EXERCISE SHEET 2

This sheet is due in the lecture on Tuesday 14th October, and will be discussed in the exercise class on Friday 17th October.

Exercise 2.1. Solving linear equations.

- (1) Solve the equation $140x \equiv 98 \pmod{84}$.
- (2) Solve the equation $28x \equiv 124 \pmod{116}$.
- (3) Find all integer solutions to the equation 12x + 7y = 17.
- (4) Let $a, b, c \in \mathbb{Z}$ where a and b are not simultaneously zero. Show that the equation ax + by = c has solutions in integers iff $hcf(a, b) \mid c$.

Exercise 2.2. Solving systems of linear equations.

- (1) Solve the system $x \equiv 1 \pmod{7}$, $x \equiv 4 \pmod{9}$, $x \equiv -2 \pmod{5}$.
- (2) Solve the system $4x \equiv 6 \pmod{13}$, $6x \equiv 4 \pmod{8}$.
- (3) Solve the system $x \equiv 7 \pmod{15}$, $x \equiv 5 \pmod{9}$.

Exercise 2.3. Cancellation law for congruences.

Let $a, b, k, m \in \mathbb{Z}, k \neq 0, m \neq 0$.

- (1) Assume $k \mid m$. Show that $ka \equiv kb \pmod{m}$ iff $a \equiv b \pmod{\frac{m}{k}}$;
- (2) Assume hcf(k, m) = 1. Show that $ka \equiv kb \pmod{m}$ iff $a \equiv b \pmod{m}$;
- (3) In general, assume hcf(k, m) = d. Show that $ka \equiv kb \pmod{m}$ iff $a \equiv b \pmod{\frac{m}{d}}$. (Hint: use parts (1) and (2).)

Exercise 2.4. Wilson's theorem and beyond.

- (1) Let p be an odd prime. If $k \in \{1, 2, \dots, p-1\}$, show that there is a unique b_k in this set such that $kb_k \equiv 1 \pmod{p}$.
- (2) Show that $k = b_k$ iff k = 1 or k = p 1.
- (3) Use parts (1) and (2) to prove that $(p-1)! \equiv -1 \pmod{p}$. This is known as Wilson's theorem.
- (4) If $n \in \mathbb{Z}$, n > 1, is not a prime, show that $(n-1)! \equiv 0 \pmod{n}$ unless n = 4.
- (5) Let $n \in \mathbb{Z}$, n > 1. Conclude that $(n-1)! \equiv -1 \pmod{n}$ iff n is a prime.