Exercise Sheet 8

This sheet is due in the lecture on Tuesday 25th November, and will be discussed in the exercise class on Friday 28th November.

Exercise 8.1. Examples of norms of ideals.
(1) Let $d \neq 1$ be a square-free integer and $K=\mathbb{Q}(\sqrt{d})$. For any algebraic integer $\alpha=a+b \sqrt{d} \in \mathcal{O}_{K}$, let $I=(\alpha)$. Find the norm $N(I)$. (Hint: Proposition 8.9.)
(2) Let K be a number field of degree n over $\mathbb{Q}, a \in \mathbb{Z}$. Let $I=(a)$ be the principal ideal in \mathcal{O}_{K} generated by a. Find the norm $N(I)$. (Hint: Proposition 8.9.)

Exercise 8.2. Examples of sums and products of ideals.
Let R be a commutative ring with 1 .
(1) Let I and J be ideals in R. Show that $I J \subseteq I$ and $I \subseteq I+J$.
(2) Let I be an ideal in $R, \alpha \in R$. Show that $(\alpha) I=\{\alpha \gamma \mid \gamma \in I\}$.
(3) Let $\alpha, \beta \in R$. Show that $(\alpha)(\beta)=(\alpha \beta)$.
(4) Let \mathbb{k} be a field. The ideal (x, y) in $\mathbb{k}[x, y]$ is defined to be the sum of the two principal ideals $(x)+(y)$. Show that (x, y) consists of all polynomials in $\mathbb{k}[x, y]$ whose constant terms are 0 .

Exercise 8.3. Examples of prime and maximal ideals.
(1) Let $p \in \mathbb{Z}$ be prime. Show that the principal ideal (p) in \mathbb{Z} is prime and maximal.
(2) Let \mathbb{k} be a field. Show that the principal ideal (x) in $\mathbb{k}[x]$ is prime and maximal.
(3) Let \mathbb{k} be a field. Show that the ideal (x, y) in $\mathbb{k}[x, y]$ is prime and maximal. Show that the principal ideal (x) in $\mathbb{k}[x, y]$ is prime but not maximal.

Exercise 8.4. Cancellation law and "to contain is to divide".
(1) Prove Corollary 8.14. (Hint: by Proposition 8.13, there is an ideal J such that $I J=(\gamma)$ is a non-zero principal ideal. Multiply $I J_{1}=I J_{2}$ on both sides by J to get $(\gamma) J_{1}=(\gamma) J_{2}$. Then show that $J_{1} \subseteq J_{2}$ and similarly $J_{2} \subseteq J_{1}$ to conclude.)
(2) Prove Corollary 8.15. (Hint: first explain why the statement is clear if $I_{2}=0$. If $I_{2} \neq 0$, then by Proposition 8.13, there is an ideal I_{3} and $\gamma \neq 0$ such that $I_{2} I_{3}=(\gamma)$. Hence we have $I_{1} I_{3} \subseteq I_{2} I_{3}=(\gamma)$. Define the set $J=\left\{\alpha \in \mathcal{O}_{K} \mid \gamma \alpha \in\right.$ $\left.I_{1} I_{3}\right\}$. Show that J is an ideal, and that $I_{1} I_{3}=(\gamma) J=I_{2} I_{3} J$. Then apply the cancellation law proved in part (1) to conclude $I_{1}=I_{2} J$.)

