Exercise Sheet 2

This sheet is due in the lecture on Tuesday 14 th October, and will be discussed in the exercise class on Friday 17th October.

Exercise 2.1. Solving linear equations.
(1) Solve the equation $140 x \equiv 98(\bmod 84)$.
(2) Solve the equation $28 x \equiv 124(\bmod 116)$.
(3) Find all integer solutions to the equation $12 x+7 y=17$.
(4) Let $a, b, c \in \mathbb{Z}$ where a and b are not simultaneously zero. Show that the equation $a x+b y=c$ has solutions in integers iff $\operatorname{hcf}(a, b) \mid c$.

Exercise 2.2. Solving systems of linear equations.
(1) Solve the system $x \equiv 1(\bmod 7), x \equiv 4(\bmod 9), x \equiv-2(\bmod 5)$.
(2) Solve the system $4 x \equiv 6(\bmod 13), 6 x \equiv 4(\bmod 8)$.
(3) Solve the system $x \equiv 7(\bmod 15), x \equiv 5(\bmod 9)$.

Exercise 2.3. Cancellation law for congruences.
Let $a, b, k, m \in \mathbb{Z}, k \neq 0, m \neq 0$.
(1) Assume $k \mid m$. Show that $k a \equiv k b(\bmod m)$ iff $a \equiv b\left(\bmod \frac{m}{k}\right)$;
(2) Assume $\operatorname{hcf}(k, m)=1$. Show that $k a \equiv k b(\bmod m)$ iff $a \equiv b(\bmod m)$;
(3) In general, assume $\operatorname{hcf}(k, m)=d$. Show that $k a \equiv k b(\bmod m)$ iff $a \equiv b\left(\bmod \frac{m}{d}\right)$. (Hint: use parts (1) and (2).)

Exercise 2.4. Wilson's theorem and beyond.
(1) Let p be an odd prime. If $k \in\{1,2, \cdots, p-1\}$, show that there is a unique b_{k} in this set such that $k b_{k} \equiv 1(\bmod p)$.
(2) Show that $k=b_{k}$ iff $k=1$ or $k=p-1$.
(3) Use parts (1) and (2) to prove that $(p-1)!\equiv-1(\bmod p)$. This is known as Wilson's theorem.
(4) If $n \in \mathbb{Z}, n>1$, is not a prime, show that $(n-1)!\equiv 0(\bmod n)$ unless $n=4$.
(5) Let $n \in \mathbb{Z}, n>1$. Conclude that $(n-1)!\equiv-1(\bmod n)$ iff n is a prime.

