
1. Unique Factorisation and Applications

We review the notion of unique factorisation and give some applications of unique fac-

torisation in the ring of integers.

1.1. Factorisation in integral domains. We have studied this topic extensively in

Algebra 2B. Here we review some important notions and results. In this lecture we

always assume R is a commutative ring with 1, such that 0 � 1. We say R is an integral

domain if for a, b P R with ab � 0, we have either a � 0 or b � 0. We recall the definitions

of Euclidean domains, principal ideal domains, unique factorisation domains, along with

other relevant concepts and notations. (If you learned Algebra 2B in 2013, you have seen

the mathematical content of these terminologies without knowing some of the names.)

Definition 1.1. Let R be an integral domain. A Euclidean valuation on R is a map

ν : R z 0
(Ñ  

0, 1, 2, � � � (
such that if a, b P R with b � 0, there exist q, r P R with the property that a � qb � r

and either r � 0 or νprq   νpbq. R is said to be a Euclidean domain if it has a Euclidean

valuation.

Example 1.2. We recall some important examples of Euclidean domains

(1) The ring of integers Z is an Euclidean domain, with the absolute value function

νpnq � |n| being a Euclidean valuation.

(2) For k a field, the polynomial ring of a single variable krxs is an Euclidean domain,

with the degree function νpfpxqq � deg fpxq being a Euclidean valuation.

(3) The ring of Gaussian integers

Zris �  
a� bi P C | a, b P Z

(
is an integral domain as it is a subring of the field of complex numbers C. The

function

νpa� biq � a2 � b2

provides a Euclidean valuation. See Exercise 1.4.

Definition 1.3. Let R be an integral domain. An ideal I of R is a principal ideal if

I � paq for some a P R. R is a principal ideal domain (PID) if every ideal of R is

principal.

Remark 1.4. Notice that we use a slightly different notation from the one you used in

Algebra 2B. Here paq � Ra is the ideal generated by a P R.

Theorem 1.5. Every Euclidean domain is a PID.
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Proof. See Theorem 2.5 (2013) or Theorem 3.10 (2014) in Algebra 2B. (The 2013 version

only proves this result in special cases, but some minor changes would make it into a

complete proof for arbitrary Euclidean domains, which is given in the 2014 version.) �

By Theorem 1.5, all examples discussed in Example 1.2 are PIDs.

Before proceeding we review some basic definitions.

Definition 1.6. Let R be an integral domain. If a, b P R with b � 0, we say that b divides

a if a � bc for some c P R. We denote it by b � a. (Otherwise we write b � a.) An element

u P R is called a unit if u divides 1. Two elements a, b P R are said to be associated if

a � bu for some unit u.

Remark 1.7. We can restate everything in the language of ideals: b � a iff paq � pbq; u P R
is a unit iff puq � R; a and b are associates iff paq � pbq. See Lemma 2.9 (2013) or Lemmas

3.15 and 3.16 (2014) in Algebra 2B.

Definition 1.8. Let R be an integral domain. A non-unit p P R is said to be irreducible

if a � p implies that a is either a unit or an associate of p. A non-unit p P R is said to be

prime if p � 0 and p � ab implies that p � a or p � b.
Proposition 1.9. We have

(1) Let R be an integral domain. Then every prime element is irreducible.

(2) Let R be a PID. Then every irreducible element is prime.

Proof. For (1), see Proposition 2.10 (2013) or Proposition 3.19 (2014) in Algebra 2B. For

(2), see Proposition 2.12 (2013) or Proposition 3.21 (2014). �

Clearly, for all examples discussed in Example 1.2, the two notions “prime” and “irre-

ducible” agree, so we can use them interchangeably. For historical reasons we usually say

“primes” in Z and “irreducible polynomials” in krxs.
We move on to the definition of unique factorisation domains.

Definition 1.10. An integral domain R is a unique factorisation domain (UFD) if the

following conditions are satisfied:

(1) Every non-zero non-unit element in R can be written as the product of finitely

many irreducible elements in R;

(2) Given two such factorisations, say r1r2 � � � rs � r11r
1
2 � � � r1t, we have s � t, and after

renumbering if necessary, each r1i is an associate of ri for 1 ¤ i ¤ s.

Theorem 1.11. Every PID is a UFD.
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Proof. See Theorem 2.14 (2013) or Theorem 3.26 (2014) in Algebra 2B. �

By Theorem 1.11, all examples discussed in Example 1.2 are UFDs.

Remark 1.12. Sometimes we prefer to eliminate the ambiguity of the factorisations coming

from units. The relation of being associated is an equivalence relation which partitions

irreducible elements into equivalence classes. From each equivalence class we pick a repre-

sentative and denote the set of all representatives (one from each class) by S. For instance,

in Z we can take the set of all positive primes (irreducibles and primes agree in Z); in

krxs we can take the set of all monic (leading coefficient 1) irreducible polynomials. Then

every non-zero element a P R can be written in the form

a � ur1r2 � � � rs
where u is a unit and r1, � � � , rs P S. Moreover u is unique and r1, r2, � � � , rs are unique

up to renumbering.

Corollary 1.13 (Fundamental Theorem of Arithmetic). Every non-zero integer n admits

a prime factorisation

n � p�1qεpa11 pa22 � � � pass
where ε � 0 or 1, s is a non-negative integer, p1, p2, � � � , ps are distinct positive primes,

a1, a2, � � � , as are positive integers. This factorisation is unique up to the order of factors.

Proof. We have seen that unique factorisation holds for Z. By writing products of repeated

factors as powers we get the desired form. �

Remark 1.14. Unique factorisation in the ring of integers has fundamental importance.

However, unique factorisation fails for some other integral domains studied in number

theory. Understanding why it fails and how to fix it, is an important topic in algebraic

number theory. We will come back to this later.

The following famous result of Euclid is a nice application of the fundamental theorem of

arithmetic. The proof is simple and clever.

Theorem 1.15. There are infinitely many primes in Z.

Proof. It suffices to prove there are infinitely many positive primes in Z. We prove by

contradiction. Assume there are only finitely many positive primes. We can label all of

them in increasing order p1, p2, � � � , pn. Let N � p1p2 � � � pn � 1. Then N is greater than

1 and not divisible by any pi, i � 1, 2, � � � , n. On the other hand, N can be factored into

product of primes and hence is divisible by some prime p, which is different from any pi.

Contradiction! �
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