fact Z1R is just like Zn. The addition
and the multiplication is the usual addition and multiplication with the modifcation that
n1R = 0. For example we have the following table when the characteristic is 3.

+ 0R 1R 21R
0R 0R 1R 21R
1R 1R 21R 0R
21R 21R 0R 1R

· 0R 1R 21R
0R 0R 0R 0R
1R 0R 1R 21R
21R 0R 21R 1R

which is just like the addition and multiplication tables for Z3
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(3) Suppose that R has characteristic n > 0. For all a ∈ R, we have

n · a = a+ · · ·+ a︸ ︷︷ ︸
n

= (1R · a+ · · ·+ 1R · a︸ ︷︷ ︸
n

) = (1R + · · ·+ 1R︸ ︷︷ ︸
n

) · a = 0R · a = 0R.

IV. Homomorphisms and isomorphisms

In this section we will deal with ring homomorphims which are for rings what linear
maps are for vector spaces.

Definition. Let R, S be rings. A map φ : R→ S is said to be a ring homomorphism if:

φ(a+ b) = φ(a) + φ(b)

φ(ab) = φ(a) · φ(b)

φ(1R) = 1S

If φ is bijective, then we say that φ is a ring isomorphism. If there exists a ring isomor-
phisms from R to S then we say that R is isomorphic to S and write R ∼= S.

Lemma 1.5 Let φ : R→ S and ψ : S → T be ring homomorphisms. Then ψ◦φ : R→ T
is also a ring homomorphism. Furthermore if φ is an isomorphism then φ−1 is also a ring
isomorphism.

Proof (See sheet 3).

Remarks. (1) If there is an isomorphism from R to S, then there is no structural
difference between the two rings. The ring S can be thought of as a copy of R.

(2) Let R be a ring. The map id : R→ R is then obviously a ring isomorphism.

(3) Using (2) and last lemma, one sees readily (sheet 3) that R ∼= R, that R ∼= S iff
S ∼= R and that if R ∼= S and S ∼= T then R ∼= T .

(4) Warning. The map φ : R → S, a 7→ 0 is normally NOT a ring homomorphism.
This is only the case when 1S = φ(1R) = 0S, that we know happens only when S = {0}.

Lemma 1.6 If φ : R→ S is a ring homomorphism then

a) φ(0R) = 0S
b) φ(−a) = −φ(a) for all a ∈ R.

Proof (a) We have φ(0R) + 0S = φ(0R) = φ(0R + 0R) = φ(0R) + φ(0R). Cancellation by
−φ(0R) on both sides gives φ(0R) = 0S.

(b) We have φ(a) + φ(−a) = φ(a + (−a)) = φ(0R) = 0S. Hence φ(−a) is the addi-
tive inverse of φ(a). That is φ(−a) = −φ(a). 2.
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Examples.(1) Consider the following map.

φ : R→ R/I, a 7→ [a] = a+ I.

This is homomorphism since φ(a + b) = [a + b] = [a] + [b] = φ(a) + φ(b), φ(ab) = [ab] =
[a] · [b] = φ(a) · φ(b) and φ(1) = [1] that is the multiplicative identity of R/I.

(2) Let S be a commutative ring with a subring R and let z ∈ S. For each polyno-
mial f =

∑∞
k=0 akx

k, we can associate the value

f(z) =
∞∑
k=0

akz
k

Consider the map
φ : R[x]→ S, f 7→ f(z).

We will show that this is a ring homomorphism. Clearly φ(1) = 1 and it remains to see
that φ preserves addition and multiplication. Let f =

∑∞
k=0 akx

k and g =
∑∞

k=0 bkx
k.

Then

φ(f + g) = φ(
∞∑
k=0

(ak + bk)x
k)

=
∞∑
k=0

(ak + bk)z
k

=
∞∑
k=0

akz
k +

∞∑
k=0

bkz
k

= φ(
∞∑
k=0

akx
k) + φ(

∞∑
k=0

bkx
k)

= φ(f) + φ(g)

and for (ck) with ck =
∑

i+j=k aibj, we have

φ(fg) = φ(
∞∑
k=0

ckx
k)

=
∞∑
k=0

ckz
k

=
∞∑
k=0

(
∑
i+j=k

aiz
ibjz

j)

= (
∞∑
i=0

aiz
i) · (

∞∑
j=0

bjz
j)

= φ(
∞∑
i=0

aix
i) · φ(

∞∑
j=0

bjx
j)

= φ(f) · φ(g).
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So φ is a homomorphism. In fact the addition and multiplication in R[x] was defined such
that this would be come a homomorphism.

(3) Let V be an n-dimensional vector space over a field K with a basis (v1, . . . , vn).
Consider the linear map

α : Kn → V,

 a1
...
an

 7→ a1v1 + · · ·+ anvn.

Recall from an earlier algebra unit that for this fixed basis (v1, . . . , vn), we can associate
to each matrix A ∈Mn(K) a unique linear map φA ∈ End (V ) as follows

φA(a1v1 + · · ·+ anvn) = b1v1 + · · ·+ bnvn

if and only if

A

 a1
...
an

 =

 b1
...
bn

 .
Considering the matrix as the linear operator from Kn to itself as indicated above, we see
that

φA = αAα−1

as

a1v1 + · · ·+ anvn
α−1

→

 a1
...
an

 A→

 b1
...
bn

 α→ b1v1 + · · ·+ bnvn.

We show that Mn(K) ' End(V ) by showing that the map

φ : Mn(K)→ End (V ), A 7→ φA

is a ring isomorphism. Firstly as I represents the identity map from Kn to itself, we have
φ(I) = φI = αIα−1 = αα−1 = id. So the multiplicative identity of Mn(K) maps to the
multiplicative identity of End (V ) as required. Then

φ(A+B) = α(A+B)α−1 = αAα−1 + αBα−1 = φ(A) + φ(B)

and
φ(AB) = αABα−1 = (αAα−1)(αBα−1) = φ(A)φ(B).

Thus φ is a homomorphism and as the map is bijective (the inverse is given by β 7→ α−1βα)
it is an isomorphism.

Definition. Let φ : R→ S be a ring homomorphism. The set

kerφ = {a ∈ R : φ(a) = 0}

is called the kernel of φ and the set

imφ = {φ(a) : a ∈ R}

is called the image of φ.
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Lemma 1.7 Let φ : R → S be a ring homomorphism. We have that kerφ is an ideal of
R and that imφ is a subring of S. Furthermore φ is injective if and only if kerφ = {0}.

Proof Let us first see that kerφ is an ideal of R. Firstly φ(0R) = 0S and thus 0R ∈ kerφ
that shows that kerφ 6= ∅. To see that all the closure requirements hold, let a, b ∈ kerφ
and r ∈ R. Then φ(a+ b) = φ(a) +φ(b) = 0 + 0 = 0, φ(ra) = φ(r)φ(a) = φ(r) · 0 = 0 and
φ(ar) = φ(a)φ(r) = 0 · φ(r) = 0. This shows that a + b, ra, ar ∈ kerφ. Hence kerφ is an
ideal of R. We next turn to Imφ. Firstly 1S = φ(1R) shows that 1S ∈ imφ. The closure
requirements follow from φ(a) + φ(b) = φ(a + b), φ(a)φ(b) = φ(ab) and −φ(a) = φ(−a).
Hence imφ is a subring of S.

Now if φ is injective then in particular we have that 0 ∈ R is the only element that
maps to 0S. Hence kerφ = {0}. Conversely suppose that kerφ = {0}. If φ(a) = φ(b)
then φ(a + (−b)) = φ(a) + φ(−b) = φ(a) + (−φ(b)) = 0. As kerφ = {0} it follows that
a+ (−b) = 0 and thus a = b. 2

Theorem 1.8 (The fundamental Isomorphism Theorem). Let φ : R→ S be a homomor-
phism. Then

R/kerφ ' imφ.

Proof Consider the map Ψ : R/kerφ→ imφ, [a] 7→ φ(a).

The map Ψ is well defined and injective. We have

[a] = [b]⇔ a− b ∈ kerφ⇔ 0 = φ(a− b) = φ(a)− φ(b)⇔ φ(a) = φ(b).

The map Ψ is surjective. This is clear as for any φ(a) ∈ imφ, we have φ(a) = Ψ([a]).

Ψ is a homomorphism. Firstly Ψ([1]) = φ(1) = 1S and then

Ψ([a] + [b]) = Ψ([a+ b]) = φ(a+ b) = φ(a) + φ(b) = Ψ([a]) + Ψ([b])

and
Ψ([a] · [b]) = Ψ([ab]) = φ(ab) = φ(a) · φ(b) = Ψ([a]) ·Ψ([b]).

This finishes the proof. 2

Theorem 1.9 Let R be a ring. If the characteristic of R is 0 then the subring Z1R is
isomorphic to Z and if the characteristic is the positive integer n then Z1R is isomorphic
to Z/Zn.

Proof. Consider the map φ : Z → R that maps n to n1R. Let us first see that this is a
ring homomorphism. Firstly φ(1) = 1R. Then

φ(n+m) = (n+m)1R = n1R +m1R = φ(n) + φ(m)

and
φ(nm) = nm1r = n1R ·m1R = φ(n) · φ(m).

Thus φ is a homomorphism.
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Now suppose that charR = 0. Then φ(n) = n1R is 0R if and only if n = 0. Hence
kerφ = {0} and by Lemma 1.7 it follows that φ is injective. Thus the map

Z→ Z1R, n 7→ n1R

is an isomorphism.

Then suppose that charK = n for some positive integer n. Then φ(m) = m1R = 0
if and only if n|m. Hence kerφ = Zn and as imφ = Z1R, we have by the Fundamental
Isomorphism Theorem that

Z/Zn ∼= Z1R.

This finishes the proof. 2

We end this section by looking at finite rings and thinking about the problem of classify-
ing them. The following lemma is very useful here. For a given ring R we will denote by
|R|, the number of elements in R.

Lemma 1.10 Let R be a finite ring then char (R) divides |R|.

Proof Notice first that if char(R) = n then Z1R ∼= Zn. Hence |Z1R| = n = char(R).

As Z1R is a subgoup of R with respect to addition, it follows immediately from La-
grange’s Theorem in group theory that char (R) = |Z1R| dividies |R|. An alternative way
of seeing this is to consider the map

R→ R, r 7→ r + 1R.

This is a bijection (with inverse r 7→ r + (−1R)). Thus R = {r + 1R : r ∈ R}. Adding all
the elments in R gives ∑

r∈R

r =
∑
r∈R

(r + 1R) = (
∑
r∈R

r) +m1R

where m = |R|. Cancelling on both sides by
∑

r∈R r, gives m1R = 0 and thus n = char (R)
divides m. 2

Theorem 1.11 Let R be a finite ring such that |R| = p is a prime number. Then R ∼= Zp.

Proof Consider the subring Z1R. As |R| ≥ 2, we have that 1R 6= 0R and thus Z1R has at
least two elements, 0R, 1R. Thus |Z1R| = char (R) is at least 2 and divides |R| by Lemma
1.10. As |R| is a prime number it follows that |Z1R| = p and thus R = Z1R. By Theorem
1.9 we then have that R ∼= Zp. 2
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2 Factorization in rings

I. Integral domains and principal ideal domains

A Integral domains

Definition. An integral domain (ID) is a commutative ring R 6= {0} that satisfies

ab = 0⇒ a = 0 or b = 0.

Examples. (1) Any field K is an integral domain. If ab = 0 and a 6= 0 then b = a−1ab =
a−1 · 0 = 0.

(2) We have that Z is an integral domain that is not a field.

(3) Consider the ring Z4 = {[0], [1], [2], [3]}. Then

[2] · [2] = [4] = [0]

but [2] 6= [0]. Hence Z4 is not an ID.

Lemma 2.1 Let R 6= {0} be a commutative ring. The following are equivalent.

1) R is an ID
2) R satisfies the cancellation property: if ab = ac and a 6= 0 then b = c.

Proof (1) ⇒ (2). Suppose ab = ac and a 6= 0. Then

0 = ab+ (−ac) = ab+ a(−c) = a(b+ (−c))

As R is an ID, it follows that b+ (−c) = 0, that is b = c.

(2) ⇒ (1). Suppose that R satisfies the cancellation property. If ab = 0 and a 6= 0
then

a · b = a · 0 ⇒ b = 0.

This finishes the proof. 2

Theorem 2.2 The characteristic of an ID is always a prime number or 0.

