EXERCISE SHEET 9

This sheet is due in the lecture on Tuesday 2nd December, and will be discussed in the exercise class on Friday 5th December.

Exercise 9.1. Card games and non-card games.

Answer the following questions. You do not need to justify your answers.

- Which of the following shape(s) is/are convex? (i) a spade; (ii) a heart; (iii) a club;
 (iv) a diamond; (v) a joker. (Hint: think of these shapes as in a standard 52-card deck, but pretend that the four sides of the diamond are straight line segments.)
- (2) Which of the following shape(s) is/are centrally symmetric? (i) a square with vertices (0,0), (1,0), (1,1), (0,1); (ii) a rhombus with vertices (1,0), (0,2), (-1,0), (0,-2); (iii) a triangle with vertices (1,-1), (0,1), (-1,-1); (iv) a parallelogram with vertices (2,3), (3,4), (-2,-3), (-3,-4); (v) a disk $\{(x,y) \in \mathbb{R}^2 \mid (x-1)^2 + (y-1)^2 \leq 1\}$; (vi) an annulus $\{(x,y) \in \mathbb{R}^2 \mid 1 \leq x^2 + y^2 \leq 2\}$.

Exercise 9.2. Applications of Minkowski's Theorem.

- (1) Assume we have a lattice L of rank 2 in \mathbb{R}^2 whose fundamental domain has volume A. For which positive values of r is the disk $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq r^2\}$ guaranteed to contain at least one non-zero point of L?
- (2) Assume we have a lattice L of rank 2 in \mathbb{R}^2 whose fundamental domain has volume A. For which positive values of r is the square $S = \{(x, y) \in \mathbb{R}^2 \mid |x| + |y| \leq r\}$ guaranteed to contain at least one non-zero point of L?

Exercise 9.3. Basic properties of ideal classes.

- (1) Show that the relation ~ in Definition 9.1 is an equivalence relation. (Hint: an equivalence relation requires (i) reflexivity: $I \sim I$; (ii) symmetry: if $I \sim J$ then $J \sim I$; (iii) transitivity: if $I_1 \sim I_2$ and $I_2 \sim I_3$ then $I_1 \sim I_3$.)
- (2) Show that the product of ideal classes is well-defined; i.e. if $I_1 \sim I_2$ and $J_1 \sim J_2$, then $I_1J_1 \sim I_2J_2$.

Exercise 9.4. Volume of the fundamental domain for real quadratic fields.

Supply the proof of Proposition 9.14 in the following steps.

- (1) Prove L_I is a lattice of rank 2 in \mathbb{R}^2 by writing down a pair of generators e_1, e_2 .
- (2) Use the integral basis of \mathcal{O}_K given in Proposition 7.2 to compute $\operatorname{vol}(T_{\mathcal{O}_K})$.
- (3) Use a matrix M to relate $vol(T_I)$ and $vol(T_{\mathcal{O}_K})$, and prove the formula for $vol(T_I)$.