EXERCISE SHEET 6

This sheet is due in the lecture on Tuesday 11th November, and will be discussed in the exercise class on Friday 14th November.

Exercise 6.1. Examples of algebraic integers.

- (1) Show that $\frac{1}{2}(1 + \sqrt{5})$ is an algebraic integer by definition; i.e. by writing down a monic polynomial in $\mathbb{Z}[x]$ for which it is a root. Do the same for 3+i and $\sqrt{2}+\sqrt[3]{3}$.
- (2) Show that $\frac{1}{2}$ is an algebraic number but not an algebraic integer by definition.
- (3) Suppose that α is an algebraic integer. Show that $-\alpha$ is also an algebraic integer.

Exercise 6.2. Examples of traces and norms.

- (1) Let K be the cubic field $\mathbb{Q}(\sqrt[3]{2})$. For any $\alpha = a + b\sqrt[3]{2} + c\sqrt[3]{4} \in K$ with $a, b, c \in \mathbb{Q}$, write down the matrix for the linear transformation L_{α} under the basis $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$. Compute the trace and norm of α in K.
- (2) Let K be the cyclotomic field $\mathbb{Q}(\zeta)$ where $\zeta = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$. Write down the matrix for the linear transformation L_{ζ} under the basis $\{1, \zeta, \zeta^2, \zeta^3\}$. Compute the trace and norm of ζ in K.

Exercise 6.3. Elementary properties of the trace and norm.

Let K be a number field of degree n over \mathbb{Q} , $\alpha, \beta \in K$ and $a \in \mathbb{Q}$. Prove the following

(1)
$$T(\alpha + \beta) = T(\alpha) + T(\beta), N(\alpha\beta) = N(\alpha)N(\beta);$$

(2)
$$T(a\alpha) = aT(\alpha), N(a\beta) = a^n N(\beta);$$

- (3) T(1) = n, N(1) = 1;
- (4) $N(\alpha) = 0$ iff $\alpha = 0$.

Exercise 6.4. Traces and norms of algebraic integers.

Supply the details in the proof of Proposition 6.19 in the following steps. The set S is defined in the sketch of proof in the lecture notes.

- (1) Show that S spans K over \mathbb{Q} , i.e. every element in K is a \mathbb{Q} -linear combination of elements in S with rational coefficients;
- (2) Show that elements in S are linearly independent over \mathbb{Q} ;
- (3) Write down the matrix for L_{α} under the basis S. Conclude that all entries are in \mathbb{Z} , and $T(\alpha), N(\alpha) \in \mathbb{Z}$.