Proof Let R be an ID. Notice first that as R 6= {0}, we have that char (R) 6= 1. If the
characteristic is neither 0 nor a prime it would then have to be a composite. We argue by
contradiction and suppose that the characteristic is a composite n = r · s, 1 < r, s < n.
Then

0 = n · 1R = rs · 1R = (r · 1R) · (s · 1R)

i.e.
0 = 1R + · · ·+ 1R︸ ︷︷ ︸

rs

= (1R + · · ·+ 1R︸ ︷︷ ︸
r

) · (1R + · · ·+ 1R︸ ︷︷ ︸
s

).

However r · 1R, s · 1R 6= 0 which contradicts our assumption that R is an ID. 2
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Theorem 2.3 Every finite integral domain is a field.

Proof (See sheet 4)

B. Closure properties for ideals

Let R be any ring and let I and J be ideals of R. The subset

I + J = {a+ b : a ∈ I, b ∈ J}

is called the sum of the ideals I and J . Let IJ be the set consisting of all finite sums

a1b1 + a2b2 + · · ·+ anbn

where n is allowed to vary and can be any integer n ≥ 1 and a1, . . . , an ∈ I, b1, . . . , bn ∈ J .
This subset is called the product of the ideals I and J .

Remark. Warning. We do NOT have in general that IJ = {ab : a ∈ I an b ∈ J}.
The reason why we have chosen to define the product differently is that the set {ab : a ∈
I and b ∈ J} is not in general closed under addition. The smallest ideal containing all ab,
a ∈ I and b ∈ J is our product of ideals.

Lemma 2.4 Let R be a ring with ideals I, J . Then I ∩ J, I + J and IJ are also ideals of
R. Furthermore IJ ⊆ I ∩ J ⊆ I + J .

Proof I ∩ J is an ideal of R. As 0 ∈ I ∩ J , we have that I ∩ J 6= ∅. Let a, b ∈ I ∩ J
and let r ∈ R. As I, J are ideals of R, it follows that a+ b, ra, ar ∈ I and also that these
elements are in J . Thus a+ b, ra, ar ∈ I ∩ J and I ∩ J is an ideal of R.

I + J is an ideal of R. Firstly 0 = 0 + 0 ∈ I + J and thus I + J 6= ∅. Let a1, a2 ∈ I,
b1, b2 ∈ J and r ∈ R. As I, J are ideals, we have that a1 + a2, ra1, a1r ∈ I and
b1 + b2, rb1, b1r ∈ J . Thus

(a1 + b1) + (a2 + b2) = (a1 + a2) + (b1 + b2) ∈ I + J,

r(a1 + b1) = ra1 + rb1 ∈ I + J and (a1 + b1)r = a1r + b1r ∈ I + J . This shows that I + J
is an ideal of R.

IJ is an ideal of R. As 0 = 0 ·0 ∈ IJ , we have that IJ 6= ∅. Let a1, . . . , an, c1, . . . , cm ∈ I,
b1, . . . , bn, d1, . . . , dm ∈ J and r ∈ R. As I and J are ideals, we have that rai, air ∈ I and
rbi, bir ∈ J for i = 1, . . . , n. It follows that

(a1b1 + · · ·+ anbn) + (c1d1 + · · ·+ cmdm) ∈ IJ,

r(a1b1 + · · ·+ anbn) = (ra1)b1 + · · ·+ (ran)bn ∈ IJ

and
(a1b1 + · · ·+ anbn)r = a1(b1r) + · · ·+ an(bnr) ∈ IJ.

Hence IJ is also an ideal.
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For the inclusions, notice first that I ∩J ⊆ I +J as any element a ∈ I ∩J can be written
as a = a+0 ∈ I+J . Then suppose a1, . . . , an ∈ I and b1, . . . , bn ∈ J . As both I and J are
ideals we have that aibi ∈ I and aibi ∈ J . Thus a1b1, . . . , anbn ∈ I ∩ J and as I ∩ J is an
ideal we have that the sum a1b1+ · · ·+anbn is also in I∩J . This shows that IJ ⊆ I∩J . 2

C. Principal ideal domains

Definition. Let R be a commutative ring. An ideal I of R is said to be a principal
ideal if I = Ra for some a ∈ R.

Remark. Recall that we have seen earlier that any subset of the form Ra is an ideal of R.

Definition. An integral domain is said to be a principal ideal domain (PID), if all
the ideals of R are principal ideals.

Theorem 2.5 The ring Z is a principal ideal domain. Also K[x] is a principal ideal
domain for any field K.

Proof We start with the ring Z. Let I be an ideal of Z. If I = {0} then I = Z · 0 is
a principal ideal. So we can suppose that I 6= {0}. If a ∈ I then also −a ∈ I. Hence
I contains positive integers. Let n be the smallest positive integer in I. As I is closed
under multiplication from Z, we know that Zn ⊆ I. We show that I ⊆ Zn. Let m ∈ I.
Division with n by remainder gives

m = nr + s

with 0 ≤ s < n. As m,n ∈ I we have that s = m + (−r)n ∈ I. As n was the smallest
positive integer of I we can’t have that s > 0. Hence s = 0 and m = rn ∈ Zn. Hence
I = Zn is a principal ideal.

The proof that K[x] is a principal ideal domain is similar. Let I be an ideal of K[x].
If I = {0} then I = K[x] ·0 is a principal ideal. So we can suppose that I 6= 0. Let f be a
non-zero polynomial in I of smallest possible degree. As I is closed under multiplication
from K[x], we have that K[x]f ⊆ I. It remains to show that I ⊆ K[x]f . Let g be any
polynomial in K[x]. From a previous unit you know that division by f with remainder
gives

g = fh+ k

where the degree of k is less than the degree of f . As f, g ∈ I we have that k = g+(−h)f ∈
I and as f was a non-zero polynomial in I of smallest degree, we can’t have that k is non-
zero. Hence k = 0 and g = hf ∈ K[x]f . This shows that I = K[x]f is a principal ideal. 2

Lemma 2.6 Let R 6= {0} be a commutative ring. Then R is a field if an only if the only
ideals of R are {0} and R.

Proof Suppose first that R is a field. Let I be an ideal such that I 6= {0}. Let 0 6= a ∈ I
and let b ∈ R. Then b = (ba−1)a ∈ I and thus R ⊆ I that implies that R = I.

Conversely suppose that R 6= {0} is a commutative ring such that {0} and R are the
only ideals. Let 0 6= a ∈ R. Then the ideal Ra contains a = 1a and thus Ra 6= {0}. By
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assumption Ra = R. In particular 1 = ba for some b ∈ R and thus a has a multiplicative
inverse. This shows that R is a field. 2

Corollary 2.7 Every field is a principal ideal domain.

Proof Let R be a field. We have already seen that R is an integral domain. By Lemma
2.6, the only ideals of R are {0} = R · 0 and R = R · 1. Hence all ideals are principal
ideals. 2.

II. Factorization in integral domains

Let R be an ID. We write
a|b

and say that a divides b (or that b is divisible by a) if there exists c ∈ R such that b = ac.

If a|b and b|a then we say that a and b are associated and write a ∼ b.

Remarks. 1) Notice that a|a, 1|a and a|0 for all a ∈ R.

2) If a|b and b|c then a|c. To see this notice that if b = ar and c = bs then c = ars.

3) We have that ∼ is an equivalence relation on R. Clearly a ∼ a and we also have
that b ∼ a if and only if a ∼ b. Let us see why ∼ is transitive. Suppose that a ∼ b and
b ∼ c. Then as a|b and b|c, part 1) tells us that a|c. Also as c|b and b|a we see from part
1) again that c|a. Thus a ∼ c.

4) We have that a ∈ R is a unit if and only if a|1 if and only if a divides all b ∈ R.
(Notice that a|1 and 1|b implies that a|b). As 1 always divides a, notice also that a|1 if
and only if a ∼ 1.

Lemma 2.8 Let R be an integral domain and let R∗ be the group of units. We have that
b and a are associated if and only if b ∈ aR∗. In other words the equivalence class of a
with respect to ∼ is aR∗.

Proof Notice first that 0|a if and only if a = 0 and thus the equivalence class containing
0 is {0} = 0 ·R∗. Now suppose that a is non-zero and that b ∼ a. Then b = ar and a = bs
for some r, s ∈ R. Thus

a · 1 = a = bs = ars

and as a 6= 0, cancellation (Lemma 2.1) gives rs = 1 and thus r is a unit and b = ar ∈ aR∗.
Conversely if b = ar ∈ aR∗ where s ∈ R is the multiplicative inverse of r. Then b = ar
and a = ars = bs gives that b ∼ a. Hence the equivalence class containing a is aR∗. 2

Examples (1) We have that Z∗ = {1,−1} and the equivalence class of n is thus nZ∗ =
{n,−n}. So each equivalence class has two elements apart from oZ∗ = {0}.

(2) Let K be a field. Notice that if fg = 1 for some polynomials f, g ∈ K[x] then f
and g must be non-zero constants. Thus K[x]∗ = K∗ = K \{0}. So fK[x]∗ = f(K \{0}).
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Notice that for each non-zero polynomial f there is exactly one monic polynomial (that
is a polynomial where the nonzero coeffient of the highest term is 1) in fK[x]∗.

Lemma 2.9 We have

a|b ⇔ Rb ⊆ Ra

a ∼ b ⇔ Rb = Ra

a ∈ R∗ ⇔ Ra = R.

Proof To see the first property note that if b = ar the Rb = Rra ⊆ Ra and conversely
if Rb ⊆ Ra then b ∈ Ra and thus a|b. The second property follows from this observation
since if a ∼ b then both a|b and b|a which implies that Rb ⊆ Ra and Ra ⊆ Rb. Finally
a is a unit if and only if a|1. As we always have 1|a we thus have that a is a unit if and
only if a ∼ 1. By the second property this happens if and only if Ra = R1 = R. 2

Definition

(1) An element p ∈ R is said to be irreducible if p 6= 0, p is not a unit and

if p = ab then either a or b is a unit.

(2) An element p ∈ R is a prime if p 6= 0, p is not a unit and

if p|ab then p|a or p|b.

Remark. Suppose that p is irreducble and p = ab. If b is a unit then a = Pb−1. A
different way of saying that p is irreducible is therfore to say that

a|p⇒ a ∼ 1 or a ∼ p.

Proposition 2.10 Every prime is irreducible.

Proof Suppose p is a prime. If p = ab then

p|ab ⇒ p|a or p|b

Without loss of generality we can suppose that p|a, say a = pc. It follows that

p · 1 = p = ab = pcb

and cancellation (Lemma 2.1) gives cb = 1. Hence b must be a unit. This finishes the
proof. 2

Remark. The converse is not true in general. See sheet 5.

Now take any integral domain R. The equivalence relation ∼ partitions the irreducibles
in to equivalence classes. From each equivalance class pick one element and denote the
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set of these by P . We would like to have the following two properties

(1) Every non-zero element a ∈ R has a factorization into a product of irreducibles

a = up1 · · · pn

with u ∈ R∗ and p1, . . . , pr ∈ P .

(2) The factorization is unique, in the sense that u is unique and that p1, . . . , pn are
unique up to order.

Remark. The convention is to think of every unit a = u as being factorizable with
factorization a = u (so the number of irreducibles is n = 0).

Examples (1) For R = Z, we can choose P to be the set of all the (positive) prime
numbers. Then every integer has a factorization. For example

35 = 5 · 7, −28 = (−1) · 2 · 2 · 7.

(2) Let R = C[x]. By the Fundamental Theorem of Algebra, every non-zero polynomial
can be written as a product of polynomials of degree 1. So here we can take

P = {x− a : a ∈ C}.

For example
4x2 + 4 = 4(x+ i)(x− i).

Remark. In both these examples we have that every non-zero element can be factorised
into a product of irreducibles and we will see later that the factorization is unique. There
are however integral domains where the factorization (when it exists) is not always unique
(sheet 5). We will also see shortly that there are even integral domains with non-zero
elements that can not be factorized into a product of irreducibles.

Example (Non-examinable). We give now an example of an ID that is not a field but
with no irreducibles. So no non-zero element that is not a unit can be factorised into a
product of irreducibles.

Let x0, x1, . . . be variables and for each of these we form the polynomial ring C[xi]. The
map

C[xi]→ C[xi+1], f 7→ f(x2i+1)

is an injective ring homomorphism. So we can identify C[xi] with the image. In other
words we can let xi = x2i+1. So we have

x0 = x21 = x42 = x83, . . .

