EXERCISE SHEET 5

This sheet is due in the lecture on Tuesday 4th November, and will be discussed in the exercise class on Friday 7th November.

Exercise 5.1. Evaluating Legendre symbols by Gauss' lemma.

- (1) Use Gauss' lemma to determine $\left(\frac{5}{7}\right)$, $\left(\frac{3}{11}\right)$, $\left(\frac{6}{13}\right)$.
- (2) For any odd prime p, use Gauss' lemma to determine $\left(\frac{-1}{p}\right)$ and $\left(\frac{2}{p}\right)$.
- (3) For any odd prime p, use Lemma 5.2 to determine $\left(\frac{-1}{p}\right)$.

Exercise 5.2. Special cases of Dirichlet's theorem.

- (1) Show that there are infinitely many primes which are congruent to -1 modulo 6. (Hint: follow the proof of Proposition 5.4 (1) to design the formula for N.)
- (2) Show that there are infinitely many primes which are congruent to −1 modulo 8. (Hint: follow the proof of Proposition 5.4 (2) to design the formula for N. You need Proposition 4.5 (2) to analyse prime factors of N.)

Exercise 5.3. Quadratic residues for powers of odd primes.

Let p be an odd prime, e > 0 and $p \nmid a$.

- (1) Assume a is a quadratic residue modulo p^{e+1} . Show that a is a quadratic residue modulo p^e .
- (2) Assume a is a quadratic residue modulo p^e . Show that a is a quadratic residue modulo p^{e+1} . (Hint: if $x^2 \equiv a \pmod{p^e}$), then we can write $x^2 = a + bp^e$. Set $y = x + cp^e$ and show that we can find c such that $y^2 \equiv a \pmod{p^{e+1}}$.)
- (3) Conclude by induction that a is a quadratic residue modulo p^e iff $\left(\frac{a}{p}\right) = 1$.

Exercise 5.4. Fermat's two square problem.

Let p be an odd prime. Recall the ring of Gaussian integers $\mathbb{Z}[i]$ from Exercise 1.4.

- (1) Suppose $p \equiv 1 \pmod{4}$. Show that there exist integers s and t such that $pt = s^2 + 1$. Conclude that p is not a prime in $\mathbb{Z}[i]$. (Hint: -1 is a quadratic residue modulo p; remember that $\mathbb{Z}[i]$ has unique factorisation as in Exercise 1.4 (3).)
- (2) Suppose $p \equiv 1 \pmod{4}$. Use part (1) to show that p is the sum of two squares; i.e. $p = a^2 + b^2$ for some $a, b \in \mathbb{Z}$. (Hint: part (1) implies $p = \alpha\beta$ for some non-units α and β in $\mathbb{Z}[i]$. Then use Exercise 1.4 (1) and (4).)
- (3) Suppose $p \equiv 3 \pmod{4}$. Show that p cannot be written as the sum of two squares.