Exercise Sheet 6

This sheet is due in the lecture on Tuesday 11th November, and will be discussed in the exercise class on Friday 14th November.

Exercise 6.1. Examples of algebraic integers.
(1) Show that $\frac{1}{2}(1+\sqrt{5})$ is an algebraic integer by definition; i.e. by writing down a monic polynomial in $\mathbb{Z}[x]$ for which it is a root. Do the same for $3+i$ and $\sqrt{2}+\sqrt[3]{3}$.
(2) Show that $\frac{1}{2}$ is an algebraic number but not an algebraic integer by definition.
(3) Suppose that α is an algebraic integer. Show that $-\alpha$ is also an algebraic integer.

Exercise 6.2. Examples of traces and norms.
(1) Let K be the cubic field $\mathbb{Q}(\sqrt[3]{2})$. For any $\alpha=a+b \sqrt[3]{2}+c \sqrt[3]{4} \in K$ with $a, b, c \in \mathbb{Q}$, write down the matrix for the linear transformation L_{α} under the basis $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$. Compute the trace and norm of α in K.
(2) Let K be the cyclotomic field $\mathbb{Q}(\zeta)$ where $\zeta=\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}$. Write down the matrix for the linear transformation L_{ζ} under the basis $\left\{1, \zeta, \zeta^{2}, \zeta^{3}\right\}$. Compute the trace and norm of ζ in K.

Exercise 6.3. Elementary properties of the trace and norm.
Let K be a number field of degree n over $\mathbb{Q}, \alpha, \beta \in K$ and $a \in \mathbb{Q}$. Prove the following
(1) $T(\alpha+\beta)=T(\alpha)+T(\beta), N(\alpha \beta)=N(\alpha) N(\beta)$;
(2) $T(a \alpha)=a T(\alpha), N(a \beta)=a^{n} N(\beta)$;
(3) $T(1)=n, N(1)=1$;
(4) $N(\alpha)=0$ iff $\alpha=0$.

Exercise 6.4. Traces and norms of algebraic integers.
Supply the details in the proof of Proposition 6.19 in the following steps. The set S is defined in the sketch of proof in the lecture notes.
(1) Show that S spans K over \mathbb{Q}, i.e. every element in K is a \mathbb{Q}-linear combination of elements in S with rational coefficients;
(2) Show that elements in S are linearly independent over \mathbb{Q};
(3) Write down the matrix for L_{α} under the basis S. Conclude that all entries are in \mathbb{Z}, and $T(\alpha), N(\alpha) \in \mathbb{Z}$.