Notice that C[x0] ⊆ C[x1] ⊆ C[x2] ⊆ . . . Let

R =
∞⋃
k=0

C[xi].

Let us firstly see that R is a ring. Let f, g, h ∈ R. Then there exists large enough in-
gteger i such that f, g, h ∈ C[xi]. Now as C[xi] is a ring we have that (f + g) + h =
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f + (g + h), f + h = h+ f, (fg)h = f(gh), f(g + h) = fg + fh. Clearly the polynomial 1
is a multiplicative identity, 0 a additive identity and −f is the additive inverse of f . The
ring R is also an integral domain. To see this suppose f, g ∈ R with fg = 0. Pick i large
enough such that f, g ∈ C[xi]. As C[xi] is an integral domain we get that one of f, g must
be zero. Let us then determine the units of R. Let f ∈ R be a unit. Then fg = 1 for
some g ∈ R. Pick i large enough such that f, g ∈ C[xi]. Then f is a unit in C[xi] but
C[xi]

∗ = C∗. This shows that R∗ = C \ {0}.

Let us see that there are no irreducibles in R. We argue by contradiction and sup-
pose that f is an irreducible in R. Then f ∈ C[xi] for some i and must then in particular
be irreducible in C[xi]. By the Fundamental Theorem of Algebra we must have that f is
of degree 1 and without loss of generality we can suppose that it is monic. So f = xi − a
for some a ∈ C. But then

f = xi − a = x2i+1 − a

that is not irreducible in C[xi+1] and thus not irreducible in R. By this contradiction we
have seen that R has no irreducucible elements.

III. Unique factorization in principal ideal domains

Definition Let a, b ∈ R.

1) An element d ∈ R is called a highest common factor (hcf) of a and b if:

(i) d|a and d|b
(ii) if e|a and e|b then e|d.

2) An element c ∈ R is called a least common multiple (lcm) of a and b if:

(i) a|c and b|c
(ii) if a|e and b|e then c|e.

Remark 1) If d1, d2 are both hcf’s of a and b then the second property implies that
d1|d2 and d2|d1. Hence d1 ∼ d2 and d2 = u · d1 for some unit u ∈ R. (Notice that we are
assuming throughout this chapter that R is an ID).

2) If c1, c2 are lcm’s of a and b then similarly c1 ∼ c2 and c2 = u · c1 for some unit
u ∈ R.

Lemma 2.11 Let R be a PID and a, b ∈ R.

a) Ra+Rb = Rd where d is a hcf of a and b.
b) Ra ∩Rb = Rc where c is a lcm of a and b.

Proof a) As R is a PID we know that Ra + Rb = Rd for some d ∈ R. It remains to see
that d is a hcf of a and b. As both a, b ∈ Ra + Rb = Rd it is clear that d is a factor of
both a and b. Now suppose that e is another factor, i.e. e|a and e|b. Then both a and b
are multiples of e and since d ∈ Ra + Rb it follows that d is also a multiple of e. Hence
e|d and we have shown that d is the hcf of a and b.
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b) Again as R is a PID, we know that Ra ∩ Rb = Rc for some c ∈ R. We want to
show that c is a lcm of a and b. Firstly since c ∈ Ra∩Rb we have that c is both a multiple
of a and b. Now suppose that e is another element that is a common multiple of a and b.
Then e ∈ Ra ∩ Rb = Rc and is therefore a multiple of c. Hence c|e and we have shown
that c is a lcm of a and b. 2

Definition. Let R be a PID. Let a, b ∈ R. We say that a and b are coprime if 1 is
a highest common factor of a and b (or equivalently if any highest common factor of a
and b is a unit).

Remark. Let R be a PID and suppose c is a highest common factor of a and b. By
last lemma, we know that

c = ra+ sb

for some r, s ∈ R. In particular, if a and b are coprime then

1 = ra+ sb

for some r, s ∈ R.

Proposition 2.12 Let R be a principal ideal domain. Every irreducible p ∈ R is a prime.

Proof Suppose that p|ab but p 6 |a. We want to show that p|b. Let c be a common divisor
of a and p. As p is irreducible either c = pu or c = u for some unit u. However pu does
not divide a so we must have that c is a unit. This shows that a, p are coprime and thus

1 = ra+ sp

for some r, s ∈ R. It follows that

b = 1 · b = (ra+ sp) · b = rab+ psb

and as ab is divisible by p it follows that b is divisible by p. This finishes the proof. 2

Our aim is to prove a unique factorization theorem for PID’s. First let us see that
any non-zero element in a PID can be written as a product of irreducibles.

Theorem 2.13 Let R be a PID and 0 6= a ∈ R. Then a can be expressed as a product of
irreducibles in R.

Proof We argue by contradiction and suppose that some 0 6= a cannot be written as a
product of irreducibles. In partcular a is not a unit and not irreducible and thus

a = a1b1

for some a1, b1 ∈ R where neither a1 nor b1 is a unit. If both a1 and b1 can be expressed
as products of irreducibles then so can a. Hence one of these can not be expressed as a
product of irreducibles. Without loss of generality we can suppose that this is a1. Notice
that as b1 is not a unit we don’t have that a divides a1 (ottherwise a ∼ a1 that forces b1 to
be a unit) and thus Ra ⊂ Ra1. The same argument shows there exists a2 ∈ R such that
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Ra1 ⊂ Ra2 and where a2 cannot be expressed as a product of irreducibles. Continuing in
this manner we get a strictly increasing chain of ideals

Ra ⊂ Ra1 ⊂ Ra2 ⊂ · · ·

Let
I = Ra ∪Ra1 ∪Ra2 ∪ · · ·

We next show that I is an ideal. Firstly 0 ∈ Ra ⊆ I and thus I 6= ∅. Now suppose that
a, b ∈ I and that r ∈ R. For some i we have that both a, b ∈ Rai. But then a + b and
ra are in Rai ⊆ I. Hence I is an ideal. Since R is a principal ideal domain we have that
I = Rb for some b ∈ R. Then b = 1 · b ∈ I and thus b ∈ Rai for some i. It follows that

Rai+1 ⊆ I = Rb ⊆ Rai

and we get the contradiction that Rai = Rai+1. 2

We have now got the tools to prove the main result of this chapter. Let R be a PID
and consider the set of all primes/irreducibles of R. As we have seen, these partition into
equivalence classes with respect to the equivalence relation a ∼ b iff a and b are associated,
i.e. a|b and b|a. From each equivalence class we pick one representive. We refer to these
primes as being prime representatives.

Theorem 2.14 (Unique factorization theorem for PID’s)

Let R be a PID and take any set of prime representatives P. Any 0 6= a can be written
in the form

a = up1 · · · pr
where u is a unit and where p1, . . . , pr ∈ P. Moreover the unit u is unique and the primes
p1, . . . , pr are unique up to order.

Proof (Existence). By Theorem 2.13 we have that a can be written as a product of
primes. If a is a unit then we are done. Now suppose that a is a a product of primes of
length r ≥ 1, say

a = q1 · · · qr.

Then qi = uipi for some p1, . . . , pr ∈ P and units u1, . . . , ur. So

a = up1 · · · pr

where u = u1 · · ·ur.

(Uniqueness). Suppose that we also have

a = vq1 · · · qs

for some unit v and q1, . . . , qs ∈ P . We show by induction on r that s = r and that the
primes q1, . . . , qs the same as p1, . . . , pr up to order. If r = 0 then a = u is a unit and
hence s must be zero (otherwise qs|a and a|1 implies that qs|1 and qs is a unit). Then
also u = a = v. This gives us the induction basis. Now for the induction step suppose
that r ≥ 1 and we know that the result holds when the value of r is smaller. As a is not
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a unit we must have s ≥ 1 (otherwise pr|v and pr is a unit). As pr is a prime that divides
a = vq1 · · · qs, it must divide qi for some i ∈ {1, . . . , s}. Without loss of generality we can
suppose that pr divides qs. Since qs is irreducible we must have qs = prw for some unit
w ∈ R. Then qs and pr are associated and since P contains only one element from each
equivalence class it follows that qs = pr. Using the fact that R is an ID and

up1 · · · pr = vq1 · · · qs,

we can cancel by pr = qs. This gives us

up1 · · · pr−1 = vq1 · · · qs−1.

By the induction hypothesis we must have that u = v, r− 1 = s− 1 and that p1, . . . , pr−1
are the same primes (up to order) as q1, . . . , qs−1. This finishes the inductive proof. 2

Remark (Not covered in lectures). The hcf and lcm have a natural description in prin-
cipal ideal domains. Suppose that

a = upr11 · · · prnn
b = vps11 · · · psnn

where u, v are units and p1, . . . , pn are distinct elements in P .

The hcf of a and b. Clearly

d = p
min(r1,s1)
1 · · · pmin(rn,sn)

n

divides both a and b. Now suppose we have any common factor e of a and b. By the
Unique Factorization Theorem we have that pi occurs as a factor of e at most min (ri, si)
times. Hence it follows that e|d and d is thus the highest common factor of a and b.

The lcm of a and b. Clearly

c = p
max(r1,s1)
1 · · · pmax(rn,sn)

n

is divisble by both a and b. Now let e be any element in R that is divisble by both a and
b. By the Unique Factorization Theorem we have that pi coccurs as a factor of e at least
max (ri, si) times. Hence it follows that c|e and c is a lowest common multiple of a and b.

Notice that Rab = Rcd and thus hcf(a, b) · lcm(a, b) ∼ ab. In particular if a and b
are coprime then ab is a least common multiple.

IV. Quotient rings of principal ideal domains

In this section we will be looking at quotient rings of PID’s. Let R be a PID. Recall
that Ra = Rb if and only if a ∼ b (i.e. a|b and b|a). So for each equivalence class with
respect to ∼ there is a unique ideal I and thus a unique quotient ring R/I.

We now want to understand better the structure of the quotient rings.
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Theorem 2.15 Let R be a commutative ring and let a ∈ R. We have that [b] ∈ R/Ra is
a unit in R/Ra if and only if Rb+Ra = R.

Proof (⇒) Let [c] be the multiplicative inverse of [b]. Then [1] = [c][b] = [cb] and thus
1 − cb ∈ Ra, say 1 = cb + da. Thus 1 ∈ Ra + Rb and as Ra + Rb is and ideal we have
R = R · 1 ⊆ Ra+Rb.

(⇐) Then 1 ∈ R = Ra+Rb, say 1 = da+ cb. It follows that [1] = [da+ cb] = [cb] = [c] · [b]
and [b] is a unit with inverse [c]. 2

Corollary 2.16 Let R be a PID and 0 6= a ∈ R. Then R/Ra is a field if and only if a is
irreducible (or equivalently a prime).

Proof (⇒). Suppose that a is not irreducible. There are then two cases to consiser. We
could have that a is a unit in which case R/Ra = R/R that has only one element and is
thus the zero ring {0}. By definition this is not a field.

The other possibility is that a is a composite, say a = bc where neither b nor c is a
unit. Notice that in this case a does not divide b (otherwise a ∼ b and c is a unit) and
a does not divide c. So [b], [c] 6= [0] whereas [b] · [c] = [a] = [0]. Thus R/Ra is not an ID
and therefore not a field in particular. 2

(⇐). Suppose that a is irreducible and let [0] 6= [b] ∈ R/Ra. We want to show that
[b] has a multiplicative inverse. By Theorem 2.15 it suffices to show that a and b are co-
prime. Let e be a common divisor a and b. As a is irreducible we must that e ∼ a or e ∼ 1.
But a does not divide b and thus we are only left with the possibility that e ∼ 1. This
shows that the only common divisors of a and b are the units and thus a and b are coprime.

Definition. Let R and S be any rings. The direct product of R and S is the ring
that consists of the set R × S = {(r, s) : r ∈ R, s ∈ S} and where the addition and
multiplication are given by

(a, b) + (c, d) = (a+ c, b+ d)

(a, b) · (c, d) = (ac, bd).

Clearly (0R, 0S) is the additive inverse and (1R, 1S) is the multiplicative identity. The
additive inverse of (a, b) is (−a,−b). All the algebraic laws hold in R× S since they hold
for both the coordinates. Thus we have a ring.

Remark. Notice that (a, b) ∈ R × S is unit if and only if a is a unit in R and b is
a unit in S. Thus (R× S)∗ = R∗ × S∗.

