Exercise Sheet 7

This sheet is due in the lecture on Tuesday 18th November, and will be discussed in the exercise class on Friday 21st November.
Exercise 7.1. Examples of discriminants.
(1) Let K be the cubic field $\mathbb{Q}(\sqrt[3]{2})$. Compute the discriminant $\Delta(1, \sqrt[3]{2}, \sqrt[3]{4})$.
(2) Let K be the cyclotomic field $\mathbb{Q}(\zeta)$ where $\zeta=\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}$. Compute the discriminant $\Delta\left(1, \zeta, \zeta^{2}, \zeta^{3}\right)$.
Exercise 7.2. The discriminant of an ideal is independent of the choice of integral basis.
Supply the proof of Lemma 7.11 in the following steps.
(1) Show that there exist $n \times n$ matrices M and N with integer entries, such that

$$
\begin{aligned}
\Delta\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right) & =(\operatorname{det} M)^{2} \Delta\left(\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right) \\
\Delta\left(\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right) & =(\operatorname{det} N)^{2} \Delta\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right) .
\end{aligned}
$$

(2) Show that $(\operatorname{det} M)^{2}(\operatorname{det} N)^{2}=1$. Conclude that $(\operatorname{det} M)^{2}=(\operatorname{det} N)^{2}=1$ and $\Delta\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)=\Delta\left(\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right)$.

Exercise 7.3. The discriminant of a quadratic field.
Supply the proof of Proposition 7.14 in the following two cases.
(1) Suppose $d \neq 1$ is a square-free integer, $d \equiv 2$ or $3(\bmod 4)$ and $K=\mathbb{Q}(\sqrt{d})$. Compute $\Delta(1, \sqrt{d})$. What is the value for Δ_{K} in this case?
(2) Suppose $d \neq 1$ is a square-free integer, $d \equiv 1(\bmod 4)$ and $K=\mathbb{Q}(\sqrt{d})$. Compute $\Delta\left(1, \frac{1+\sqrt{d}}{2}\right)$. What is the value for Δ_{K} in this case?

Exercise 7.4. Integral basis for a principal ideal.
Let K be a number field of degree n over \mathbb{Q}. Assume $\left\{\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right\}$ is an integral basis for \mathcal{O}_{K}. Let $\alpha \in \mathcal{O}_{K}, \alpha \neq 0$ and $I=(\alpha)$. Show that $\left\{\alpha \omega_{1}, \alpha \omega_{2}, \cdots, \alpha \omega_{n}\right\}$ is an integral basis for I in the following steps.
(1) Show that $\alpha \omega_{i} \in I$ for each $i, 1 \leqslant i \leqslant n$.
(2) Show that $\left\{\alpha \omega_{1}, \alpha \omega_{2}, \cdots, \alpha \omega_{n}\right\}$ are \mathbb{Q}-linearly independent. Conclude that it is a \mathbb{Q}-basis for K.
(3) Show that every $\gamma \in I$ is a linear combination of elements in $\left\{\alpha \omega_{1}, \alpha \omega_{2}, \cdots, \alpha \omega_{n}\right\}$ with integer coefficients. Conclude that it is an integral basis for I.
(4) As an example, suppose $K=\mathbb{Q}(\sqrt{3})$. Let $\alpha=\sqrt{3}$ and $I=(\alpha)$ an ideal in \mathcal{O}_{K}. Write down an integral basis for I, and use it to compute the discriminant $\Delta(I)$.

