Exercise Sheet 9

This sheet is due in the lecture on Tuesday 2nd December, and will be discussed in the exercise class on Friday 5th December.

Exercise 9.1. Card games and non-card games.
Answer the following questions. You do not need to justify your answers.
(1) Which of the following shape(s) is/are convex? (i) a spade; (ii) a heart; (iii) a club; (iv) a diamond; (v) a joker. (Hint: think of these shapes as in a standard 52-card deck, but pretend that the four sides of the diamond are straight line segments.)
(2) Which of the following shape(s) is/are centrally symmetric? (i) a square with vertices $(0,0),(1,0),(1,1),(0,1)$; (ii) a rhombus with vertices $(1,0),(0,2),(-1,0)$, $(0,-2)$; (iii) a triangle with vertices $(1,-1),(0,1),(-1,-1)$; (iv) a parallelogram with vertices $(2,3),(3,4),(-2,-3),(-3,-4) ;(v)$ a disk $\left\{(x, y) \in \mathbb{R}^{2} \mid(x-1)^{2}+\right.$ $\left.(y-1)^{2} \leqslant 1\right\} ;\left(\right.$ vi) an annulus $\left\{(x, y) \in \mathbb{R}^{2} \mid 1 \leqslant x^{2}+y^{2} \leqslant 2\right\}$.

Exercise 9.2. Applications of Minkowski's Theorem.
(1) Assume we have a lattice L of rank 2 in \mathbb{R}^{2} whose fundamental domain has volume A. For which positive values of r is the disk $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leqslant r^{2}\right\}$ guaranteed to contain at least one non-zero point of L ?
(2) Assume we have a lattice L of rank 2 in \mathbb{R}^{2} whose fundamental domain has volume A. For which positive values of r is the square $S=\left\{(x, y) \in \mathbb{R}^{2}| | x|+|y| \leqslant r\}\right.$ guaranteed to contain at least one non-zero point of L ?

Exercise 9.3. Basic properties of ideal classes.
(1) Show that the relation \sim in Definition 9.1 is an equivalence relation. (Hint: an equivalence relation requires (i) reflexivity: $I \sim I$; (ii) symmetry: if $I \sim J$ then $J \sim I$; (iii) transitivity: if $I_{1} \sim I_{2}$ and $I_{2} \sim I_{3}$ then $I_{1} \sim I_{3}$.)
(2) Show that the product of ideal classes is well-defined; i.e. if $I_{1} \sim I_{2}$ and $J_{1} \sim J_{2}$, then $I_{1} J_{1} \sim I_{2} J_{2}$.

Exercise 9.4. Volume of the fundamental domain for real quadratic fields.
Supply the proof of Proposition 9.14 in the following steps.
(1) Prove L_{I} is a lattice of rank 2 in \mathbb{R}^{2} by writing down a pair of generators e_{1}, e_{2}.
(2) Use the integral basis of \mathcal{O}_{K} given in Proposition 7.2 to compute $\operatorname{vol}\left(T_{\mathcal{O}_{K}}\right)$.
(3) Use a matrix M to relate $\operatorname{vol}\left(T_{I}\right)$ and $\operatorname{vol}\left(T_{\mathcal{O}_{K}}\right)$, and prove the formula for $\operatorname{vol}\left(T_{I}\right)$.