Proposition 2.17 (The chinese remainder theorem) Let R be a PID and suppose that
a, b ∈ R are coprime. Then

R/Rab ∼= R/Ra×R/Rb.

Proof For x, c ∈ R and we let [x]c be the congruence class of x in R/Rc. Define a map

φ : R/Rab→ R/Ra×R/Rb, [x]ab 7→ ([x]a, [x]b).
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This map is well defined since if [x]ab = [y]ab then ab divides x−y and thus both a, b divide
x− y that gives that [x]a = [y]a and [x]b = [y]b. To see that the map is a homomorphism
notice that φ([1]ab) = ([1]a, [1]b), that

φ([x]ab · [y]ab) = φ([xy]ab)

= ([xy]a, [xy]b)

= ([x]a · [y]a, [x]b · [y]b)

= ([x]a, [x]b)× ([y]a, [y]b)

= φ([x]ab) · φ([y]ab),

and that

φ([x]ab + [y]ab) = φ([x+ y]ab)

= ([x+ y]a, [x+ y]b)

= ([x]a + [y]a, [x]b + [y]b)

= ([x]a, [x]b) + ([y]a, [y]b)

= φ([x]ab) + φ([y]ab).

Next we see that the map is injective. Suppose that φ([x]ab) = ([0]a, [0]b). This is the
same as saying that [x]a = [0]a and [y]b = [0]b. But then a|x− 0 = x and b|x and as a and
b are coprime it follows (from the unique factorization theorem) that ab divides x. That
is [x]ab = [0]ab.

It remains to see that φ is surjective. Let ([x]a, [y]b) be any element in R/Ra×R/Rb. As
a and b are coprime we have 1 = ra+ sb for some r, s ∈ R. Consider z = sbx+ ray. Then

[z]a = [sbx]a = [(sb+ ra)x]a = [x]a

and
[z]b = [ray]b = [(sb+ ra)y]b = [y]b.

Hence φ([z]ab) = ([z]a, [z]b) = ([x]a, [y]b). 2.

The two (for us) most important PID’s are the rings Z and K[x] where K is a field.
We will now look at these.

A. Quotient rings of Z and the Euler function

The main aim of this section will be to show that if K is a finite field then the group of
units K∗ is a cyclic group. In order to prove this we will study finite cyclic groups and
obtain a criterion for a given group to be cyclic. First we look at the Euler function which
will play a crucial role here.

Definition. The function φ : Z+ → Z+ where φ(n) = |Z∗n|, is called the Euler func-
tion.

Remark. From Theorem 2.15 we know that [r] is a unit in Zn if and only r, n are
coprime. This means that φ(n) is the number of elements in {0, 1, . . . , n − 1} that are
coprime to n.
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Example. For example, among 0, 1, 2, 3, 4, 5, only 1 and 5 are coprime to 6. Hence
φ(6) = 2.

If K is a finite field, then K∗ is a finite abelian group. We will thus assume that all
groups we are working with are finite and abelian.

Definition. Let G be a finite group and a ∈ G. The cyclic subgroup generated by a
is 〈a〉 = {an : n ∈ Z}.

Remark. We have that 1 = a0 ∈ 〈a〉. We also have that 〈a〉 is closed under the
group multiplication and taking inverses since an · am = an+m and (an)−1 = a−n. Hence
〈a〉 is a subgroup of G.

As the group G is finite we must have a repetition in the sequence

1, a, a2, · · ·
Suppose that ar = as for r < s then as−r = 1.

Definition. Let G be a finite group and a ∈ G. The order, o(a), of a in G is the
smallest positive intger n such that an = 1.

Example. The element [2] ∈ Z∗5 has order 4 since [2]4 = [16] = [1] wheras none of
[2], [2]2 = [4], [2]3 = [3] is [1].

Remark. Let G be a finite abelian group and let a ∈ G be an element such that
o(a) = n. The following properties hold:

(1) n = |〈a〉|.
(2) am = 1 iff n|m.
(3) ar = as iff n|(r − s).
(4) a|G| = 1.

To see that (2) holds, suppose first that n|m, say m = nr, then am = (an)r = 1r = 1.
Conversely suppose am = 1 and that m = nr + s with 0 ≤ s < n. Then as = am−rn =
am(an)−r = 1. As n is the smallest positive integer such that an = 1 we then must have
s = 0 and hence n = mr.

(3) We have that ar = as iff ar−s = 1. By (1) this holds if and only if n|r − s.

(1) Notice that it follows from (3) that there is a 1-1 correspondence between elements in
〈a〉 and the congruence classes of the integers modulo n. Hence 〈a〉 = {1 = a0, a, a2, . . . , an−1}
and |〈a〉| = n.

(4) By Lagrange’s Theorem we have that n = |〈a〉| divides |G| and thus by (2) it fol-
lows that a|G| = 1. Alternatively one can argue as follows. Consider the map G →
G, x 7→ xa. This map is a bijection with inverse x 7→ xa−1. It follows that G = Ga. So if
{a1, . . . , am} = G = Ga = {a1a, . . . , amn}. Then

a1 · · · am = (a1a) · · · (ama) = a1 · · · amam.
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Cancellation gives 1 = am = a|G|. 2

Remarks. (1) In particular as |Z∗n| has φ(n) elements we have [a]φ(n) = [1] for all [a] ∈ Z∗n.

(2) If p is a prime, then 1, 2, . . . , p− 1 are all coprime to p. Thus [a] is a unit if [a] 6= [0]
and Zp is a field. In particular φ(p) = p− 1 and from part (1), we have that [a]p−1 = [1]
whenever [a] 6= [0]. It follows that [a]p = [a] for all [a] ∈ Zp. Thus p divides ap − a for all
intgegers a. (The Little Fermat Theorem).

Definition. We say that a group G is cyclic if G = 〈a〉 for some a ∈ G. Any a ∈ G such
that G = 〈a〉 is called a generator for a.

Lemma 2.18 Let G = 〈a〉 be a finite cyclic group with n elements.

(1) o(ar) = n/d where d = hcf(r, n).
(2) The number of generators for G is φ(|G|).

Proof (1) We have that arm = 1 if and only if n|rm if and only if n/d divides (r/d)m.
As n/d and r/d have no common factors, it follows that n|rm if and only if n/d divides
m. By the remark above this means that o(ar) = n/d.

(2) ar is a generator for G if and only if o(ar) = n. By (1) we have that o(ar) = n/d.
Thus o(ar) = n if and only if r and n are coprime. The number of generators for G is
thus the number of ar, 0 ≤ r ≤ n − 1 where r and n is coprime. But by Theorem 2.15
this is the same as the number of units in Zn. This number is therefore φ(n). 2

Lemma 2.19 Let G = 〈a〉 be a cyclic group with n elements.

(1) Every subgroup of G is cyclic of order dividing n.
(2) Conversely we have exactly one cyclic subgroup of order d for any divisior d of n.

Proof (See sheet 7)

Notation. We will write H ≤c G if H is a cyclic subgroup of G.

Lemma 2.20 Let G be a finite group with n elements. Then

(a) n =
∑

H≤cG
φ(|H|).

(b) n =
∑

d|n φ(d).

Proof (a) Let X = {(a,H) : a ∈ G, H ≤c G and H = 〈a〉}. We count the number of
pairs in X in two different ways. Firstly as for each a ∈ G there is clearly exactly one
cyclic subgroup H such that H = 〈a〉, we have that the number of pairs is |G| = n. Now
take the set of all cyclic subgroups of G. Each such subgroup H is generated by φ(|H|)
elements by Lemma 2.18. Adding up gives thus the right hand side of the equation in (a)

(b) Now suppose furthermore that G is cyclic. By Lemma 2.20 we have that for each
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d|n there is exactly one cyclic subgroup with d elements. Hence the RHS of (a) in this
case becomes

∑
d|n φ(d). 2

Proposition 2.21 Let G be a finite group of order n. G is cyclic if and only if for each
divisor d of n there is at most one cyclic subgroup of of order d.

Proof (⇒) This follows from Lemma 2.19.

(⇐) By Lemma 2.20 we have that

n
(a)
=
∑
d|n

εdφ(d)
∗
≤
∑
d|n

φ(d)
(b)
= n

where εd is either 1 or 0 depending on whether or not we have a cyclic subgroup of order
d. But we must have equality at (*). Thus in particular εn = 1 and there is a cyclic
subgroup of order n which is then G itself. 2

Theorem 2.22 If K is a finite field, then K∗ = K \ {0} is a cyclic group.

Proof Let d be any divisor of |K∗|. By Proposition 2.21, it suffices to show that there is
at most one cyclic subgroup of K∗ of order d. If there is none, we are done! Now suppose
that we have at least one subgroup H = {a1, . . . , ad} of order d. By Lagrange’s Theorem
we know that the order of ai divides |H| = d and thus

ad1 = ad2 = . . . = add = 1

that implies that a1, . . . , ad are roots of xd − 1, i.e.

xd − 1 = (x− a1) · · · (x− ad).

As the roots are unique there is only one possible H. 2

B. Quotient rings of K[x] and K-algebras

In this section we will consider quotient rings of K[x]. It turns out that these can be
viewed not only as rings but also as vector spaces over K with some additional proper-
ties. We will refer to these as K-algebras. In away this is not so surprising as K[x] itself
is a vector space over K.

Definition. Let V be a vector space over a field K equipped with a multiplication
so that (V,+, ·) is a ring and furthermore

(λu) · v = u · (λv) = λ(u · v)

for all λ ∈ K and u, v ∈ V . We then say that V is a K-algebra.

Remark. (1) Let x ∈ V . Then

(αu+ βv) · x = (αu) · x+ (βv) · x = α(u · x) + β(v · x).
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The multiplication by x from the right is thus a linear map. Similarly the multiplication
from the left by x is a linear map.

(2) Suppose that (vi)i∈I is a basis for the K-algebra V . In order to determine the multi-
plication · on V , it suffices to know the values of vi · vj for all i, j ∈ I. The reason for this
is the bilinearly of the multiplication, so

(
∑
i∈I

αivi) · (
∑
j∈I

βjvj) =
∑
i∈Ij∈J

(αiβj)(vivj).

Examples. (1) Let K be a field. Then K = K · 1 is a K-algebra of dimension 1.

(2) C = R + Ri is a R-algebra that is a 2-dimensional vector space over R.

(3) (The quoternions or the Hamiltonian numbers). This is vector space

H = R + Ri+ Rj + Rk

of dimension 4 over R with basis 1, i, j, k. The multiplication is determined from

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j.

Remark. Let 1V be the identity of the ring V . By the additional property above, we
have

(λ1V ) · v = λ(1V · v) = λv.

For this reason we can identify the field K with the subalgebra K1V and think of K as
being a subalgebra of V .

Fields as K-algebras

Definition. Let F be a field. A subring K of F is said to be a subfield if a−1 ∈ K
for all 0 6= a ∈ K.

Now take some field F and a subfield K of F . We want to see that F has the struc-
ture of a K algebra. First we see that F is a vector space. This is the case as

(1) (F,+) is an abelian group (as (F,+, ·) is a ring).
(2) 1K · v = v for all v ∈ F (notice that 1K = 1F as K is a subring of F ).
(3) a(bv) = (ab)v for all a, b ∈ K and v ∈ F (as the multiplication in F is associative).
(4) (a+ b)v = av + bv and a(v + w) = av + aw for all a, b ∈ K and v, w ∈ F (as the

distributive laws hold in F ).

Furthermore F is a K-algebra as

(5) (av)w = v(aw) = a(vw) for all a ∈ K and v, w ∈ F (as the multiplication in F
is associative and commutative).

Now suppose we have some a ∈ F that is a root of a non-zero polynomial in K[x].
Consider the ring homomorphism

φa : K[x]→ F, f 7→ f(a).
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Proposition 2.23 Suppose kerφa = K[x]g.

(1) g is irreducible and if h ∈ kerφa is irreducible then g ∼ h.
(2) K[a] = imφa = {f(a) : f ∈ K[x]} is a subfield of F .
(3) If deg (g) = n, then (1, a, . . . , an−1) is a basis for K[a].

Proof (1) If g was not irreducible, we would have g = fh for some polynomials f, h
of smaller degree than g. But as f(a)h(a) = g(a) = 0, we must then have f(a) = 0 or
h(a) = 0. Without loss of generality we can suppose that f(a) = 0. Then f ∈ Kerφa =
K[x]g and g|f that is absurd as f is a non-zero polynomial of smaller degree than g.

