EXERCISE SHEET 1

This sheet is due in the lecture on Tuesday 7th October, and will be discussed in the exercise class on Friday 10th October.

Exercise 1.1. Review of highest common factors.

- (1) Use Euclidean algorithm to compute hcf(963, 657) and find a pair of integers m, n satisfying 963m + 657n = hcf(963, 657).
- (2) For non-zero integers a and b, let d = hcf(a, b), a = da' and b = db'. Show that hcf(a', b') = 1. (Hint: write d = am + bn for some $m, n \in \mathbb{Z}$.)

Exercise 1.2. Examples of arithmetic functions.

- (1) Compute the values of $\nu(n)$, $\sigma(n)$, $\mu(n)$, $\phi(n)$ for n = 360 and n = 429.
- (2) For any integer $n \ge 3$, show that $\phi(n)$ is even.
- (3) For any integer $n \ge 2$, show that the sum of all elements in the set $\{m \in \mathbb{Z} \mid 1 \le m \le n, hcf(m, n) = 1\}$ is $\frac{1}{2}n\phi(n)$.

Exercise 1.3. Applications of Möbius inversion.

- (1) Show that $\sum_{d|n} \mu(\frac{n}{d})\nu(d) = 1$ for any $n \in \mathbb{Z}^+$;
- (2) Show that $\sum_{d|n} \mu(\frac{n}{d})\sigma(d) = n$ for any $n \in \mathbb{Z}^+$.

Exercise 1.4. Unique factorisation in the ring of Gaussian integers.

Consider the ring of Gaussian integers $\mathbb{Z}[i] = \{a + bi \in \mathbb{C} \mid a, b \in \mathbb{Z}\}$ and the function $\nu : \mathbb{Z}[i] \to \{0, 1, 2, \dots\}$ given by $\nu(a + bi) = a^2 + b^2$ (the absolute value as a complex number).

- (1) Verify that for all $\alpha, \beta \in \mathbb{Z}[i], \nu(\alpha\beta) = \nu(\alpha)\nu(\beta)$. (Hint: either compute it directly, or use the fact that $\nu(\alpha) = \alpha \cdot \overline{\alpha}$.)
- (2) Show that the function ν is a Euclidean valuation. (Hint: for $\alpha, \beta \in \mathbb{Z}[i]$, consider $\frac{\alpha}{\beta}$ as a complex number. Choose q to be the Gaussian integer which is the nearest to $\frac{\alpha}{\beta}$ in the complex plane.)
- (3) Conclude that unique factorisation holds for $\mathbb{Z}[i]$.
- (4) Show that $\alpha \in \mathbb{Z}[i]$ is a unit iff $\nu(\alpha) = 1$. Conclude that the only units in $\mathbb{Z}[i]$ are ± 1 and $\pm i$.
- (5) For $\alpha \in \mathbb{Z}[i]$, suppose $\nu(\alpha)$ is a prime in \mathbb{Z} . Show that α is irreducible in $\mathbb{Z}[i]$.
- (6) Show that (2+i)(2-i) = 5 = (1+2i)(1-2i) are two factorisations of 5 into irreducible elements in $\mathbb{Z}[i]$. How is this consistent with unique factorisation?