Exercise Sheet 3

This sheet is due in the lecture on Tuesday 21st October, and will be discussed in the exercise class on Friday 24th October.

Exercise 3.1. Examples of primitive roots.
(1) Show that 2 is a primitive root modulo 29. How many generators does \mathbb{Z}_{29}^{*} have?
(2) Show that 2 is a primitive root modulo $1331=11^{3}$. How many generators does \mathbb{Z}_{1331}^{*} have? (Hint: Remark 3.9.)
(3) Find all primitive roots modulo 10,11 and 12 respectively, if there is any.

Exercise 3.2. Applications in solving non-linear equations.
Let p be an odd prime and g a primitive root modulo p.
(1) For any $d \mid(p-1)$, show that $g^{\frac{p-1}{d}}$ has order d modulo p.
(2) Show that $g^{\frac{p-1}{2}} \equiv-1(\bmod p)$.
(3) Use the primitive root in Exercise 3.1 (1) to find all solutions to $x^{7} \equiv 1(\bmod 29)$.

Exercise 3.3. Applications in higher order residues.
Let p be an odd prime and g a primitive root modulo p. Assume $d \mid(p-1)$ and $p \nmid a$.
(1) Show that $x^{d} \equiv a(\bmod p)$ has solutions iff $a \equiv g^{d k}(\bmod p)$ for some $k \in \mathbb{Z}$.
(2) Show that $x^{d} \equiv a(\bmod p)$ has solutions iff $a^{\frac{p-1}{d}} \equiv 1(\bmod p)$.
(3) Find all values of a with $0<a<29$ such that $x^{4} \equiv a(\bmod 29)$ has solutions. (Hint: you can use Exercise 3.1 (1) or Exercise 3.2 (3).)

Exercise 3.4. Characterisation of primitive roots modulo higher powers of odd primes.
Let p be an odd prime.
(1) For any positive integer l, if $a \equiv b\left(\bmod p^{l}\right)$, show that $a^{p} \equiv b^{p}\left(\bmod p^{l+1}\right)$. (Hint: write $a=b+c \cdot p^{l}$ for some $c \in \mathbb{Z}$ and compute a^{p}.)
(2) For any positive integers $m<n$, if g is a primitive root modulo p^{n}, show that g is a primitive root modulo p^{m}. (Hint: prove by contradiction and use part (1).)
(3) For any integer $l \geqslant 2$, conclude that a necessary and sufficient condition for g being a primitive root modulo g^{l} is that g is a primitive root modulo p and $g^{p-1} \not \equiv 1$ $\left(\bmod p^{2}\right)$. (Hint: use part (2) to prove necessity. Sufficiency has been proved in Proposition 3.8; see Remark 3.9.)