Now suppose that h ∈ kerφa = K[x]g is irreducible. Now h is irreducible and divisi-
ble by g. As g is not a unit we must have g ∼ h.

(2) By Lemma 1.7 we know that K[a] = imφa is a subring of F . It remains to show
that any 0 6= f(a) ∈ K[a] has a multiplicative inverse in K[a]. As f(a) 6= 0 we have that
f 6∈ kerφa = K[x]g and thus g does not divide f . As g is irreducible, it follows that f
and g are coprime, and thus 1 = rf + sg for some r, s ∈ K[x]. Then

1 = r(a)f(a) + s(a)g(a) = r(a)f(a) + s(a) · 0 = r(a)f(a).

Thus r(a) ∈ K[a] is the inverse of f(a).

(3) K[a] is generated by 1, a, . . . , an−1. To see this let f(a) be an arbitrary element of
K[a]. Division by g with remainder gives

f = gr + s, deg (s) < deg (g) = n,

say s = b0 + b1x+ · · ·+ bn−1x
n−1. Then

f(a) = g(a)r(a) + s(a) = s(a) = b0 · 1 + b1a+ · · ·+ bn−1a
n−1.

Thus f(a) is in the linear span of 1, a, . . . , an−1.

1, a, . . . , an−1 are linearly independent. To see this suppose c0 ·1+c1a+· · ·+cn−1an−1 = 0.
Then h = c0 + c1x + · · · + cn−1x

n−1 ∈ kerφa = K[x]g and g|h. As deg(h) < deg(g), this
can only happen if h = 0, that is only if c0 = c1 = · · · = cn−1 = 0. 2

Examples. (1) We have that R ⊆ C and that i ∈ C is a root of the irreducible polynomial
x2 + 1 ∈ R[x]. Here R[i] = R + Ri = C has basis (1, i).

(2) We have that Q ⊆ R and that 3
√

2 is a root of the irreducible polynomial x3−2 ∈ R[x].
Here

Q[
3
√

2] = Q + Q 3
√

2 + Q(
3
√

2)2.

has basis (1, 3
√

2, ( 3
√

2)2).

Remark. Loosely speaking, Proposition 2.23 tells us among other things that if a ∈ F is
a root of some irreducible polynomial in K[x| of degree n then K[a] (the collection of all
polynomial expressions in a over K) is a field. Now suppose that we only have the field
K and some irreducible polynomial over K. We will see that we can construct a larger

33



field F that contains a root t of that irreducible polynomial and where F = K[t].

The K-algebra K[x]/K[x]f .

Let f be a polynomial in K[x] and consider the quotient ring V = K[x]/K[x]f . There is
a natural scalar multiplication on V given by

λ[g] = [λg].

(Notice that this is well define since [g] = [h]⇔ f |(g − h)⇔ f |λ(g − h)⇔ [λg] = [λh]).

Let us see briefly that this turns V into a vector space over K. Firstly, as V is a ring, we
have that (V,+) is an abelian group. The extra conditions for a vector space hold since

1 · [g] = [1g] = [g],

α(β[g]) = α[βg] = [αβg)] = (αβ)[g],

(α + β)[g] = [(α + β)g] = [αg + βg] = α[g] + β[g]

and
α([g] + [h]) = α([g + h]) = [α(g + h)] = [αg + αh] = α[g] + α[h].

So V is a vector space over K. Then we also have

(λ[g]) · [h] = [g] · (λ[h]) = λ([g] · [h])

as all of these are equal to [λgh]. Hence V = K[x]/K[x]f is a K-algebra.

Suppose now that f is a monic polynomial of degree at least 1. We next turn to the
dimension of K[x]/K[x]f . Suppose

f = a0 + a1x+ · · ·+ an−1x
n−1 + xn.

Theorem 2.24 Let f be as above. We have

K[x]/K[x]f = K · 1 +Kt+ · · ·+Ktn−1

with t = [x] and where 1, t, . . . , tn−1 is a basis for K[x]/K[x]f . Also f(t) = 0.

Proof Notice that 1V = [1]. So we want to show that [1], [x], . . . , [x]n−1 is a basis for
K[x]/K[x]f .

Linear independence. If

[0] = α0[1] + α1[x] + · · ·+ αn−1[x]n−1 = [α0 + α1x+ · · ·+ αn−1x
n−1],

then f divides α0 +α1x+ · · ·+αn−1x
n. But as f is of degree n, this can ony happen if the

latter polynomial is the zero polynomial, that is we must have α0 = α1 = . . . = αn−1 = 0.

Spanning set. Let [g] be any elment in K[x]/K[x]f . Using division by f with remainder
we have

g = fr + s
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where s is a polynomial of degree less than or equal to deg f = n,say

s = β0 + β1x+ · · ·+ βn−1x
n−1.

Then [g] = [f ][r] + [s] = [0] + [s] = [s] = [β0 + β1x + · · · + βn−1x
n−1] = β0[1] + β1[x] +

· · ·+ βn−1[x]n−1.

Finally, notice that f(t) = a0 +a1t+ · · ·+an−1t
n−1 + tn = a0[1]+a1[x]+ · · ·+an−1[x]n−1 +

[x]n = [a0 + a1x+ · · ·+ an−1x
n−1 + xn] = [f ] = [0]. 2

Corollary 2.25 Let K be a field and f be a polynomial in K[x] of degree at least 1. There
exists a field L with K ⊆ L and such that f can be written as product of polynomials of
degree 1 in L[x].

Proof (See exercise 4 on sheet 7).

Example. (1) Consider the polynomial x2 + 1 ∈ R[x]. This polynomial is irreducible in
R[x] and by Theorem 2.24 we have that there is a root t in the field

R[x]/R[x](x2 + 1) = R + Rt

where t = [x]. Now t2 + 1 = 0 and thus t2 = −1. This field is therefore isomorphic to
C = R + Ri.

(2) Consider the polynomial x2 − 2 ∈ Q[x]. This is an irreducible polynomial in Q[x]
and by Theorem 2.24, we have that there is a root t in the field

Q[x]/Q[x](x2 − 2) = Q + Qt

where t = [x]. This field is isomorphic to the subfield Q + Q
√

2 of R.

(3) Consider the polynomial f = x2 + x + 1 in Z2[x]. If the polynomial were not ir-
reducible we would have to have a linear factor in Z2[x]. That is either x or x+ 1 would
have to divide x2 + x + 1. But as f(0) = f(1) = 1 this is not the case. Hence f is
irreducible and has then a root t = [x] in the field

L = Z2[x]/Z2f = Z2 + Z2t.

Notice that the new field L has 22 = 4 elements.

We end this chapter by looking at special types of R-algebras.

C. Normed R-algebras

Definition. A normed R-algebra, is an R-algebra V equipped with an inner product
such that for the corresponding norm we have

‖u · v‖ = ‖u‖ · ‖v‖.

Remark. (1) We have that ‖1V ‖ = ‖1V · 1V ‖ = ‖1V ‖ · ‖1V ‖ and thus ‖1V ‖ = 1.
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Examples. (1) The struture of an R-algebra V is determined by its dimension and
the products of the basis elements with respect to some chosen basis. If dimV = 1, then
V = R1V and as 1V · 1V = 1V there is (up to isomorphism) only one R-algebra R. This
can be thought of as an normed R-algebra where the norm is the absolute value.

(2) We can think of C as a normed R-algebra with an orthonormal basis (1, i).

We are going to see that there are only three normed R-algebras: R, C and H. The
main ingredients come from the following lemma.

Lemma 2.26 Let V be a normed R-algebra.

(1) If t ∈ V is orthogonal to 1 and ‖t‖ = 1, then t2 = −1.
(2) If i, j, 1 ∈ V are pairwise orthogonal and ‖i‖ = ‖j‖ = 1, then ij is orthogonal to i, j, 1

and ji = −ij.

Proof (1) We have

‖t2 + (−1)‖ = ‖(t− 1)(t+ 1)‖ = ‖t− 1‖ · ‖t+ 1‖ =
√

2
√

2 = 2 = 1 + 1 = ‖t2‖+ ‖ − 1‖.

(Notice that ‖t2‖ = ‖t‖2 = 1), According to the triangle inequality we should only get
equality here if t2 is a positive multiple of −1 and, as ‖t2‖ = 1, this can only happen if
t2 = (−1).

(2) We have that i+j√
2

is orthogonal to 1 and of length 1. By part (1), it follows that

−1 = (
i+ j√

2
)2 =

i2 + j2 + ij + ji

2
=

(−1) + (−1) + ij + ji

2
= −1 +

ij + ji

2
.

Hence ji = −ij.

Notice now that

‖ij + (−i)‖2 = ‖i(j − 1)‖2 = ‖i‖2 · ‖j − 1‖2 = 1 · 2 = 1 + 1 = ‖ij‖2 + ‖ − i‖2.

(Notice that ‖ij‖ = ‖i‖ · ‖j‖ = 1). As the pythogoras theorem holds it follows that ij is
orthogonal to i. Similarly,

‖ij + (−j)‖2 = ‖(i− 1)j‖2 = ‖i− 1‖2 · ‖j‖2 = 2 · 1 = ‖ij‖2 + ‖ − j‖2,

gives that ij is orthogonal to j. Finally

‖ij − 1‖2 = ‖ij + i2‖2 = ‖i(j + i)‖2 = ‖i‖2 · ‖j + i‖2 = 1 · 2 = 2 = ‖ij‖2 + ‖ − 1‖2,

that gives that ij is orthogonal to 1 as well. 2

Theorem 2.27 Up to isomorphism, there are exactly three normed R-algebras: R, C and
H.
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Proof We have already seen that R is the unique normed R-algebra of dimension 1.
By part (1) of last lemma, C is the unique normed R-algebra of dimension 2 (if V has
orthonormal basis (1, i) then we must have i2 = −1).

From part (2) of last lemma we have that if dimV ≥ 3 then we must have dimV ≥ 4
(as we get from 1, i, j a new element ij that is orthogonal to 1, i, j and thus in particular
1, i, j, ij are linearly independent).

From part (2) of last Lemma we also see that if we have a four dimensional normed
algebra then the structure is uniquely determined. Let us have a closer look at this. Ac-
cording to part (2) of last Lemma, we have that there is an orthonormal basis (1, i, j, k)
where k = ij. We know that ji = −ij and by symmetry ik = −ki and kj = −jk. By part
(1) of last lemma we also have i2 = j2 = k2 = −1. Then jk = jij = −j2i = −(−i) = i
and ki = iji = −i2j = −(−j) = j and the product of the basis elements, and hence the
structure of the algebra, are then uniquely determined.

There is no normed R-algebra of dimension higher than 4. To see this we argue by
contradiction and suppose that we have a normed algebra V of dimension at least 5.
Using last lemma we get a subspace R + Ri + Rj + Rij (taking any i, j such that 1, i, j
are pairwise orthogonal). Now pick e ∈ V that is orthogonal to 1, i, j, ij. Using Lemma
2.26, we have

ije = −e(ij) = iej = −ije
and thus we get ije = 0 but ‖ije‖ = ‖i‖ · ‖j‖ · ‖e‖ = 1 so this is absurd. 2

Remark. We haven’t yet shown the existence of H. One way of doing this is simply
to take the structure as it comes to us and check that it satisfies all the algebraic laws
needed for it to be an R-algebra. This is very cumbersome as one needs to check a number
of things. A neater approach, given in exercise 4 on sheet 8, is to construct the quater-
nions as a subring of End (V ) as then we get all the algebraic ring laws of End (V ) for
free.

On exercise sheet 7 we see how the quaternions are linked with geometry, where we
see how the inner product and cross product in three dimensions can be interpreted in
terms of the quaternions. Now we are going to look at another very beautful application
in Number Theory.

Consider the subring Z + Zi+ Zj + Zk of the quaternions. For

z = x1 + x2i+ x3j + x4k, w = y1 + y2i+ y3j + y4k,

we have

zw = (x1y1 − x2y2 − x3y3 − x4y4) + (x1y2 + x2y1 + x3y4 − x4y3)i
+(x1y3 − x2y4 + x3y1 + x4y2)j + (x1y4 + x2y3 − x3y2 + x4y1)k.

