## Exercise Sheet 1

This sheet is due in the lecture on Tuesday 7th October, and will be discussed in the exercise class on Friday 10th October.

Exercise 1.1. Review of highest common factors.
(1) Use Euclidean algorithm to compute $\operatorname{hcf}(963,657)$ and find a pair of integers $m, n$ satisfying $963 m+657 n=\operatorname{hcf}(963,657)$.
(2) For non-zero integers $a$ and $b$, let $d=\operatorname{hcf}(a, b), a=d a^{\prime}$ and $b=d b^{\prime}$. Show that $\operatorname{hcf}\left(a^{\prime}, b^{\prime}\right)=1$. (Hint: write $d=a m+b n$ for some $m, n \in \mathbb{Z}$.)

Exercise 1.2. Examples of arithmetic functions.
(1) Compute the values of $\nu(n), \sigma(n), \mu(n), \phi(n)$ for $n=360$ and $n=429$.
(2) For any integer $n \geqslant 3$, show that $\phi(n)$ is even.
(3) For any integer $n \geqslant 2$, show that the sum of all elements in the set $\{m \in \mathbb{Z} \mid 1 \leqslant$ $m \leqslant n, \operatorname{hcf}(m, n)=1\}$ is $\frac{1}{2} n \phi(n)$.

Exercise 1.3. Applications of Möbius inversion.
(1) Show that $\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \nu(d)=1$ for any $n \in \mathbb{Z}^{+}$;
(2) Show that $\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \sigma(d)=n$ for any $n \in \mathbb{Z}^{+}$.

Exercise 1.4. Unique factorisation in the ring of Gaussian integers.
Consider the ring of Gaussian integers $\mathbb{Z}[i]=\{a+b i \in \mathbb{C} \mid a, b \in \mathbb{Z}\}$ and the function $\nu: \mathbb{Z}[i] \rightarrow\{0,1,2, \cdots\}$ given by $\nu(a+b i)=a^{2}+b^{2}$ (the absolute value as a complex number).
(1) Verify that for all $\alpha, \beta \in \mathbb{Z}[i], \nu(\alpha \beta)=\nu(\alpha) \nu(\beta)$. (Hint: either compute it directly, or use the fact that $\nu(\alpha)=\alpha \cdot \bar{\alpha}$.)
(2) Show that the function $\nu$ is a Euclidean valuation. (Hint: for $\alpha, \beta \in \mathbb{Z}[i]$, consider $\frac{\alpha}{\beta}$ as a complex number. Choose $q$ to be the Gaussian integer which is the nearest to $\frac{\alpha}{\beta}$ in the complex plane.)
(3) Conclude that unique factorisation holds for $\mathbb{Z}[i]$.
(4) Show that $\alpha \in \mathbb{Z}[i]$ is a unit iff $\nu(\alpha)=1$. Conclude that the only units in $\mathbb{Z}[i]$ are $\pm 1$ and $\pm i$.
(5) For $\alpha \in \mathbb{Z}[i]$, suppose $\nu(\alpha)$ is a prime in $\mathbb{Z}$. Show that $\alpha$ is irreducible in $\mathbb{Z}[i]$.
(6) Show that $(2+i)(2-i)=5=(1+2 i)(1-2 i)$ are two factorisations of 5 into irreducible elements in $\mathbb{Z}[i]$. How is this consistent with unique factorisation?