Now since ‖z‖2‖w‖2 = ‖zw‖2, we get

(x21 + x22 + x23 + x24)(y
2
1 + y22 + y23 + y24) =

(x1y1 − x2y2 − x3y3 − x4y4)2 + (x1y2 + x2y1 + x3y4 − x4y3)2 (1)

+(x1y3 − x2y4 + x3y1 + x4y2)
2 + (x1y4 + x2y3 − x3y2 + x4y1)

2.
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It follows that a if we have two sums of four squares, then their product is also a sum of
four squares. We are now going to prove that every natural number can be written as sum
of four integer squares. Notice first that 1 = 12+02+02+02 and that 2 = 12+12+02+02.
Since the set consisting of sum of four squares is closed under multiplication, it follows
that it now suffices to show that every odd prime can be written as a sum of four squares.
We need first a lemma.

Lemma 2.28 If p is an odd prime, then there exists integers x, y and m such that

1 + x2 + y2 = mp

and 0 < m < p.

Proof We calculate modulo p. Notice that [0]2, [1]2, . . . , [p−1
2

]2 are distinct. (If [x]2 = [y]2

for some 0 ≤ y < x ≤ (p−1)/2, then p|(x2−y2) = (x−y)(x+y)⇒ p|(x−y) or p|(x+y).
But as 1 ≤ x− y, x+ y ≤ p− 1 this doesnt happen). It follows from this that we get two
lists

[1 + x2], 0 ≤ x ≤ (p− 1)/2

and
[−y2], 0 ≤ y ≤ (p− 1)/2

each of which has (p+ 1)/2 distinct values. In total we then have p+ 1 > p values so the
two lists must have a value in common, say [1 + x2] = [−y2]⇒ [1 + x2 + y2] = [0]. Hence

1 + x2 + y2 = pm

for some integer m. Now pm = 1 + x2 + y2 ≤ 1 + (p−1
2

)2 + (p−1
2

)2 < 1 + 2(p/2)2 < p2 and
thus m < p. 2

Theorem 2.29 (Lagrange’s four square theorem) Every natural number can be written
as a sum of four integer squares.

Proof We have already seen that it suffices to prove that every odd prime p can be
written as a sum of four squares. We choose the smallest positive integer m such that

pm = x21 + x22 + x23 + x24. (2)

By Lemma 2.28, such an integer m exists and we know that 0 < m < p. The aim is to
show that m = 1. We argue by contradiction and suppose that m > 1.

Step 1. m is odd. Otherwise an even number of x1, x2, x3, x4 are odd. By rearranging
the order of terms if needed we can assume that both x1, x2 are even/odd and both x3, x4
are even/odd. Hence x1 + x2, x1 − x2, x3 + x4, x3 − x4 are all even. It follows that

p(m/2) =
2(x21 + x22 + x23 + x24)

4

= (
x1 − x2

2
)2 + (

x1 + x2
2

)2 + (
x3 − x4

2
)2 + (

x3 + x4
2

)2,

that contradicts the minimality of m. Hence m is odd.
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Step 2. We do not have [x1]m = [x2]m = [x3]m = [x4]m = [0]m. Otherwise m would divide
all of x1, . . . , x4. From equation (2) we would then have that the right hand side is di-
visble by m2 and thus m|p and as m < p this would imply that m = 1 contracting our
assumption that m > 1.

We can now finish the proof of the Theoem. For each i ∈ {1, 2, 3, 4} we pick a represen-
tative yi such −(m− 1)/2 ≤ yi ≤ (m− 1)/2 and [yi] = [xi]. As the sum x21 + x22 + x23 + x24
is the same as the sum y21 + y22 + y23 + y24 modulo m and as the former sum is divisible by
m, the latter sum is also divisble by m. It follows that

mr = y21 + y22 + y23 + y24 (3)

for some r where

mr ≤ 4(
m− 1

2
)2 = (m− 1)(m− 1).

Notice that this implies that r < m. By step 2 we know that not all of the [yi]m = [xi]m
are [0]m and thus in particular the rhs of (3) is non-zero that implies that r > 0. Thus
0 < r < m.

Now mulitplying together (2) and (3) gives

prm2 = (x21 + x22 + x23 + x24)(y
2
1 + (−y2)2 + (−y3)2 + (−y4)2)

= (x1y1 + x2y2 + x3y3 + x4y4)
2 + (−x1y2 + x2y1 − x3y4 + x4y3)

2

+(−x1y3 + x2y4 + x3y1 − x4y2)2 + (−x1y4 − x2y3 + x3y2 + x4y1)
2.

Now if we calculate modulo in Zm we see that (since [yi]m = [xi]m)

[x1y1 + x2y2 + x3y3 + x4y4]m = [x21 + x22 + x23 + x24]m = [pm]m = [0]m

and thus m|(x1y1 + x2y2 + x3y3 + x4y4). Also

[−x1y2 + x2y1 − x3y4 + x4y3]m = [−x1x2 + x2x1 − x3x4 + x4x3]m = [0]m,

[−x1y3 + x2y4 + x3y1 − x4y2]m = [−x1x3 + x2x4 + x3x1 − x4x2]m = [0]m

and
[−x1y4 − x2y3 + x3y2 + x4y1]m = [−x1x4 − x2x3 + x3x2 + x4x1]m = [0]m.

As all these integers are divisible by m, we get

pr = (
x1y1 + x2y2 + x3y3 + x4y4

m
)2 + (

−x1y2 + x2y1 − x3y4 + x4y3
m

)2

(
−x1y3 + x2y4 + x3y1 − x4y2

m
)2 + (

−x1y4 − x2y3 + x3y2 + x4y1
m

)2.

As r < m, we get a contradiction about our minimality assumption on m. It follows that
the smallest m given in (1) must be 1 and thus p is a sum of integer squares. 2
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3 The structure of linear operators

Let V be an n-dimensional vector space over a field K with basis V = (v1, v2, . . . , vn). Let
α : V → V be a linear operator in End (V ) and let A be the matrix representing α with
respect to the basis V .

Aim. To find a basis V such that A looks simple.

I. Minimal polynomials

Recall that the rings End (V ) and Mn(K) are isomorphic and are vector spaces over
K of dimension n2. It follows that the matrices

I, A,A2, . . . , An
2

(or equivalently the linear operators id, α, α2, . . . , αn
2
) are linearly dependent. Take

a0, . . . , an2 ∈ K (not all zero) such that

a0I + · · ·+ an2An
2

= 0

then f(A) = 0, where f is the polynomial a0 + a1t+ · · ·+ an2tn
2
.

Consider the ring homomorphism

K[t]→Mn(K), f 7→ f(A).

We have seen that the kernel of this map is not {0} and as K(t) is a principal ideal
domain, we know that the kernel is of the from K[t]m(t) for some monic polynomial m(t)
of degree at least 1. Notice that we also have a ring homomorphism

K[t]→ End (V ), f 7→ f(α)

with the same kernel K[t]m(t). Notice that m(t) is the unique monic polynomial of small-
est degree such that m(A) = 0 (m(α) = 0).

Definition. 1)The minimal polynomial of the linear operator α : V → V is the monic
polynomial, mα(t) of lowest degree such that mα(α) = 0.

2) The minimal polynomial of the n × n matrix A is the monic polynomial mA(t) of
smallest degree such mA(A) = 0.

Examples. 1)If α = λid then p(α) = 0 where p(t) = t− λ. Clearly, thus mα(t) = t− λ.

2) If A =

(
0 1
1 0

)
, then A2 = I and p(A) = 0 where p(t) = t2 − 1. As A is not a

diagonal matrix, we have that q(A) 6= 0 for any q = t− λ. Hence mA(t) = t2 − 1.

Recall from Algebra 1B. (1) The characteristic polynomial of A is ∆A(t) = det (A−tI).
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If A is a matrix representing a linear operator α with respect to some basis then we define
the characteristic polynomial of α to be ∆α(t) = det (α− tid) = det (A− tI). This doesn’t
depend on the matrix that represents α and thus this is well defined.

(2) Recal that the algebraic multiplicity, am(λ), of an eigenvalue λ is the multiplicity
of λ as a root of ∆A(t) (or ∆α(t)). The geometric multiplicity of λ is the dimension of the
eignspace EA(λ) (or Eα(λ)). We know that we always have am(λ) ≥ gm(λ).

Example. In the example above we have

∆A(t) = det (A− tI) =

∣∣∣∣ −t 1
1 −t

∣∣∣∣ = t2 − 1 = (t− 1)(t+ 1) = mA(t).

We will later see that minimal polynomial and the characteristic polynomial are strongly
related and that the latter is always a multiple of the minimal polynomial. Here am(1) =
am(−1) = gm(1) = gm(−1) = 1.

Lemma 3.1 Let p be a polynomial such that p(α) = 0 then every eigenvalue of α is a
root of p. In particular every eigenvalue of α is a root of mα.

Proof Let v 6= 0 be an eigenvector with respect to λ and suppose p(t) = a0+a1t+. . .+akt
k.

Then p(α) = 0 gives us

0 = p(α) v

= (a0id + a1α + · · ·+ akα
k)v

= (a0 + a1λ+ · · ·+ akλ
k)v

= p(λ)v.

As v 6= 0 it follows that p(λ) = 0. 2

We now turn to a remarkable fact. It turns out that any linear operator α : V → V
satisfies the characteristic polynomial ∆α(t).

Theorem 3.2 (Cayley-Hamilton). For any n× n matrix A we have ∆A(A) = 0. Equiv-
alently, for any linear α : V → V we have ∆α(α) = 0.

Remark. Some warning before we give the proof. One can’t simply argue as follows.
det (A − AI) = det (0) = 0 and thus ∆A(A) = 0. What calculating ∆A(A) means is to
calculate the determinant

a11 − A a12 . . . a1n
a21 a22 − A . . . a2n

...
an1 a(n−1)2 . . . ann − A


where we treat A as a scalar and come up with a polynomial expression in A that turns
out to be the zero matrix. This is not at all the same as calculating the determinant of
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the matrix A−AI = 0 over K. The following proof does however in a sense carry through
the elementary spirit of this false approach.

Proof Suppose
∆A(t) = det (A− tI) = a0 + a1t+ · · ·+ ant

n.

We must show that ∆A(A) = a0I + a1A+ · · ·+ anA
n = 0 as a matrix. We will apply the

adjugate formula. Notice that

adj (A− tI) = B0 +B1t+ · · ·+Bn−1t
n−1,

where each Bi is an n× n matrix. The adjugate formula tells us that

adj (A− tI)(A− tI) = det (A− tI)I = ∆A(t)I.

That is
(B0 +B1t+ · · ·+Bn−1t

n−1)(A− tI) = (a0 + a1t+ · · ·+ ant
n)I.

This formula simply tells us that coefficient to ti on the lhs has to be the square n × n
matrix aiI. Now replace t by any square n × n matrix T that commutes with A. What
we get is that when expanded out the lhs becomes again a polynomial expression, this
time in T , where the coefficient to T i is the same as before (that is aiI). Thus the same
formula

(B0 +B1T + · · ·+Bn−1T
n−1)(A− TI) = (a0 + a1T + · · ·+ anT

n)I

as before holds. In particular letting T = A, we get

∆A(A) = a0I + a1A+ · · · anAn = (B0 +B1A+ · · ·+Bn−1A
n−1)(A− A) = 0.

This finishes the proof. 2.

Remark. It follows from the Cayley-Hamilton Theorem that mα(t) divides ∆α(t). Next
we are going to see that these have the same roots.

Proposition 3.3 . The roots of mα are precisely the eigenvalues of α.

Proof By the remark above, we have that mα divides ∆α and thus every root of mα is
a root of ∆α and therefore an eigenvalue of α. The converse follows from Lemma 3.1. 2

Remark. It follows from this last propositon and the Cayley-Hamilton Theorem that,
over C, if λ1, . . . , λk are the distinct eigenvalues of λ and

∆α(t) = (λ1 − t)r1 · · · (λk − t)rk ,

then
mα(t) = (t− λ1)s1 · · · (t− λk)sk

with 1 ≤ si ≤ ri for all 1 ≤ i ≤ k.

II. Invariant subspaces and primary decompositions
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A. Invariant subspaces

Definition Let α : V → V be a linear operator. We say that a subspace W of V is
α-invariant if α(W ) ⊆ W .

If W is α-invariant, then the restriction of α to W is the linear operator

α|W : W → W : w 7→ α(w).

Examples. (1) The subspaces {0} and V are always α-invariant.

(2) Let λ be an eigenvalue of α and v is an eigenvectors with respect to λ then the
one dimensional subspace Kv is α-invariant. This is because α(rv) = rα(v) = rλv ∈ Kv.

(3) Let α : R3 → R3 be the linear operator that rotates every vector 30 degrees around
the z-axis (counter clockwise). Here Re3 and Re1 + Re2 are α-invariant.

Now suppose that
V = V1 ⊕ V2 ⊕ · · · ⊕ Vk

where V1, . . . , Vk are α-invariant subspaces. Let αi = α|Vi be the restriction of α to Vi.
Then αi ∈ End (Vi). In this situation we often write

α = α1 ⊕ · · · ⊕ αk.

Notice that if v = v1 + · · ·+ vk, with vi ∈ Vi, then

α(v) = α(v1) + · · ·+ α(vk)

= α1(v1) + · · ·+ αk(vk).

Pick a basis Vi for Vi and let Ai be the matrix representing αi with respect to the basis
Vi. Then the matrix representing α with respect to the basis V = V1 ∪V2 ∪ · · · ∪Vk is the
matrix

A =


A1

A2

. . .

Ak

 .

that we often write as A = A1 ⊕ · · · ⊕ Ak.

Example. Suppose V1 = Kv1 ⊕ Kv2 and V2 = Kv3 ⊕ Kv4. Suppose furthermore that
the linear operators α1 : V1 → V1 and α2 : V2 → V2 are defined by

α1(v1) = 2v1 + v2 α1(v2) = v1 − v2
α2(v3) = v4 α2(v4) = v3.

Then α1 ⊕ α2 : V1 ⊕ V2 → V1 ⊕ V2 has matrix

A =


2 1 0 0
1 −1 0 0
0 0 0 1
0 0 1 0

 =

(
A1 0
0 A2

)
= A1 ⊕ A2
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where

A1 =

(
2 1
1 −1

)
, A2 =

(
0 1
1 0

)
.

The aim is to break V into a direct sum V1 ⊕ V2 ⊕ · · · ⊕ Vk where k is as big as possible.

Remark. Notice that if f is any polynomial in K[t] then

f(A) =


f(A1)

f(A2)
. . .

f(Ak)

 = f(A1)⊕ · · · ⊕ f(Ak).

Thus f(A) = 0 if and only if mAi
|f for all i = 1, . . . , k. This implies that the mA is the

least common multiple of mA1 , . . . ,mAk
. Equivalently mα is the least common multiple

of mα1 , . . . ,mαk
. In particular if mα1 , . . . ,mαk

are pairwise comprime, then

mα = mα1 · · ·mαk
.

Thus a decomposition of V into α-invariant subspaces leads to a factorization of the
minimal polynomial. Our next aim is to see that one can reverse this procedure so a
factorization of the minimal polynomial leads to a decomposition of V into α-invariant
subspaces.

B. Primary Decompositions

Lemma 3.4 Suppose α, β : V → V are linear operators such that αβ = βα. Then ker β
and im β are α-invariant.

Proof If w ∈ kerβ then

β(α(w)) = α(β(w)) = α(0) = 0.

hence α(w) ∈ kerβ. This shows that kerβ is α-invariant. To see that imβ is α-invariant,
notice that if v = β(u) then α(v) = α(β(u)) = β(α(u)) ∈ imβ. 2

Lemma 3.5 Let α : V → V be a linear operator whose minimal polynomial has a factor-
ization

mα(t) = p1(t)p2(t)

where p1 and p2 are monic polynomials that are coprime. Let V1 = im p2(α) and V2 =
im p1(α). Then

(1) The subspaces V1 and V2 are α-invariant.
(2) V = V1 ⊕ V2.
(3) The minimal polynomial of αi = α|Vi is pi(t).
(4) V1 = ker p1(α) and V2 = ker p2(α).
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Proof (1) Notice that p1(α) and p2(α) commute with α and thus V1, V2 are α-invariant
by Lemma 3.4.

(2) As p1 and p2 are coprime, there are polynomials a1, a2 ∈ K[t] such that 1 = a1(t)p1(t)+
a2(t)p2(t). Hence

id = p2(α)a2(α) + p1(α)a1(α)

Thus for any v ∈ V , we have

v = id(v) = [p2(α)a2(α)](v) + [p1(α)a1(α)](v) ∈ im p2(α) + im p1(α) = V1 + V2.

This shows that V = V1 + V2. To see that the sum is direct, suppose v ∈ V1 ∩ V2, say
v = p2(α)(v2) = p1(α)(v1). Then

v = a1(α)(p1(α)(v) + a2(α)p2(α)(v)

= [a1(α)p1(α)p2(α)](v2) + [a2(α)p2(α)p1(α)](v1)

= [a1(α)mα(α)](v2) + [a2(α)mα(α)](v1)

= 0.

Hence V1 ∩ V2 = {0} and V = V1 ⊕ V2.

(3) We have that f(α1) = 0 if and only if f(α)(v) = 0 for all v ∈ V1. As V1 = im p2(α) this
happens if and only if [f(α)(p2(α)](v) = 0 for all v ∈ V . As mα is the minimal polynomial
for α, this happens if and only if mα = p1p2 divides fp2. But this happens if and only if
p1|f . Hence p1 is the minimal polynomial of α1. Similarly p2 is the minimal polynomial
of α2.

(4) As p1(α)p2(α)(v) = mα(v) = 0 for all v ∈ V , it is clear that V1 = im p2(α) ⊆ ker p1(α).
To get equality we just need to show that the dimensions are the same. But this follows
from

dimV = dimV1 + dimV2 = dim im p2(α) + dim im p1(α)

and (using the nullity rank theorem from year 1)

dimV = dim ker p1(α) + dim imP1(α).

comparing the two equations we see that dim ker p1(α) = dim im p2(α) = dimV1. Simi-
larly one shows that V2 = ker p2(α). 2

Now let P be the set of all irreducibles in K[t] that are monic. We have seen earlier
that these form a set of prime representatives for K[t]. Using Lemma 3.5 and induction
on k, we get one of the main results about the structure of linear operators.

Theorem 3.6 (Primary Decomposition) Let α : V → V be a linear operator whose
minimal polynomial has a factorization

mα(t) = p1(t)
n1 · · · pk(t)nk

where the p1, . . . , pk are distinct primes in P. Let qi = pni
i and let Vi = ker qi(α).

(1) The subspaces V1, . . . , Vk are α-invariant,
(2) V = V1 ⊕ · · · ⊕ Vk,
(3) the minimal polynomial of αi = α|Vi is qi = pni

i .
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Diagonalisable linear operators. Suppose we have a diagonalisable linear operator
α : V → V with a basis V = (v1, . . . , vn) of eigenvectors. Notice that

V = Kv1 ⊕ · · · ⊕Kvn

where Kv1, Kv2, . . . , Kvn are α-invariant. If the corresponding eigenvalues are λ1, . . . , λn
then the matrix for A for α with respect to V is the diagonal matrix

λ1
λ2

. . .

λn

 .

It is not difficult to see (sheet 9) that

mα(t) = (t− µ1)(t− µ2) · · · (t− µk)

where µ1, . . . , µk are the DISTINCT eigenvalues. The next result shows that the converse
is also true.

Theorem 3.7 The linear map α : V → V is diagonalisable iff

mα(t) = (t− λ1)(t− λ2) · · · (t− λk)

for some distinct λ1, . . . , λk ∈ K.

Proof By the remark above we have that the minimal polynomial of a diagonalisable
linear map is a product of distinct linear factors. For the converse we make use of the
Primary Decomposition Theorem. According to it we have that

V = ker (α− λ1id)⊕ · · · ⊕ ker (α− λkid)

= Eα(λ1)⊕ · · · ⊕ Eα(λk).2

III. Linear operators over C

In this section we will focus on the case when k = C.

A. Generalised eigenvectors

In C[x], all polynomials can be factorized as a product of polynomials of degree 1. Now
suppose that the linear operator α : V → V has minimial polynomial

mα(t) = (t− λ1)r1 · (t− λ2)r2 · · · (t− λk)rk

where λ1, . . . , λk are the distinct eigenvalues of α (recall the roots of mα are exactly the
eigenvalues of α). According to the Primary Decomposition Theorem we get the following
decompostion into a direct sum of α-invariant subsplaces

V = ker (α− λ1id)r1 ⊕ · · · ⊕ ker (α− λkid)rk .
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Definition (1) Let α : V → V be a linear map with eigenvalue λ. We say that 0 6= v ∈ V
is a generalised eigenvector with respect to the eigenvalue λ if

(α− λid)rv = 0

for some positive integer r.

(2) The generalised λ-eigenspace of V is

Gα(λ) = {v ∈ V : (α− λ id)tv = 0 for some positve integer r}.

Remark. We have Eα(λ) ⊆ Gα(λ). Notice also that

ker (α− λid) ⊆ ker (α− λid)2 ⊆ ker (α− λid)3 ⊆ · · ·

As V has finite dimension, this chain must become constant at some point. The next
Lemma tells us when.

Lemma 3.8 Suppose that the multiplicity of the eigenvalue λ as a root of mα(t) is s.
Then

Gα(λ) = ker (α− λ id)t

for any t ≥ s.

Proof (Non-examinable). That we have ⊇ is obvious. We need only to show ⊆.

Suppose that mα(t) = (t − λ1)
s1(t − λ2)

s2 · · · (t − λk)
sk . By the Primary Decomposi-

tion Theorem we have that
V = V1 ⊕ V2 ⊕ · · · ⊕ Vk,

where Vi = ker (α − λiid)si . Also we know from the same theorem that the minimal
polynomial of αi = α|Vi is (t− λi)si . Now suppose that λ = λi. For j 6= i we have that αj
only has the eigenvalue λj. Hence ker (αj − λiid) = {0} and αj − λiid is a bijective linear
operator on Vj. Now let

v = v1 + v2 + · · ·+ vk

be any element in Gα(λ) with vi ∈ Vi. Suppose that (α− λiid)tv = 0. Then

0 = (α− λiid)tv

= (α1 − λiid)tv1 + · · ·+ (αk − λiid)tvk.

This happens if and only if (αj − λiid)tvj = 0 for all j = 1, . . . , k. As (αj − λiid)t is
bijective if j 6= i, we must have that vj = 0 for j 6= i. Hence v = vi ∈ Vi = ker (α− λi)si .

This shows that Gα(λi) ⊆ ker (α − λiid)si and as (α − λiid)siv = 0 clearly implies that
(α− λiid)tv = 0 for any t ≥ si, it follows that

Gα(λi) ⊆ ker (α− λiid)t.

This finishes the proof. 2.

Remark. This last lemma implies in particular that

Gα(λ) = ker (α− λ id)s
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which we need for the next result. But we also have

Gα(λ) = ker (α− λ id)r

where r is the algebraic multiplicity of λ. This is useful for calculating Gα(λ) as it is often
easier to determine ∆α(t) than mα(t).

We can now state the following special important case of the Primary Decomposition
Theorem.

Theorem 3.9 (Jordan Decomposition) Suppose that

∆α(t) = (λ1 − t)r1 · · · (λk − t)rk

mα(t) = (t− λ1)s1 · · · (t− λk)sk .

Then
V = Gα(λ1)⊕ · · · ⊕Gα(λk).

For the corresponding decomposition of α

α = α1 ⊕ · · · ⊕ αk,

we have ∆αi
(t) = (λi − t)ri and mαi

(t) = (t− λi)si.

Proof Almost everything follows directly from the Primary Decomposition Theorem and
Lemma 3.8. The only thing that remains to be proved is that ∆αi

(t) = (λi − t)ri . To
see this notice first that by Proposition 3.3 we have that the roots of mαi

are exactly the
eigenvalues of αi. Hence ∆αi

(t) = (λi−t)ti for some positive integer ti. As α = α1⊕· · ·⊕αk
it follows that

(λ1 − t)t1 · · · (λk − t)tk = ∆α(t) = (λ1 − t)r1 · · · (λk − t)rk .

Hence ti = ri for i = 1, . . . , k. 2.

Remarks (1) Our study of the structure of α thus reduces to understanding α1, . . . , αk.
So we are left with the situation

∆α(t) = (λ− t)r

mα(t) = (t− λ)s

where 1 ≤ s ≤ r.

(2) Let us consider the matrix version of Theorem 3.9. Suppose that Ai is a matrix
for αi then

A =


A1

A2

. . .

Ak


is a matrix for α where for each Ai we have (Ai−λiI)si = 0. If we let Ni = Ai−λiI then

A =


A1

A2

. . .

Ak

 =


λ1I

λ2I
. . .

λkI

+


N1

N2

. . .

Nk

 .
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Notice that N si
i = 0. A matrix N with the property that N s = 0 for some postive integer

s is said to be nilpotent. We have written A as a sum of a diagonal matrix and a nilpotent
matrix. This can be used for calculations of powers and exponential expressions (see sheet
9 and 10).

B. Cyclic α-invariant subspaces and the Jordan normal form.

In this section α : V → V is a linear operator such that

∆α(t) = (λ− t)r

mα(t) = (t− λ)s

where 1 ≤ s ≤ r.

Definition. Let v ∈ V . The cyclic α-invariant subspacee generated by v is the sub-
space

K[α]v = {p(α)v : p ∈ C[t]}.

Remark. Suppose that p, q ∈ C[t] and λ ∈ C. Notice that p(α)v+q(α)v = r(α)v where r
us the polynomial p+q and λp(α)v = s(α)v where s is the polynomial λp. HenceK[α]v is a
subspace of V . It is also α-invariant since αp(α)v = u(α)v where u is the polynomial tp(t).

Example. If v ∈ Eα(λ), i.e. α(v) = λv, then K[α]v = Kv. So for every eigenvec-
tor v we have that Kv is the cyclic α-invariant subspace generated by v.

Notice that any polynomial p(t) ∈ K[t] can be written as q(t− λ) for some other polyno-
mial q. Thus every p(α) can be written as q(α−λid). Let v ∈ V . As mα(t) = (t−λ)s, we
have that (α − λid)sv = 0. Now let e be the smallest integer such that (α − λid)ev = 0.
Then every element in K[α]v is of the form

a0v + a1(α− λid)v + · · ·+ ae−1(α− λid)e−1v.

This shows that v, (α− λid)v, · · · , (α− λid)e−1v span K[α]v. In fact these form a basis
for this subspace (see exercise 4(b) on sheet 9).

Lemma 3.10 Let 0 6= v ∈ V and let e be the smallest positive integer such that (α −
λid)ev = 0. Let

v1 = (α− λ id)e−1v, v2 = (α− λ id)e−2, . . . , ve−1 = (α− λid)v, ve = v.

The matrix for β, the restriction of α on K[α]v, with repsect to the basis (v1, v2, . . . , ve)
is the e× e matrix

J(λ, e) =


λ 1

λ 1
. . . . . .

λ 1
λ


and Eβ(λ) = Kv1. Also mβ(t) = (t− λ)e and ∆β(t) = (λ− t)e.
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Proof. Notice that

α(v1) = λ v1 + (α− λid)v1 = λ v1 + (α− λ id)ev = λ v1

and for 2 ≤ i ≤ e we have

α(vi) = λ vi + (α− λ id)vi = λ vi + vi−1 = vi−1 + λ vi

the matrix for α with respect to the basis v1, . . . , ve is therefore J(λ, e). We have seen in
exercise 2 on sheet 8 that mJ(t) = (t−λ)e, that ∆β(t) = (λ−t)e and that Eβ(λ) = Kv1. 2

Remark. J(λ, 1) = (λ) and J(λ, 2) =

(
λ 1
0 λ

)
.

Definition. We call J(λ, e) the Jordan block of degree e with eigenvalue λ.

Example. Consider the linear operator α : C2 → C2, v 7→ Av where

A =

(
3/2 1/2
−1/2 1/2

)
.

The characteristic polynomial is (3/2− t)(1/2− t) + 1/4 = 1− 2t+ t2 = (1− t)2. As the
matrix A is not the unit matrix the minimal polynomial is (t−1)2 = ∆α(t). The situation
is thus like in Lemma 3.10 with e = 2. We follow the recepi given there and look for an
vector v such that (A− I)v 6= 0. For example the vector v = (0 2)T works. Then we let
v1 = (A − I)v = (1 − 1)T and v2 = v. The matrix for α with respect to (v1, v2) is then
J(1, 2).

Remark. Suppose that V = V1 ⊕ · · · ⊕ VK where each summand is α-invariant. Let
α = α1⊕· · ·⊕αk be the corresponding decompositon of α. Now let v = v1 + · · ·+vk ∈ V .
We have that if α(v) = λv then

α1(v1) + · · ·+ αk(vk) = λv1 + · · ·+ λvk

and thus αi(vi) = λvi for i = 1, . . . , k. This shows that

Eα(λ) = Eα1(λ)⊕ · · · ⊕ Eαk
(λ).

The next result is one of the main results in this unit.

Theorem 3.11 (Jordan normal form) Let α : V → V be any linear map such that

∆α(t) = (λ− t)r

mα(t) = (t− λ)s

There exists a basis for V such that the matrix for α with respect to this basis is

A =


J(λ, s1)

J(λ, s2)
. . .

J(λ, sk)

 = J(λ, s1)⊕ · · · ⊕ J(λ, sk).
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Furthermore

(a) The number of Jordan blocks is k = gm (λ).
(b) s = max {s1, . . . , sk}.
(c) s1 + · · · = sk = r.

Proof (Non-examinable). From Lemma 3.10 we know that this is the same as showing
that there exist some non-zero v1, . . . , vk ∈ V such that

V = K[α]v1 ⊕ · · · ⊕K[α]vk, (4)

where the dimension of K[α]vi is si. Suppose that we have already established this. Let
αi be the restriction of α on K[α]v. By the remark made before the statement of this
theorem we know that

Eα(λ) = Eα1(λ)⊕ · · · ⊕ Eαk
(λ).

By Lemma 3.10, dimEαi
(λ) = 1. Hence dimEα(λ) = dimEα1(λ) + · · · + Eαk

(λ) = k.
This proves (a).

Now mα(t) is the least common multiple of mα1(t), . . . ,mαk
(t) and (b) follows from this.

Also (c) is simply saying that dimV = dimK[α]v1 + · · ·+ dimK[α]vk.

It thus just remains to show that (4) holds. We prove this by induction on s. If s = 1, then
α = λid. Pick any basis v1, . . . , vr for V and V = Kv1⊕· · ·⊕Kvr = K[α]v1⊕· · ·⊕K[α]vr.
This deals with the induction basis.

Now suppose that s ≥ 2 and that the claim holds for smaller values of s. Now con-
sider the subspace W = (α− λid)V . As α− λid commutes with α we know from Lemma
3.4 that W is α-invariant. Now

(α− λid)s−1w = 0

for all w ∈ W and the minimal polynomial of α|W is (t − λ)s−1. By the induction
hypothesis, there exist non-zero (α− λid)v1, . . . , (α− λid)ve ∈ W such that

W = (α− λid)V = K[α](α− λid)v1 ⊕ · · · ⊕K[α](α− λid)ve.

Let βi be the restriction of α on K[α]vi. We know then from Lemma 3.10 that Eβi(λ) has
dimension 1 and that there is a basis vector wi = (α − λid)eivi for Eβi(λ) where ei ≥ 1.
Notice that it follows that wi ∈ K[α](α−λid)vi. Thus (w1, . . . , we) is a basis for Eα|W (λ).
Extend this to a bases (w1, . . . , we, ve+1, . . . , ve+f ) for Eα(λ). I claim that

V = K[α]v1 ⊕ · · · ⊕K[α]ve ⊕K[α]ve+1 ⊕ · · · ⊕K[α]ve+f .

Notice that, as ve+1, . . . , ve+f are eigenvectors, this is the same as saying that V =
K[α]v1 ⊕ · · · ⊕K[α]ve ⊕ (Kve+1 ⊕ · · · ⊕Kve+f ).

First we show that V = K[α]v1 + · · · + K[α]ve + Kve+1 + · · · + Kve+f . Take any v ∈ V
then (α− λid)v ∈ W and thus

(α− λid)v = p1(α)(α− λid)v1 + · · ·+ pe(α)(α− λid)ve
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for some p1, . . . , pe ∈ K[t]. It follows that

(α− λid)(v − (p1(α)v1 + · · ·+ pe(α)ve)) = 0

and thus v − (p1(α)v1 + · · · + pe(α)ve) ∈ Eα(λ) ⊆ W + Kve+1 + · · · + Kve+f . Hence
v = p1(α)v1 + · · ·+ pk(α)vk + (v − (p1(α)v1 + · · ·+ pk(α)vk)) ∈ K[α]v1 + · · ·+K[α]ve +
Kve+1 + · · ·+Kve+f .

Next we show that the sum is direct. Suppose

0 = p1(α)v1 + · · ·+ pe(α)ve + ae+1ve+1 + · · ·+ ae+fve+f .

Applying α− λid to both sides, gives

0 = p1(α)(α− λid)v1 + · · ·+ pe(α)(α− λid)ve.

Since W was a direct sum it follows that (α− λid)pi(α)vi = 0 for i = 1, . . . , e. So pi(α)vi
is an eigenvector belonging to K[α]vi and thus a multiple of wi. Since w1, . . . , we are
linearly independent, it follows that pi(α)vi = 0 for i = 1, . . . , e. Hence

0 = ae+1ve+1 + · · ·+ ae+fve+f

and as ve+1, . . . , ve+f are linearly independent, it follows that ae+1 = . . . = ae+f = 0. This
finishes the proof. 2

Remarks (1) The matrix A in Theorem 3.11 is called a Jordan Normal Form for α often
denoted JNF(α). One can show that the Jordan blocks in JNF(α) are unique up to order.

(2) This can be generalised. If ∆α(t) = (λ1 − t)r1 · · · (λm − t)rm and

V = Gα(λ1)⊕Gα(λ2)⊕ · · · ⊕Gα(λm)

with the corresponding decomposition of α

α = α1 ⊕ · · · ⊕ αm,

then we let JNF(α) = JNF(α1)⊕ · · · ⊕ JNF(αm).

Example. Suppose that α : V → V is a linear map where mα(t) = (t − 5)2 and
∆α(t) = (t− 5)4. What are the possible JNF’s for α.

Solution. As the degree of mα(t) is 2, we must have at least one largest block J(5, 2)
and to complete we need to add two more dimensions. So the possibilities are

J(5, 2)⊕ J(5, 2), J(5, 2)⊕ J(5, 1)⊕ J(5, 1).

If we furthermore know that gm(5) = 3 then we must have three blocks and thus only
the second possibility applies.

The problem of finding the basis that gives us JNF(α) is something we will not get
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much into here. There is a example on sheet 10 with more than one eigenvalue. Here we
give on example where there is exactly one eigenvalue.

Example. Consider the linear operator α : C3 → C3, v 7→ Av where

A =

 1 1/2 1/2
0 3/2 1/2
0 −1/2 1/2

 .

Step 1. We find ∆α,mα and JNF(α).

The characteristic polynomial is (1− t)[(3/2− t)(1/2− t) + 1/4) = (1− t)(1− 2t+ t2) =
(1− t)3. As the matrix A is not the unit matrix the minimal polynomial is either (t− 1)2

or (t− 1)3. Let us first check if it is the first one. We have

(A− I)2 =

 0 1/2 1/2
0 1/2 1/2
0 −1/2 −1/2

 ·
 0 1/2 1/2

0 1/2 1/2
0 −1/2 −1/2

 =

 0 0 0
0 0 0
0 0 0

 .

So the minimal polynomial is (t − 1)2. It follows that there is a Jordan block J(1, 2) of
degree 2 and as the algebraic multiplicity is 3 we have another Jordan block J(1, 1) of
degree 1. Hence JNF(α) = J(1, 2)⊕ J(1, 1).

Step 2. Find the basis for V that gives us JNF(α).

We look for vectors v and w such that

V = K[α]v ⊕K[α]w.

The first summand should correspond to J(1, 2) and thus be of dimension 2 whereas the
2nd one corresponds to J(1, 1) and should therefore be of dimension 1. We therefore need

K[α]v = K(A− I)v +Kv

where (A− I)v 6= 0 and
K[α]w = Kw

where (A− I)w = 0 or equivalently Aw = w.

We pick any vector v that is not an eigenvector. For example v = (0, 0, 2)T . We have
(A − I)v = (1, 1,−1)T . We need an eigenvector w that is linearly independent to v and
(A − I)v. Here we can take w = (1, 0, 0)T . From Lemma 3.10 we know that the matrix
with repect to the basis v1 = (1, 1,−1)T , v2 = (0, 0, 2)T , v3 = (1, 0, 0)T is J(1, 2)⊕ J(1, 1).
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